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The electronic and magnetic properties of one-dimensional (1D) 3d transition-metal nanowires are investigated
in the framework of density functional theory. The relative stability of collinear and noncollinear (NC)
ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon
dispersion relation �E(�q) as a function of the spin-density-wave vector �q. The dependence on the local
environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron
correlation effects are explored by comparing local spin-density and generalized-gradient approximations to
the exchange and correlation functional. Results are given for �E(�q), the local magnetic moments �μi at atom
i, the magnetization-vector density �m(�r), and the local electronic density of states ρiσ (ε). The frozen-magnon
dispersion relations are analyzed from a local perspective. Effective exchange interactions Jij between the local
magnetic moments �μi and �μj are derived by fitting the ab initio �E(�q) to a classical 1D Heisenberg model. The
dominant competing interactions Jij at the origin of the NC magnetic order are identified. The interplay between
the various Jij is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
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I. INTRODUCTION

The magnetism of low-dimensional systems remains, de-
spite its long history, one of the most important current
challenges in condensed-matter physics. Together with the
traditional ultrathin films and multilayers, a variety of new
nanostructured materials including small particles, nanowires,
and nanohybrids have recently gained considerable attention
in both basic and applied science [1–8]. Understanding their
behavior is not only challenging from a fundamental perspec-
tive but also considerably important in view of developing
novel technologies [1–4,6–9]. Potential applications may be
found, for example, in the fields of nonvolatile random-access
memories, read-write heads, high-density storage media, and
spin-electronic devices. Many experimental and theoretical
studies have already shown that reducing the dimensionality
of a macroscopic material leads to magnetic properties, which
are either strongly modified or have simply no equivalent in the
bulk. One-dimensional (1D) systems in particular are known to
display a variety of remarkable effects such as enhanced spin
and orbital moments, giant magnetic anisotropy [1,10], long-
range atomic ordering [11,12], noncollinear (NC) spin arrange-
ments [13–16], quantum confinement [17], and local moment
self-alignments [18,19]. Therefore, 1D nanostructures define a
fascinating research area in which a number of technological,
experimental, and theoretical interests converge.

In past years, remarkable advances towards the practical
realization of ideal 1D geometries have been achieved by
using diffusion-controlled aggregation [1,6] and atomic ma-
nipulation techniques, such as scanning tunneling microscopy
(STM) [20–24]. In this way new experimental opportunities
to tailor magnetism in low dimensions have been opened.
The study of complex chiral magnetic arrangements, such

as spiral and vortex spin states, has attracted considerable
attention in this context [23–29]. These complex NC magnetic
orders are often the result of competing exchange interactions,
for example, when antiferromagnetic (AF) couplings are
frustrated in nonbipartite lattices, or when ferromagnetic (FM)
and AF couplings coexist at different interatomic distances
[30]. More subtle effects induced by spin-orbit interactions are
observed in extended 2D vortex structures such as magnetic
skyrmions [26–29], which are stabilized by the asymmetry
of the exchange-coupling tensor (Dzyaloshinskii-Moriya cou-
pling) [31].

Competing magnetic interactions Jij between the local
magnetic moments at different atoms i and j have been
found in a wide variety of low-dimensional systems, even
for elements that exhibit a strong tendency towards collinear
ferromagnetic order in the bulk. Density functional theory
(DFT) with the standard approximations to exchange and
correlation has been able to describe spiral spin-density
wave (SDW) states in a variety of itinerant-electron magnetic
materials. This includes, in particular, Cr, γ -Fe, and U three-
dimensional crystals [32–35], Fe monolayers [36,37], and
transition-metal (TM) nanowires [14–16,38–42]. Stable spiral
arrangements have been predicted for V, Mn, and Fe 1D chains,
while collinear structures are favored in the case of Cr, Co, and
Ni wires [14–16]. In addition, the effects of wire-substrate
hybridizations have been investigated for Mn, Fe, and Ni
chains on nonmagnetic surfaces [16,43].

The electronic and magnetic properties of SDW states
are a subject of considerable interest, not only from the
fundamental perspective of magnetism. They are also very
important in view of integrating low-dimensional systems in
more complex nanostructures, such as deposited stripes or
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chain arrays. The stability of NC magnetism in TM chains
has already been studied in some detail [14–16,41]. However,
comparatively little is known so far about the signatures
of spiral order on other properties, such as the electronic
structure or the spin-polarized density distribution, which are
of great experimental and theoretical interest. It is one of
the goals of this paper to investigate these properties from
a local perspective in the framework of DFT. To this aim,
the single-particle local densities of electronic states ρ(ε) and
the magnetization-vector density �m(�r) of 1D TM systems are
determined as functions of the SDW vector �q, by taking V,
Mn, and Fe chains as representative examples. The effects of
electron correlations on the stability of SDWs are explored
by comparing local and gradient-corrected approximations
to the exchange and correlation (XC) energy functional. The
importance of the local environment of the atoms is quantified
by varying the lattice parameter a of the chains and by
analyzing the resulting changes in the effective magnetic
interactions Jij between the local moments. The interplay
between the different couplings Jij and the global magnetic
behavior of the chains are interpreted in the framework of the
phase diagram of a classical Heisenberg model.

The remainder of the paper is organized as follows. In
Sec. II the modelization of SDW states and the most important
computational details are described. In Sec. III the stability of
SDWs in V, Mn, and Fe wires is investigated for different lattice
parameters, by calculating the corresponding frozen-magnon
dispersion relations as a function of the wave number q. The
effective exchange interactions J0δ between the local moments
�μ0 and �μδ are obtained as a function of the intermoment
separation δ. In addition, the associated magnetization-vector
density �m(�r) is analyzed for representative values of q.
Section IV discusses the relative stability of the different types
of collinear and noncollinear magnetic orders from a local
perspective. The phase diagram of the 1D classical Heisenberg
model is obtained as a function of the dominant first-, second-,
and third-nearest-neighbor (NN) interactions. Following the
evolution of the ab initio results for J0δ within these phase
diagrams, as a function of the lattice parameter a, provides
new insights on the development of NC instabilities. In Sec. V
the local densities of states in spiral states having different q

are discussed: from the FM state (q = 0) over the NC orders
to the AF state (q = π/a). Results for Mn and Fe chains are
contrasted. Finally, Sec. VI summarizes our conclusions and
points out some interesting future research directions.

II. THEORETICAL BACKGROUND

We consider 1D periodic chains placed along the z axis
and having a lattice parameter a. Assuming for simplicity
that all local moments share the same polarization plane, the
spin-spiral states can be characterized by the wave vector �q =
[0,0,q] along the wire axis, where q = 2π/Na is the wave
number and N is the number of atoms in a real space period
(see Fig. 1). The collinear orders correspond to q = 0 (FM)
and q = π/a (AF). The electronic calculations can thus be
performed by using a supercell approach, constraining the
direction of the local magnetic moment μl at each atom l

in the supercell. For each considered N � 16, all the wave
numbers q compatible with the cell periodicity are taken into

FIG. 1. Illustration of a spiral spin-density wave having a wave
vector �q = (0,0,π/4a) and local magnetic moments within the xz

plane. The size of the supercell is indicated by the vertical dashed
line.

account (i.e., q = 2πl/Na with 0 � l < N). The supercell
dimensions in the directions perpendicular to the wire axis
are chosen large enough (typically 16 Å) so as to avoid any
spurious interactions between the periodic replicas.

The calculations have been performed in the framework of
Hohenberg-Kohn-Sham’s DFT as implemented in the Vienna
ab initio simulation package (VASP) [44]. The considered
XC energy functional is mainly the generalized-gradient
approximation (GGA) introduced by Perdew and Wang [45].
In addition, calculations have been performed by using the
local-density approximation (LDA) in order to gain some
insight into the role of electron correlations on the stability of
SDWs. In this case we use the Ceperly-Alder parametrization,
together with the Vosko-Wilk-Nusair correlation [46,47]. The
spin-polarized Kohn-Sham (KS) equations are solved in an
augmented plane-wave basis set, taking into account the
interaction between valence electrons and ionic cores by means
of the projector-augmented-wave method [48]. Only the 4s,
4p, and 3d orbitals are treated as valence electrons. The
KS wave functions are expanded in the interstitial region
by using plane waves with a cutoff energy Emax = 500 eV.
The integrations in the Brillouin zone (BZ) are performed
by applying the Monkhorst-Pack scheme with a k mesh [49]
having 1 × 1 × Nk points, where Nk = 30 for N = 4 and
Nk = 12 for N = 10, for example. The accuracy of this choice
has been explicitly checked by considering higher cutoff
energies and denser k meshes for representative examples.
The convergence criterion for the electronic energy has been
set to 10−5 eV, which is much smaller than all relevant
energy variations in this work. In the case of lattice parameter
relaxations, convergence is assumed when the forces on each
atom are below 10−2 eV/Å. This corresponds to a total energy
accuracy better than 1 meV/atom, which is sufficient for the
present purposes.

Metallic systems often show very rapid changes in the
states close to the Fermi level εF as a function of the spin-
polarized input density. This may cause a poor convergence
of important physical properties, such as the total energy or
the local magnetic moments. Therefore, a smearing of the KS
energy levels is introduced in order to improve the numerical
stability. In this work we use a Gaussian smearing with a
width σ = 0.02 eV, a value that ensures that the smearing
contribution to the total energy is less than 10−4 eV/atom.

The NC magnetic calculations are performed within a
fully unconstrained density functional formalism, in which
the density matrix nαβ (�r) is the fundamental variable and the
KS orbitals are spin- 1

2 spinors [50]. The charge density n(�r) is
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then given by the trace

n(�r) =
∑

α

nαα(�r), (1)

and the magnetization density by

�m(�r) =
∑

αβ

nαβ(�r) �σαβ, (2)

where �σαβ stands for the matrix elements of the vector
of Pauli matrices �σ = (σx,σy,σz). Further details on the
implementation may be found in Ref. [50]. The constraints
in the direction of the local magnetic moment μl at each atom
l of the supercell are imposed by means of a penalty function,
as proposed by Haynes and Payne [51]. Alternative methods
have been formulated in Refs. [52] and [53].

III. EFFECTIVE MAGNETIC INTERACTIONS FROM
FIRST PRINCIPLES

In this section we determine the effective magnetic in-
teractions between the local moments and the stability of
SDW states in V, Mn, and Fe chains from a first-principles
perspective. To this aim we calculate the frozen-magnon
dispersion relation �E(q) = E(q) − E(0) as a function of
the wave number q. The role of structural relaxations and of
the local atomic environment of the nanowires is studied by
varying the lattice parameter a.

A. V chains

In order to quantify the effects of electron correlations
on the SDW formation, we compare the results of different
approximations to XC. In Fig. 2 the magnon-dispersion
relations of V wires obtained by using the GGA and the
LDA are shown [45–47]. As already reported in a previous
study [14], the GGA yields a ferromagnetic ground state for
a � 2.6 Å, while for a � 2.55 Å the most stable arrangement
is a SDW. The energy �E gained upon the formation of
the spiral state with the optimal q = qmin is usually rather

FIG. 2. Frozen-magnon dispersion relation �E(q) = E(q) −
E(0) of V chains calculated by using the spin-polarized GGA and
LDA to the exchange and correlation functional. Results are given
for two representative lattice parameters a = 2.05 Å and a = 2.60 Å.

small. For instance, for a = 2.55 Å (a = 2.05 Å) we obtain
�E = −2 meV/atom (�E = −30 meV/atom) at qmin �
π/4a (qmin � π/2a). This refers to the difference with respect
to the most stable collinear order, i.e., the FM order. It should
be also noted that for large a the optimal spiral states are
significantly more stable than the AF state (q = π/a). For
example, E(π/a) − E(qmin) � 120 meV/atom for a = 2.55 Å
(see also Ref. [14]).

Using the LDA one obtains qualitatively similar q depen-
dencies. However, the stability of NC spin configurations
is clearly stronger in this case (see Fig. 2). For instance,
in the LDA a shallow minimum is found in �E(q) at
q � π/5a already for 2.6 Å, whereas the GGA predicts a
FM ground state. The quantitative differences between LDA
and GGA results become even more important for short
interatomic distances. For example, for a = 2.05 Å we ob-
tain �EGGA(qmin) = −30 meV/atom, while �ELDA(qmin) =
−50 meV/atom. This can be interpreted as a stronger tendency
of the LDA to favor electron delocalization and hybridization,
which enhances the importance of the second-NN exchange
interaction J02, relative to the first-NN coupling J01. In
fact, the interplay between the different Jij found with the
LDA for a given lattice parameter a is similar to what is
found with the GGA at a somewhat larger a. It should
be noted, however, that in other TM chains—for example,
in Mn chains—the differences between the LDA and GGA
frozen-magnon dispersion relations are very small. Mn wires
are discussed in the following section. A comparison between
LDA and GGA results for Mn chains may be found in the
Supplemental Material [54].

In order to understand the magnetic properties of spiral
states, it is useful to take a local perspective and analyze
the spatial distribution of the magnetization vector density
�m(�r), not only inside of the Wigner-Seitz (WS) spheres of
each atom, but also in the interstitial and outer regions. In
Fig. 3 results are shown for �m(�r) of a V chain having a
π/2 spiral state. One observes that the directions of �m(�r) are
almost perfectly parallel for all �r within the WS sphere of
any given atom i. It is also in this localized regions that the
far largest contribution to the local moments �μi is obtained.
These results confirm the strong stability of the local moments
and the idea of attaching a well-defined �μi to each atom, as
expected from the strong exchange interactions within the 3d

shell (first Hund rule). In a direction perpendicular to the wire
(e.g., the x direction) the spill-off spin density preserves a
parallel alignment to the corresponding atom as it vanishes
with increasing |x|. This is consistent with the experimental
observation of spiral SDWs in spin-polarized scanning tunnel-
ing experiments, since the spilled-off magnetization density
reflects the magnetic order of the local 3d moments. Significant
deviations from collinearity [i.e., �∇( �m/m) �= 0] are found
only in the very narrow interstitial regions between the atoms
(typically 0.5 Å wide). It is in these sort of subatomic “domain
walls” that the actual rotation of �m(�r) from atom to atom
takes place. Notice that the magnitude of the magnetization
density m(�r) is strongly reduced in the interatomic domain
walls. For example, at the midpoint between two atoms we

find m(�r) � 25 × 10−3μB/Å
3
, while near the atoms we find

125 × 10−3μB/Å
3
. This can be interpreted as the result of the
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FIG. 3. Magnetization density distribution �m(�r) of a V chain in
a spiral SDW state having �q = (0,0,π/2a), where a = 2.55 Å is the
lattice parameter. Results obtained in the GGA are given for �r within
the xz plane, as well as for x and z components of �m, since the xz

plane contains both the chain (along z) and the local moments �μi . In
(a) the color saturation (grayscale) indicates the absolute value of the
magnetization density m(�r), so that light (strong) colors correspond
to low (high) values of m(�r). The small arrows represent the direction
of �m(�r) at the corresponding position. In (b) the contour plot of
the component mx(�r) of the magnetization density vector is shown.
Positive (negative) values of mx are indicated in red (blue) and the
absolute value |mx | is roughly proportional to the color saturation.
The arrow at each atom i indicates the direction of the local magnetic
moment �μi .

interplay between kinetic and exchange energies, the former
tending to reduce the spin polarization in the presence of
noncollinearity.

A complementary perspective of �m(�r) is adopted in
Fig. 3(b). Here we show the contour plots of the component
mx(�r) of the magnetization vector density along the direction
x̂, which is perpendicular to the chain. One observes that
mx(�r) is large and nearly isotropic around the atoms having
�μi parallel or antiparallel to x̂. These are the second and
fourth atoms in Fig. 3. In contrast, mx(�r) is very small and
antisymmetric with respect to reflection across the xy plane
when �μi points along ẑ. This corresponds to the first and
third atoms in Fig. 3. Similar periodic oscillations have been
observed in spin-polarized STM measurement on Fe chains on
Ir(001) [23].

B. Mn chains

The calculated optimal lattice parameter in free-standing
Mn chains is a = 2.6 Å (a = 2.4 Å) when a collinear FM (AF)
order is assumed. These values are in good agreement with
earlier studies [15,16,38,39]. Comparing collinear orders we
find that ferromagnetism is more stable for a � 2.6 Å, while
the AF configuration is more stable at shorter bond lengths.
This is consistent with previous collinear calculations, which
predicted an AF-to-FM transition with increasing interatomic
distance [11]. The frozen-magnon dispersion relations �E(q),
shown in Fig. 4(a) for different values of a, demonstrate
the stability of the spiral SDWs. Similar results have been

FIG. 4. Frozen-magnon dispersion relations and effective ex-
change interactions in Mn chains. The symbols in (a) are the ab
initio results for �E(q) = E(q) − E(0), while the curves show the
corresponding fits obtained in the framework of a classical Heisenberg
model [Eq. (3)]. The derived exchange interactions J0δ between a
local moment �μ0 at atom i = 0 and its δth-nearest neighbor �μδ are
shown in (b) as a function of δ. The considered values of the lattice
parameter a are indicated in the inset.

reported in Ref. [15]. The optimal wave number qmin � 0.6
is approximately the same for all considered NN distances.
For a = 2.6 Å, the spiral configuration is 72 meV/atom (68
meV/atom) more stable than the collinear FM (AF) order.
Decreasing a tends to further stabilize the SDWs, while
larger a weakens the NC magnetic order. The SDW with
the minimum energy is 176 meV/atom more stable than
the FM state. Nevertheless, upon stretching the NN bonds
(a = 2.7 Å) this energy difference drops to 50 meV/atom. Our
results are also in agreement with the calculations by Schubert
et al., which were performed by using a full-potential lin-
earized augmented-plane-wave approach [16]. Interestingly,
this study shows that the ground-state magnetic configuration
remains a spiral SDW upon deposition of the Mn chains on
noble-metal substrates such as Ag(110) or Cu(110).

The interatomic effective exchange interactions Jij allow
us to analyze the stability of NC magnetic order from a local
perspective. The ab initio results can be interpreted by fitting
the calculated �E(q) in the framework of the classical 1D
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Heisenberg model,

H = −
N∑

i=1

ν∑

δ=1

J0δ μ̂i · μ̂i+δ, (3)

where μ̂i = �μi/μi stands for the unit vector along the local
moment at atom i and ν = 6 defines the interaction range
within the chain. Positive (negative) values of J0δ correspond
to FM (AF) couplings. The results for J0δ obtained in this
way are shown in Fig. 4(b). First of all, one observes that
the dominant magnetic interactions in Mn chains involve up to
third-NNs. Remarkably, |J02| is comparable or even larger than
|J01| for a � 2.5 Å. The resulting strong frustration between
competing AF interactions is, in fact, at the origin of the
NC spin arrangement. Notice, moreover, that J01 is strongly
affected by changes in the NN distances, while J02 and J03

are much less sensitive to structural distortions. In particular,
J03 is almost constant in the considered bond-length range
(2.4 � a � 2.7 Å). Comparing the results for different a shows
that both |J01| and |J02| decrease with increasing a. This can
be qualitatively understood as the result of the reduction of the
interatomic hybridizations, which occurs when the separation
between the atoms increases. It suggests that J01 and J02 have
a rather local origin. In contrast, the very weak dependence of
J0δ for δ � 3 points to a nonlocal coupling mechanism, maybe
mediated by the more delocalized sp electrons. A further
consequence of the rapid decrease of |J01| with increasing
a is that for large NN distances (a � 2.6 Å) |J02| and |J03|
largely dominate. In this case (weak J01) the FM and AF
configurations are nearly degenerate (see Fig. 4).

C. Fe chains

In the following we consider Fe chains as an example of TM
whose 3d band is more than half filled. The stability of SDWs
is investigated by calculating the frozen magnon dispersion re-
lation �E(q) in the GGA to DFT. In Fig. 5(a) results are given
for different lattice parameters in the range 2.0 � a � 2.5 Å.
At the equilibrium NN distance a = 2.25 Å the ground-state
magnetic order is a spiral SDW having qmin � π/5a and an
energy �E(qmin) = −10 meV/atom. This energy gain relative
to the FM configuration is somewhat smaller than the value
15.5 meV/atom obtained in Ref. [15] by using a very similar
method. Spin-polarized STM measurements show that finite
Fe chains on Ir(001) have a stable spin-spiral order when they
are attached at one end to a ferromagnetic Co chain. However,
the observed SDW number qexp = 2π/3 is significantly shorter
than the one obtained here for free-standing chains. As in V
and Mn wires, the spiral order becomes increasingly stable
when the NN distance decreases. This can be interpreted
from a local perspective by considering the effective exchange
interactions J0δ between the local moments, which are shown
in Fig. 5(b). In the case of Fe, J01 and J02 are the dominant
couplings. The competition between the FM J01 > 0 and the
AF J02 < 0 explains the qualitative changes in the dispersion
relation �E(q), as well as the resulting changes in the relative
stability of collinear and noncollinear spin arrangements. For
large a (e.g., a = 2.5 Å) J01 dominates and the FM order is
preferred. However, as a decreases J01 decreases and |J02|
increases [J01 > 0 and J02 < 0; see Fig. 5(b)]. This renders

FIG. 5. Frozen-magnon dispersion relations and effective ex-
change interactions in Fe chains. The symbols in (a) are the ab
initio results for �E(q) = E(q) − E(0), while the curves show the
corresponding fits obtained in the framework of a classical Heisenberg
model [Eq. (3)]. The derived exchange interactions J0δ between a
local moment �μ0 at atom i = 0 and its δth-nearest neighbor �μδ are
shown in (b) as a function of δ. Representative values of the lattice
parameter a are considered as indicated in the inset.

the FM NN coupling weaker and the AF second-NN stronger,
which obviously favors the NC configurations. For example,
for a = 2.1 Å, J01 and J02 are comparable and the ground state
corresponds to a SDW with q � 0.35π/a. For even smaller a

(e.g., a = 2.0 Å) the compensation between J01 and J02 is
such that couplings at larger distances, in particular J03, need
to be taken into account in order to identify the actual ground
state. Exchange interactions in Fe chains have been reported
in Ref. [15] for the equilibrium NN distance.

In order to obtain a more detailed understanding of the
consequences of NC order on the spin-density distribution
of the chains, we have calculated the local 3d magnetic
moments μd = |〈 �md〉WS| at the Fe atoms by integrating the
magnetization density inside a WS sphere of radius rWS =
1.30 Å. Results for μd as a function of q are shown in Fig. 6 for
different lattice parameters a. For large a (e.g., a = 2.50 Å)
the local moments are essentially independent of q, which
means that hybridization effects between the 3d orbitals are
relatively weak in comparison with the intra-atomic Hund-rule
coupling. However, the situation changes qualitatively for
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FIG. 6. Local d magnetic moments μd within the Winger-Seitz
spheres of Fe chains as a function of the SDW number q for different
lattice parameters a.

smaller a. For a � 2.10–2.25 Å one observes that μd decreases
monotonically with increasing q. In particular for a = 2.10 Å,
an important reduction of μd of about 20% is found in the
AF state, as compared to that found in the FM state. At the
optimal qmin � 0.35π/a the reduction of μd is only about 10%.
Remarkably, for the smallest considered a = 2.0 Å, μd shows
a nonmonotonous dependence on q. It first increases with q,
showing a maximum for qa/π � 0.2–0.3, before decreasing
again as the π/2 spiral and the AF order are approached.
Notice that the value of q yielding the largest μd is significantly
smaller than qmin � 0.45π/a, which corresponds to the lowest
energy (compare Figs. 5 and 6). The rather small unsaturated
value of μd in the FM state for a = 2.0 Å is most probably
a consequence of the increase of the 3d bandwidth as a

decreases, which reduces the 3d-electron DOS at the Fermi
energy εF (Stoner criterion). However, as discussed in Sec. V,
the 3d bands tend to narrow in the spiral states as compared to
the FM state. The associated enhancement of the DOS near εF

explains the significant increase of μd observed for a = 2.0 Å
and small q. A very similar behavior of μd has been found
by using the local spin-density approximation. In this case
one observes that for a � 2.1 Å μd decreases monotonously
with increasing q, while for a = 2.0 Å μd increases for small
q, reaching a maximum for q � 0.3π and then decreasing as
one approaches the AF configuration. Notice, however, that
the behavior might be different in other approximations to
exchange and correlation, particularly in those enhancing the
importance of d-electron exchange [55].

In Fig. 7 the x and y components of the magnetization
density �m(�r) are shown for an Fe chain in a spiral state having
q = π/4a. As in the case of V (Fig. 3) one observes that m(�r) is
essentially localized within the WS spheres around the atoms,
decreasing strongly in the interstitial region, where the actual
change in direction of �m(�r) takes place. Within the WS spheres,
the components mx(�r) and my(�r) follow the orientation of the
local moments �μi . This can be clearly seen by comparing
Figs. 7(a) and 7(b) with the illustration of the spiral state at the
top of the figure. As expected, the changes in magnetization
density from atom to atom correspond to simple rotations of

FIG. 7. Magnetization-density components (a) mx and (b) mz of
an Fe chain in a SDW state having a wave vector �q = (0,0,π/4a),
where a = 2.25 Å is the lattice parameter. The top figure illustrates
the corresponding orientation of the local magnetic moments �μi .

�m(�r). Notice that the calculated dominant spin-polarization is
essentially symmetric around the atoms. A certain asymmetry
has been observed in the STM images of Co atoms on a Mn
substrate, which has been ascribed to the contribution of the
underlying noncollinear Mn template [22].

IV. MAGNETIC PHASE DIAGRAMS

The discussion in the preceding section, as well as in some
previous studies [14–16,41], has shown that the spiral SDW
states in 1D TMs can be interpreted from a local perspective
as the result of competing effective exchange interactions J0δ

between the local magnetic moments along the chain. It is
therefore most interesting to analyze under which conditions
complex NC magnetic configurations should be expected. A
complete general picture of the magnetic solutions is provided
by the phase diagrams of the classical 1D Heisenberg model
given by Eq. (3). It is the purpose of this section to use
this model in order to analyze how the changes in the lattice
parameter and in the local environment of the atoms modify
the interplay among the different J0δ in V, Mn, and Fe chains.
For simplicity, we neglect at the beginning the couplings
beyond second-NNs. An analogous study has been performed
in Ref. [16] in order to clarify the evolution from AF order,
over spirals, to FM order as the 3d band filling is varied from
Cr to Fe. A more complete study of the model is presented at
the end of this section by incorporating the effects of third-NN
interactions J03.

Figure 8 shows the phase diagram of the classical 1D
Heisenberg model with only first- and second-NN interactions.
One distinguishes three regions corresponding to FM order
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FIG. 8. Magnetic phase diagram of the classical one-dimensional
Heisenberg model. The phases corresponding to ferromagnetic (FM),
antiferromagnetic (AF), and spiral spin-density-wave (SDW) orders
in the ground state are indicated as a function of the exchange
interactions J01 and J02 between first- and second-nearest neighbors.
The symbols show the effective exchange interactions J0δ in V, Mn,
and Fe chains, as derived from the ab initio dispersion relations
�E(q) for the lattice parameters a indicated in Å (see Figs. 2, 4, and
5). The equilibrium a is underlined.

(q = 0), AF order (q = π/a), and spiral SDWs with 0 <

q < π/a. In the FM region J01 > 0 and either J01 and J02

do not compete (i.e., J02 � 0) or J01 dominates clearly over
J02 (i.e., J01 > 4|J02| for J02 < 0). In the AF region J01 < 0
and either J01 and J02 do not compete (i.e., J02 � 0) or J01

dominates clearly over J02 (i.e., |J01| > 4|J02| for J02 < 0).
Finally, the characteristic of the NC regime is that the first- and
second-NN interactions compete with comparable strengths
(i.e., |J01| < 4|J02|).

The symbols shown in the diagram indicate the actual
values of J01 and J02 calculated for V, Mn, and Fe chains
using DFT for different lattice parameters a. Each point is
obtained from an independent ab initio dispersion relation,
like the ones discussed in the previous section. A number of
important differences among the elements are revealed. In the
case of V and Fe, the NN coupling J01 is always positive while
in Mn it is negative. The second-NN exchange interaction J02

is found to be always negative, except in strongly stretched
Fe chains with a = 2.6 Å. This means that J01 and J02 are
always competing, either because one is FM and the other AF,
or because they are both AF.

Following the evolution of the ratio J01/J02 allow us
to understand the transition from FM to SDW order in V
and Fe as a function of a. For relative large NN distances
(e.g., a = 2.6 Å) V and Fe chains show FM order, since the
second-NN coupling J02 is relatively weak. However, as a

decreases, V and Fe involve different directions. In Fe, starting
from a = 2.6 Å, both J01 and |J02| increase at first, in a way
that keeps the ratio J02/J01 smaller than 1/4. Therefore, FM

order remains stable. However, for a � 2.4 Å, J01 ceases to
increase and eventually decreases somewhat for very small a.
At the same time |J02| continues to increase monotonously as
the bond length is reduced. It is the growing importance of
the AF J02, relative to J01, that turns Fe chains into the spiral
state for a � 2.25 Å (see Fig. 8). The situation is different
in V chains. In this case J01 decreases monotonously with
decreasing a, although it remains positive (a � 2.4 Å). This
implies a weakening of the FM coupling with increasing
hybridization and 3d bandwidth, which finally results in a
weak antiferromagnetic NN coupling when a is very short.
At the same time, |J02| increases (J02 < 0) stabilizing a spiral
state as soon as |J02| > |J01|/4 (see Fig. 8). In contrast to
V and Fe, J01 and J02 are both negative in Mn chains,
with |J02| > |J01|/4 for all the considered lattice parameters
(2.4 Å � a � 2.7 Å). Under these circumstances the magnetic
order has always a spiral form. Only the periodicity of the
optimal SDW and its stability relative to the collinear FM
and AF configurations depend on the interatomic distance
a. It would be very interesting to explore the possibility of
manipulating the magnetic order in experiment, for example,
by introducing stress on the chains through the substrate
configuration or the field generated by an STM tip.

The electronic calculations have shown that the third-NN
exchange interactions J03 are non-negligible in 1D systems,
particularly when J01 and J02 tend to compensate. In some
cases, J03 is comparable or even more important than the
normally dominant first- and second-NN couplings. For ex-
ample, in Mn we obtain J01 = −2.1 meV, J02 = −23.5 meV,
and J03 = 11.3 meV in the GGA for a = 2.7 Å (see Fig. 4).
Moreover, close to the phase boundaries of the simplest J01/J02

model shown in Fig. 8, it is clear that the interactions at longer
distances are crucial in order to remove degeneracies and
determine the spin order. It is therefore interesting to extend
the Heisenberg model calculations by including third-NN
interactions. The corresponding magnetic phase diagram is
shown in Fig. 9. Since |J01| defines the unit of energy, only
the sign of J01 is relevant for the magnetic order. In this
more compact form the results of Fig. 8 are recovered at the
horizontal axis J03 = 0. The crossing point with the vertical
line J02/|J01| = −1/4 defines the boundary between the SDW
states and the collinear FM or AF orders for J01 > 0 and
J01 < 0, respectively.

Introducing an additional interaction parameter renders the
phase diagram a great deal richer. For J01 > 0 and very small
J02, one observes that the third-NN coupling J03 tends to
stabilize a FM state (I) when positive and a SDW state (IV)
when negative [see Fig. 9(a)]. On the other side, for J01 < 0
and very small J02, the third-NN coupling shifts the balance
in favor of the AF state (VII) for J03 < 0, or in favor of the
SDW state (VI) for J03 > 0 [see Fig. 9(b)]. More important in
the context of the present ab initio calculations for V, Mn, and
Fe is the case where J02 is sizable and |J03| is not too large.
As J02 increases, the effects of J03 on the magnon dispersion
relations and on the ground-state order become less important.
For example, the range of values of J03 corresponding to
spiral order increases strongly with increasing |J02| (see
Fig. 9). Although J03 introduces many different shapes of the
dispersion relation �E(q), and thus several different magnetic
phases, it does not change the magnetic behavior qualitatively,
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FIG. 9. Phase diagram of the one-dimensional classical Heisen-
berg model having exchange interactions J0δ up to third-NNs: (a)
ferromagnetic NN coupling J01 > 0 and (b) antiferromagnetic NN
coupling J01 < 0. The Roman numbers label the different types of
ground-state magnetic orders and the different shapes of the magnon
dispersion relations �E(q) as sketched: ferromagnetic order (I),
spiral spin-density waves (II–VI), and antiferromagnetic order (VII).
The symbols mark the actual values of J0δ derived from the ab initio
frozen-magnon dispersion relations of V, Mn, and Fe chains for the
lattice parameters a indicated in Å.

provided that |J02| is not too small. This confirms our previous
conclusions based on the simpler Fig. 8.

The symbols in Fig. 9 show the results for the exchange
interactions derived from the ab initio dispersion relations.
One observes that Fe and V chains belong to the SDW region
III for most lattice parameters a (i.e., 2.4 Å < a < 2.6 Å for V
and a < 2.4 Å for Fe). In these cases, J03 is approximately four
times smaller than J02, −0.8 < J02/|J01| < 0 and −0.15 <

J03/|J01| < 0.2. The corresponding dispersion relations have

one global minimum at an intermediate q, which implies a
spin-spiral configuration. The FM state is here more stable
than the AF one. However, at larger interatomic distances
(a > 2.6 Å for V and a > 2.4 Å for Fe) a transition from
region III to the FM region I occurs [see Fig. 9(a)]. The
exchange couplings of Mn chains belong to region IV of the
phase diagram, at least for the considered lattice parameters.
As in region III, �E(q) shows here one global minimum at an
intermediate q corresponding to a spiral SDW ground state.
However, the AF order is more stable than the FM state. As
already observed, |J02| is comparable to or larger than J01.
Notice, moreover, that the results for J0δ in Mn lie close to the
boundary with region II, where the ground state has a similar
NC configuration, but the AF arrangement is less stable than
the FM order [see Fig. 9(b)]. These differences reflect the
subtle interplay between the exchange interactions at various
distances. Nevertheless, the SDW order is very robust in Mn
chains. Reasonable changes in the exchange couplings do not
change its ground-state behavior qualitatively.

V. LOCAL ELECTRONIC STRUCTURES IN
SPIN-SPIRAL STATES

The single-particle spectrum of low-dimensional systems
lacking full translational symmetry can be characterized by
the local density of electronic states (DOS) ρ(ε,�r,σ ) projected
on the position �r and spin σ . Integrating ρ(ε,�r,σ ) for �r within
the WS sphere of each atom i, one obtains the atom-resolved
local DOS ρiσ (ε). In collinear spin configurations, i.e., when
the magnetization density �m(�r) = mz(�r) ẑ for some direction
ẑ, there is no mixing between the spin-up and spin-down
bands. Therefore, choosing ẑ as the spin-quantization axis, it is
straightforward to distinguish the two pure spin contributions
to the DOS. However, if the magnetic order is NC, the
spin-up and spin-down orbitals are hybridized, and the spin
components of the electronic states cannot be easily told apart.
In such cases it is meaningful to take the direction of the local
magnetic moment �μi at each atom i as the spin-quantization
axis and to regard the spin-resolved local electronic structure
from the perspective of this atom-specific spin direction.
Indeed, the local density of states ρiσ (ε) obtained by projecting
the spinor states along �μi is adapted to the local symmetry.
They are the same for all atoms, since the spiral SDW states
are rototranslational invariant for all q. In other words, a
translation of the orbital coordinates by a lattice parameter a

along the wire, followed by a rotation of the spin coordinates
by an angle θ = qa around the axis of the wire, leaves the
electronic states unchanged. In this way, the local electronic
structures of spiral states can be compared without difficulty
for different q and a. In the following we present and discuss
results for ρiσ (ε) in Mn and Fe chains. Results for V chains
may be found in Ref. [14].

A. Mn chains

The spin-resolved local d-electron DOS ρd
iσ (ε) of Mn

chains is shown in Fig. 10 for representative values of q and
a lattice parameter a = 2.5 Å. In the FM arrangement (q = 0)
one observes relatively narrow majority and minority d bands
located, respectively, about 2.63 eV below and 1.2 eV above
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FIG. 10. Local 3d-electron density of states ρd
iσ (ε) of free-

standing Mn chains having a lattice parameter a = 2.5 Å for represen-
tative SDW numbers q. Results are given for the majority-spin (black
solid curves) and minority-spin (red dashed curves) components along
the direction of the local magnetic moment �μi . The Fermi energy εF

is indicated by the vertical dotted line.

the Fermi level εF . The exchange splitting between the local
majority- and minority-spin states is about 3.8 eV, while the
calculated local magnetic moment per atom is μ = 3.94μB . As
q increases in NC spin arrangements, several major qualitative
changes in ρd

iσ (ε) are observed. The noncollinearity implies
that the spin projection is no longer a good quantum number.
Thus, majority- and minority-spin orbitals hybridize. The hop-
ping integrals between the local majority orbitals of one atom
and the minority orbitals of a neighboring atom increase with q,
reaching a maximum in the AF state. Conversely, the NN hop-
pings between the local majority-spin directions and between
the local minority-spin directions, which are not the same ex-
cept for q = 0, decrease with increasing q. They are maximal
for q = 0 and vanish between nearest neighbors for q = π/a.
The resulting spin mixing alters significantly the electronic
structure as a function of q. First of all one observes that the
hybridization between different local spin directions causes a
level repulsion, which shifts the majority (minority) bands to
lower (higher) energies. This is a consequence of the clear en-

FIG. 11. Orbital-resolved density of states ρiασ (ε) of free-
standing Mn chains having a lattice parameter a = 2.5 Å and
representative wave numbers q: (a) q = 0, (b) q = π/4a, and (c)
q = π/2a. Positive (negative) values correspond to the majority
(minority) spin-direction taking the spin-quantization axis along the
local magnetic moment �μi . The Fermi energy εF is indicated by the
vertical dotted line.

ergy separation between the local majority- and minority-spin
orbitals due to the exchange splitting. Depending on the 3d-
band filling, this contributes to lowering the band energy of the
chains. The second important consequence of increasing q is a
substantial reduction on the 3d bandwidth Wd , together with a
shift in the position of the peaks of both majority and minority
bands. In the examples shown in Fig. 10 we find Wd = 3.5, 3.2,
2.5, 2.0, and 1.8 eV for q = 0, π/4a, π/2a, 3π/4a, and π/a,
respectively. The average density of states within the 3d bands
increases accordingly. The changes in the local electronic
structure as a function of q and the band-narrowing effects are
also clearly observed in the integrated DOS, which gives the
number of 3d electrons as a function of the Fermi energy [54].

The orbital-resolved DOS ρiασ (ε) shown in Fig. 11 provides
more detailed information of the electronic structure as a
function of SDW number q. Assuming that the chain is along
the z direction, the 3d orbitals can be grouped into the ddσ

band, given by the d3z2−r2 orbitals, the doubly degenerated
ddπ band, including the dxz and dyz orbitals, and the doubly
degenerated ddδ band, including the dx2−y2 and dxy orbitals.
In the absence of spin-orbit interactions these bands are
decoupled. The largest bandwidth corresponds, as expected,
to the σ orbitals, which point along the NN bonds, followed
by the π bands and finally the δ bands. The exchange splitting
between majority and minority states is in all cases very
important and approximately independent of q. This reflects
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FIG. 12. Local 3d-electron density of states (DOS) ρd
iσ (ε) of

free-standing Fe chains having a NN distance a = 2.25 Å for
representative SDW numbers q. Results are given for the majority-
spin (black solid curves) and minority-spin (red dashed curves)
components along the direction of the local magnetic moment �μi .
The Fermi energy εF is indicated by the vertical dotted lines.

the large stability of the local Mn moments. However, the
bandwidths are significantly reduced as q increases. Let us
recall that the spin component of the local density of states
shown in Figs. 10 and 11 are projected along the local majority-
and minority-spin directions of a given atom. For a comparison
with spin-polarized scanning tunneling spectroscopy (STS)
measurements, the orientation of the local moments along the
chain relative to the tip magnetization has to be taken into
account [22].

B. Fe chains

The spin-resolved local 3d DOS of Fe chains having a
lattice parameter a = 2.25 Å are shown in Fig. 12 for different
wave numbers q. In this case, owing to the larger bandwidth
and the somewhat smaller exchange splitting, we find that
the majority and minority bands overlap to some extent (for
about 1 eV) in the FM state. As q increases, one observes the
narrowing of the majority- and minority-spin bands, as well
as the shift of the majority-spin (minority-spin) peaks to lower
(higher) energies. In particular, we find that the 3d bandwidth
amounts to Wd = 3.61, 3.48, 2.94, 2.56, and 2.47 eV for q = 0,

FIG. 13. Orbital-resolved density of states ρiασ (ε) of free-
standing Fe chains having a lattice parameter a = 2.25 Å and
representative wave numbers q: (a) q = 0, (b) q = π/4a, and (c)
q = π/2a. Positive (negative) values correspond to the majority
(minority) spin direction taking the spin-quantization axis along the
local magnetic moment �μi . The Fermi energy εF is indicated by the
vertical dotted line.

π/4a, π/2a, 3π/2a, and π/a, respectively. Qualitatively, these
trends are analogous to the case of Mn chains. However, in
the case of Fe the consequences of band narrowing are more
striking, since they imply the opening of a gap in the occupied
single-particle spectrum as q increases (see Fig. 12). This
behavior could, in principle, be investigated by means of STS
measurements.

More detailed information on the electronic structure of
Fe chains is provided by the orbital-resolved DOS ρiασ (ε),
which is shown in Fig. 13 for representative values of q.
As in the case of Mn, due to the symmetry of the chains
along the z direction, and in the absence of spin-orbit coupling,
the 3d orbitals lead to three bands: the ddσ band formed by
the d3z2−r2 orbitals, the doubly degenerated ddπ band formed
by the dxz and dyz orbitals, and the doubly degenerated ddδ

band formed by the dx2−y2 and dxy orbitals. For q = 0, one
observes the characteristic FM exchange splitting between up
and down local densities of states. The different bandwidths
of the subbands reflect the orientation of the corresponding d

orbitals with respect to the wire. On the one side, the ddδ bands
have the smallest bandwidth (approximately 0.6 eV) since the
xy and x2-y2 orbitals are perpendicular to the chain. On the
other side, the width of the ddσ band is the largest, since the
orbitals point along the chain direction. These orbitals are, in
fact, responsible for the overlap between majority and minority
bands for q = 0. Concerning the dependence on q, we find that
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all bands are affected by the narrowing effect as q increases
(see Fig. 13).

VI. CONCLUSION

The electronic and magnetic properties of 3d TM chains
showing spiral SDW states have been investigated by com-
bining first-principles methods and phenomenological ap-
proaches. One observes that V, Mn, and Fe chains develop
stable spin-spiral arrangements at their equilibrium distances.
Bond-length reduction tends to further stabilize NC spin
arrangements, while expansion tends to favor collinear FM
order. This could allow some degree of manipulation of the
magnetic order in point contacts or by strain induced upon
deposition on different substrates.

A local analysis of the magnetic properties has been
performed by deriving the effective exchange interactions J0δ

between the local moments from the ab initio frozen-magnon
dispersion relations �E(q) for different lattice parameters a.
In most cases, the stability of the NC magnetic arrangements
is essentially the result of competing first- and second-NN
interactions J01 and J02. However, third-NN interactions were
found to play a significant role when the usually dominant J01

and J02 compensate each other, or when one of them nearly
vanishes. The changes in the magnetic order of the chains as
a function of a have been analyzed in the framework of a
classical Heisenberg model with competing interactions. This
allowed us to classify under which circumstances (i.e., values
of J0δ) a given magnetic order corresponds to the most stable
configuration.

The consequences of the spiral magnetic order on the
electronic structure of the chains has been quantified by
computing the wave-number dependence of the local density of
electronics states. Band-narrowing and level-repulsion effects
have been identified as a function of q. The depletion of
the 3d-electron DOS around the Fermi energy, along with
the strong hybridization between the orbitals having opposite
spin directions, explains qualitatively the stability of the NC
magnetic configurations.

Among the future perspectives of this work one should
mention studies of 3d TM chains, wires, and stripes deposited
on metallic and insulating substrates of experimental interest.
In this case, additional magnetic interactions, for example,
those mediated by the substrate or the transversal interactions
across finite width wires, would come into play. They are
likely to alter the competition between exchange couplings at
different distances, which has been discussed in this work,

and could therefore affect the stability of the spin-spiral
configurations, as already observed in the case of Mn on
Cu(110) and Ag(110) [16]. In this way the magnetic order
could be investigated as a function of the width of the wire or
stripe on which some theoretical and experimental results are
available [1,41]. Another interesting aspect is to investigate in
more detail how the magnetic order of the chains depends
on electron-correlation effects, by considering alternative
approximations to the exchange-correlation energy functional.
For example, introducing parameterized local interactions in
the Hartree-Fock approximation, as in the LDA + U method
[55], is likely to enhance even further the stability of the local
magnetic moments, thus reducing their dependence on the
SDW number q. Depending on band filling, a larger stability of
the FM order or a reduction of NN antiferromagnetic couplings
could follow, which could modify the stability of the spiral
SDWs or at least their optimal wave number qmin. A dynamical
treatment of Coulomb interactions following dynamical mean-
field theory [56] appears as a most worthwhile evolution in
this context, since the magnetic order and effective magnetic
interaction in transition-metal chains and wires are known to
be the result of a subtle interplay between kinetic and Coulomb
energies in a low-dimensional environment. Furthermore, the
stability of the SDWs should be investigated by taking into
account spin-orbit interactions, particularly for 3d-4d and
3d-5d alloy wires, as well as for 3d wires deposited on highly
polarizable 4d and 5d substrates. Indeed, the interplay between
NC magnetic order and spin-orbit coupling in structures
lacking inversion symmetry (e.g., deposited chains and stripes)
should give rise to interesting chiral effects which deserve
detailed investigation. Finally, from a somewhat different
perspective, the exchange couplings Jij between the local
moments, which were obtained in the present static DFT
calculations, could be useful in order to explore the dynamical
magnetic properties of 1D systems. They could also help to
shed light on more complex 2D or 3D magnetic structures,
such as domain walls, which are important for technological
applications.
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[30] R. Lizárraga, L. Nordström, L. Bergqvist, A. Bergman, E.
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