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1Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, Université de Cergy-Pontoise,
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Low-dimensional quantum magnets at finite temperatures present a complex interplay of quantum and thermal
fluctuation effects in a restricted phase space. While some information about dynamical response functions
is available from theoretical studies of the one-triplet dispersion in unfrustrated chains and ladders, little is
known about the finite-temperature dynamics of frustrated systems. Experimentally, inelastic neutron scattering
studies of the highly frustrated two-dimensional material SrCu2(BO3)2 show an almost complete destruction of
the one-triplet excitation band at a temperature only 1/3 of its gap energy, accompanied by strong scattering
intensities for apparent multi-triplet excitations. We investigate these questions in the frustrated spin ladder
and present numerical results from exact diagonalization for the dynamical structure factor as a function of
temperature. We find anomalously rapid transfer of spectral weight out of the one-triplet band and into both
broad and sharp spectral features at a wide range of energies, including below the zero-temperature gap of this
excitation. These features are multi-triplet bound states, which develop particularly strongly near the quantum
phase transition, fall to particularly low energies there, and persist all the way to infinite temperature. Our results
offer valuable insight into the physics of finite-temperature spectral functions in SrCu2(BO3)2 and many other
highly frustrated spin systems.
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I. INTRODUCTION

Quantum mechanics mandates a degree of uncertainty in
the properties of a physical system. In many-body systems,
this uncertainty is manifest as quantum fluctuations between
different, and often classically inspired, states of the system
or its subcomponents. One-dimensional (1D) quantum antifer-
romagnets provide an excellent example of a situation where
the classical state, which would be Néel order, is destroyed
completely by quantum fluctuations, replaced by gapped or
gapless states with complex correlations (or “entanglement”)
but no magnetic order [1]. The canonical gapless 1D quantum
magnet, the S = 1/2 Heisenberg chain, has quasi-long-ranged
spin correlations and massless, fractionalized “spinon” ex-
citations [2]; its gapped counterparts, including the two-leg
S = 1/2 spin ladder [3–5], the S = 1 “Haldane” chain [6],
and the frustrated S = 1/2 (J1-J2, “Majumdar-Ghosh”) chain
[7–9], all show exponentially decaying spin correlations,
accompanied in the first two cases by robust triplet excitations
and in the third by massive spinons. These properties are
consequences purely of quantum spin fluctuations in the
restricted phase space available in one spatial dimension, and
significant progress has been made over the last two decades
both in their theoretical description and in their experimental
observation [10].

Far less well understood is the additional effect of finite
temperatures on these systems. The problem of describing
the combination of quantum and thermal fluctuations within
the same restricted phase space, to deduce the consequences
for the ground and excited states, has proven difficult to
address. In the most straightforward description of the triplet
excitations of a two-leg spin ladder as robust δ-function
peaks in energy [11], a significant band-narrowing effect is

obtained as the temperature is increased, and this was in
fact observed in the 3D coupled dimer system TlCuCl3 [12].
In lower dimensions, however, more sophisticated means of
modeling thermal effects in unfrustrated spin chains suggest
rather a systematic and asymmetric broadening of peak widths
[13–17], driven by a mixing of available states within the
triplet band, and this is confirmed by recent observations in the
alternating spin-chain materials Cu(NO3)2 · 2.5D2O [18] and
BaCu2V2O8 [19]. By contrast, the situation in frustrated 1D
systems at finite temperatures remains essentially unexplored.

While systematic experimental data for frustrated spin
chains are not yet available, the 2D material SrCu2(BO3)2

offers some crucial insight into the effects of competing
interactions. The S = 1/2 Cu2+ ions in SrCu2(BO3)2 form the
“Shastry-Sutherland” geometry [20] of “rung” bonds bridging
the opposite corners of a square lattice, and at large values
of the rung coupling there is an exact ground state of dimer
singlets on these bonds. A triplet excitation of any single
dimer experiences complete frustration (up to sixth order in a
perturbative expansion [21,22]) and therefore the excitation
band measured at low temperatures is almost completely
flat, at an energy of approximately 3.0 meV (�35 K) [23].
Remarkably, if the temperature is increased to only 6 K,
this mode suffers a serious loss of intensity, and by 12 K
it is essentially indiscernible, its spectral weight spread over
the entire energy spectrum [24,25]. Some phenomenological
proposals [24,25] and one numerical study [26] have tried to
account for this anomalously strong decay of the one-triplet
excitation, but with limited success.

We begin with the hypothesis that this behavior is the
consequence of bound-state formation, which is strongly
enhanced by the presence of frustration. We comment that
the Hamiltonian for SrCu2(BO3)2 does contain nontrivial
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additional terms, specifically Dzyaloshinskii-Moriya interac-
tions, whose effects would need to be computed in a quanti-
tative treatment of triplet decay. However, our aim is to test
the concept that the formation of (many) strongly bound states
and the resulting strong enhancement of one-triplet decay may
be generic to the finite-temperature dynamical response of
frustrated quantum magnets. As a candidate system for the
demonstration of a nontrivial thermal redistribution of spectral
weight, we investigate the fully frustrated S = 1/2 two-chain
spin ladder, introduced in Sec. II; this model is well suited for
our study because of the existence of exact multi-triplet bound
states over the full range of parameters giving a rung-singlet
ground state.

Computing the dynamical spectral function of a low-
dimensional quantum spin system at finite temperatures is a
challenging problem, requiring knowledge both of the full
excitation spectrum and of all matrix elements. Although
some analytical progress has been possible by Bethe-Ansatz
techniques [14] and by a recent diagrammatic approach
[16,17], the applicability of these methods to frustrated
systems is limited. Among the available numerical techniques,
exact diagonalization (ED) has in the past [13,18,26] been the
only fully systematic approach for all models, parameters, and
temperatures. Quantum Monte Carlo (QMC) methods are able
to deliver dynamical response functions for the lowest excita-
tions of unfrustrated systems, but are in general unsuitable for
frustrated ones because of the sign problem. Density-matrix-
renormalization-group (DMRG) techniques have previously
been of limited value in dealing with the combination of
time (dynamics) and temperature, but we comment that recent
advances in methodology have the potential to expand very
significantly the study of finite-temperature response functions
and we review these briefly in Sec. III for their pedagogical
value. For the present study, the intrinsic advantages of ED far
outweigh its traditional limitation to small system sizes, as we
discuss in detail in Sec. III.

Significant information in support of bound-state effects in
frustrated systems can be obtained from their thermodynamic
response. The calculation of quantities such as the specific heat
and susceptibility of a quantum system is also a hard problem,
requiring again the full excitation spectrum. Once again,
analytical assistance is limited to the spin-1/2 Heisenberg
chain [27–32], also one of the first systems to which ED was
applied [33], and beyond this model a variety of numerical
methods have been employed for different 1D systems. In
parallel with the present study, we have performed a systematic
analysis of the magnetic specific heat and susceptibility of
the frustrated spin ladder in Ref. [34], to which we refer the
reader for full details. Here we draw attention only to the
use of ED methods to obtain the thermodynamic response
of frustrated spin chains, specifically J1-J2 models motivated
by certain S = 1/2 and 1 materials [35,36]. QMC techniques
have been exploited widely for unfrustrated ladders [37,38],
but for frustrated systems are stymied by the sign problem
except in special cases [34,39,40]. Quantum transfer matrix
(QTM)-DMRG is particularly well suited to the extraction
of thermodynamic information for 1D systems and has been
applied both to unfrustrated [41,42] and to frustrated (J1-J2)
spin chains, where two characteristic energy scales are found
[43–46]. However, these studies have largely been restricted

to methods and to specific parameter choices, and we are
unaware of any systematic investigation of frustration effects.
In Ref. [34] we provide such a study for the fully frustrated
ladder, which demonstrates clearly the role of bound states in
determining the characteristic evolution of the thermodynamic
response and the dominant effect of extended multi-triplet
bound states close to a quantum critical point; a summary of
these results is presented in Sec. II.

The structure and primary results of this article are as
follows. In Sec. II, we present the model of the fully frustrated
two-leg spin ladder, summarize its phase diagram and the
nature of its multi-triplet bound states, and review analytical
and numerical results obtained for the thermodynamics of the
system. In Sec. III, we show the results of ED calculations
of the dynamical spectral function at all temperatures, for a
selection of ladders with different coupling ratios and degrees
of frustration. Figures 3–8 provide a complete overview of the
momentum dependence of the dynamical structure factor and
Fig. 5, in particular, demonstrates a very rapid redistribution
of spectral weight with increasing temperature. In Sec. IV,
we analyze our results by considering the bound-state spectra,
scattering matrix elements, and transfer of spectral weight
from the one-triplet sector to the multi-triplet bound states
that emerge particularly strongly close to the quantum phase
transition. Figures 9 to 13 quantify the temperature dependence
of the dynamical structure factor and in Fig. 17 we demonstrate
that remarkably sharp spectral features survive up to infinite
temperatures. Figure 14 shows the thermal evolution of
the leading peaks in the spectral function for one value
of the exchange ratio, Fig. 15 analyzes the temperature
dependence of the one-triplon line for several values of the
exchange ratio, demonstrating accelerated thermal suppression
close to the quantum phase transition. Figure 16 interprets
these findings in terms of emergent, effective temperature
scales of the system. Section V presents a brief summary,
while three appendices contain complementary details con-
cerning the analytical treatment of few-triplon bound states
(Appendixes A and B) and finite-size effects in the one-triplon
spectral weight (Appendix C).

II. FULLY FRUSTRATED LADDER

The Hamiltonian of the frustrated S = 1/2 Heisenberg spin
ladder represented in Fig. 1 is

H =
∑

i

J⊥ �S1
i · �S2

i +
∑

i,m=1,2

(
J‖ �Sm

i · �Sm
i+1 + J× �Sm

i · �Sm̄
i+1

)
, (1)

where i the rung index, m = 1 and 2 denote the two chains
of the ladder, and m̄ is the chain opposite to m. The spectrum
of the ladder is gapped for all finite values of J⊥, and for
all values J⊥ > 2{J‖,J×} the spin correlations are dominated
by singlets occupying all of the rung bonds. In this regime,
a triplet excitation on one of the rungs (to which, for reasons
of clarity, we refer henceforth as a “triplon”), as represented
in Fig. 1, is a propagating quasiparticle with hard-core-boson
nature. However, as the inter-rung frustration, J×, approaches
J‖, the nature of the ground state can change (below) and at the
fully frustrated point, J× = J‖, the triplon band is completely
flat, with energy ωk = J⊥ for all wave vectors k‖.
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J

J×
J⊥

FIG. 1. Representation of superexchange interactions in a frus-
trated spin ladder (reproduced from Ref. [34]). Each ladder site
(spheres) hosts an S = 1/2 quantum spin and the Heisenberg
couplings between spins are specified by the parameters J⊥ for the
ladder rungs, J‖ for the ladder legs, and J× for the cross-plaquette
couplings, which we take to be symmetrical. Purple ellipses represent
singlet spin states on the rungs and their absence a rung triplet (center).

The fully frustrated S = 1/2 ladder has been considered in
a number of studies. It was first shown in Ref. [47] that, for
a range of weak inter-rung couplings, all (one-, two-, three-
triplon, . . . ) excited states are strictly localized objects, and the
critical coupling for this range was found to be j ′ = J⊥/J‖ =
J⊥/J× � j ′

c � 1.401. In Ref. [48], it was shown that, up to an
additive constant, the Hamiltonian (1) may be expressed as

H/J‖ =
∑

i

[
j ′(�S1

i · �S2
i − 1

/
4
) + �Pi · �Pi+1

]
, (2)

where the first term is finite only for singlet rung states
and the second is a Heisenberg interaction between S = 1
spin operators, �Pi , describing the triplon states. A similar
expression was obtained in Ref. [49] for the general case of the
fully frustrated m-leg ladder, where the total spin of each rung
remains a good quantum number and thus gives an infinite
number of conserved quantities in the thermodynamic limit.

Focusing on the two-leg case, when the inter-rung coupling
ratio, 1/j ′, becomes a significant fraction of 1, it is more
favorable for the fully frustrated ladder to abandon the rung-
singlet state in favor of a rung-triplet one, thereby satisfying
all the inter-rung bonds. The phase diagram of the model has
been found [48–50] to have only this one, first-order transition.
Because the rung-triplet state has many properties in common
with the Haldane chain, one may use Eq. (2) together with
the very accurately known ground-state energy of the Haldane
chain [51,52] to deduce [48] that j ′

c = 1.401 484 038 971(4);
the nature of the excited states of the system for j ′ < j ′

c may
also be understood in detail from this parallel [34,48]. The
phase diagram of the frustrated ladder has been discussed in
detail in Refs. [47–50,53–56] and has also been considered for
related models including tetrahedral cluster chains [57–63].

Returning to the nature of the fully localized excited
states, it was shown for the two-leg ladder [47] that these
are exact bound states. In the rung-singlet regime at j ′ > j ′

c,
the properties of an n-triplon ladder segment may be deduced
by considering the n-site Haldane chain with open boundary
conditions [64,65]. As an example, the excitation with two
triplons on neighboring rungs forms an exact bound state
consisting of a singlet with energy E2s/J‖ = 2(j ′ − 1), a
triplet with energy E2t /J‖ = 2j ′ − 1, and a quintet with
E2q/J‖ = 2j ′ + 1. The spectrum of the analogous 27-branch
multiplet for the case n = 3, which along with n = 2 will

1 1.2 1.4 1.6 1.8 2
J⊥/J||

0

0.5

1

1.5

2

 ~ E n i /J
||

S = 0
S = 1
S = 2
L = 10
L = 12
L = 14

n = 1

n = 2

n =
 3

n =
 4

S = 1

S = 0, 1, 2

S = 0, ..., 3

S = 0, .., 4

FIG. 2. Schematic representation of the low-lying energy levels
Ẽi

n of the infinite, fully frustrated spin-1/2 ladder, shown as a function
of J⊥/J‖ for a broad region around the quantum phase transition at
J⊥,c = 1.410484 J‖. Excitations are classified according to their total
spin quantum number, S. The additional label n for the rung-singlet
phase specifies the origin of the excitations in the bound states of n

rung triplons. Shaded regions in the rung-triplet phase denote the one-
magnon band and multiple-magnon continua. We indicate in addition
the lowest excited energy state appearing close to the transition in our
calculations for ladders of L = 10, 12, and 14 rungs; these “intruder
states,” marked as thin dashed lines, and with their positions at
j ′ = 1.42, 1.45, and 1.5 marked by symbols, are finite-size features
whose effects are discussed in the text and in Appendix C.

turn out to be most important for our analysis, is presented in
Appendix A.

The existence of the exact bound-state regime is a strong
asset for the purpose of assessing whether bound or scattering
states arising due to frustration effects may contribute to a
complex evolution of the dynamical spectral function at finite
temperatures, of the type observed in 2D in SrCu2(BO3)2. It is
clear by inspection of the energy E2s , the singlet level of the
two-triplon bound state, that the gap to the lowest excitation
of the system changes from J⊥ to E2s in the parameter region
j ′
c < j ′ < 2. Similarly, the lowest branch of the three-triplon

state is a net triplet whose energy, E3tc, becomes the lowest
triplet excitation when j ′ falls below 1.5. Thus one may
expect immediate and potentially dramatic effects in both
the thermodynamic and dynamical response functions of the
system in the vicinity of the quantum phase transition.

The energies of the lowest singlet and triplet levels of the
exact n-triplon bound states at j ′ = j ′

c are shown in Ref. [34] up
to n = 20. Their key property is illustrated in Fig. 2, which we
adapt from Fig. 4 of Ref. [34]. As j ′ approaches j ′

c, a very large
number of excitation branches falls to low (but finite) energy
values below the one-triplon gap. The low-lying levels at
j ′ > j ′

c are mostly the lowest branches of the n-triplon
multiplets for all n (Fig. 2), which are respectively singlets or
triplets for even or odd n [34]. We will show in Secs. III and IV
how these states are responsible for anomalous redistribution
of spectral weight at finite temperatures. For j ′ < j ′

c, the
discrete lines are bound states of singlet excitations within
the rung-triplet background, while the shaded areas of Fig. 2
represent the continuous spectrum arising from the magnon
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excitations of the Haldane chain, with different sectors for
different magnon numbers.

We stress that Fig. 2 represents the spectrum of the system
in the thermodynamic limit, except for the low-lying levels
very close to the phase transition. We include as thin, dashed
lines the levels on both sides of the transition that lie lower
than any others in our finite-size calculations. As discussed in
Sec. III, these are performed by ED of the Hamiltonians (1) and
(2) for ladders with a finite number, L, of rungs and periodic
boundary conditions. The levels appearing in Fig. 2 for ladders
of L = 10, 12, and 14 rungs are in fact the ground states of
the system on the opposite side of the transition and their
energies are infinite for systems of infinite length. However,
in finite-system calculations, they remain present as spurious
“intruder” states, which are low-lying when |j ′ − j ′

c| � 0.05
(for L = 14). These intruder states are the primary source of
finite-size effects in our calculations and their consequences
for the physical quantities we compute are discussed in detail
in Sec. IV and Appendix C.

Regarding thermodynamic quantities, in Ref. [34], we
computed the magnetic specific heat C(T ) and susceptibility
χ (T ) over the entire range of fully frustrated coupling ratios
in Eqs. (1) and (2), spanning the rung-singlet and -triplet
regimes. ED methods are appropriate for all values of j ′ away
from the phase transition, where the correlation lengths are
far shorter than the accessible system size (L = 14 rungs).
Close to j ′ = j ′

c, we used a quantum Monte Carlo technique,
which we adapted to be free of the sign problem affecting
most frustrated systems, to access sizes up to L = 200 and
thereby obtain numerically exact results. Qualitatively, the
effect of frustration is to redistribute the thermodynamic
response to both lower and higher energies, despite the one-
triplon band remaining entirely flat, and near the transition a
sharp, low-energy peak develops in C(T ). In a straightforward
description based on 2-, 3-, . . . , n-triplon bound states within
the rung-singlet chain, multi-triplon effects are observable over
a wide range of j ′ values, but become critically important
in the regime j ′ → j ′

c, where many high-n states approach
the gap energy (Fig. 2) and the peak of C(T ) [the upturn
in χ (T )] is pushed to very low temperatures. We now begin
to investigate the consequences of these bound-state effects
for the finite-temperature dynamics of frustrated spin ladders,
presenting our methods and results in Sec. III and a detailed
analysis in Sec. IV.

III. FINITE-TEMPERATURE DYNAMICAL
SPECTRAL FUNCTIONS

A. Calculating spectral functions at finite temperatures

We calculate the dynamical structure factor

Szz(�k,ω) = 1

πZ

∑

i,j

Im
e−Ei/T |〈j |Sz(�k)|i〉|2
ω − (Ej − Ei + iη)

, (3)

where Z is the partition function and we set � and kB to 1. The
Fourier-transformed spin operators are defined by

�S(k‖,k⊥)= 1√
2L

L∑

�=1

2∑

m=1

exp[i(k‖� + k⊥m)]�Sm
� , (4)

where the “transverse momentum,” k⊥, takes the values 0
(symmetric channel) and π (antisymmetric channel). The
quantity η is a small imaginary part, which appears as a
line-broadening in the spectral function; in the limit η → 0,
one recovers a representation in terms of δ-functions. As
discussed in Appendix B, the full rotational symmetry of the
problem in spin space means that it is sufficient to compute
Szz(�k,ω).

For the calculation of Eq. (3), we employ ED in order
to perform a complete investigation of two-chain spin ladder
over a broad range of temperature. The high symmetries and
exact conservation laws in the fully frustrated case extend the
accessible system lengths to L = 16 ladder rungs and the ex-
tremely short spin-spin correlation length of the model makes
this an eminently viable size. ED has the further significant
advantages [66] of providing spectral functions with arbitrarily
fine energy resolution and of working with periodic boundary
conditions in Eqs. (1) and (2). Our calculations exploit the
conservation of Sz and the full translational symmetry, as
well as certain aspects of the reflection and spin-inversion
symmetries of the ladder.

As noted in Sec. I, recent advances in DMRG techniques
[67–69] raise the possibility of qualitative improvements in the
computation of finite-temperature spectral functions. Dynam-
ical correlation functions were originally obtained at finite
temperatures by applying DMRG to QTMs [70], including
the computation of their full real-time evolution [71], and
later by the use of minimally entangled typical thermal states
(METTS) [72,73]. While most modern DMRG approaches
retain the basic structure of purifying the mixed density
operator and applying real-time evolution [74–81], and have
been used with some success for real materials [82], a further
recent development [66,83] is to work directly in frequency
space at finite temperature. However, the high degeneracies
and many conservation laws of the fully frustrated ladder
provide an additional challenge to METTS-based DMRG
techniques in accessing the full space of available states.
For the present purposes, ED therefore provides the optimal
approach for computing the spectrum of exact multi-triplon
bound states, which are the key to the unconventional thermo-
dynamic and dynamical response of the frustrated ladder and
allow a complete analytical interpretation of our numerical
results.

A direct approach to the evaluation of Eq. (3) is based
on full diagonalization, i.e., on the computation of all
eigenvalues, Ei , and the corresponding eigenstates, |i〉.
Although our initial computations for ladders of 10×2 spins
were performed on the high-performance computers of HLRN
II, this calculation is actually feasible on a modern desktop.
The primary bottleneck is the requirement for approximately
470 GBytes of hard-disk space to store all the necessary matrix
elements, 〈j |Sz(�k)|i〉, for each set of exchange constants.

To proceed to larger systems, and here we present data for
ladders up to 16×2 spin-1/2 sites, it is no longer possible to
obtain the full spectrum. However, one may truncate the sum
over i in Eq. (3) to low energies Ei and use the Lanczos
algorithm [84,85] to compute these low-lying states; the
spectral sum over j is then evaluated by a continued-fraction
expansion for each eigenstate |i〉 [85–87]. We retain at least 20
initial states, |i〉, in each symmetry sector for ladders of L = 14
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rungs, pushing this up to several hundred per symmetry sector
for L = 12. The truncation to low energies restricts the validity
of this approximation to low temperatures. Thus, although we
have access only to smaller system sizes (L = 10 rungs) at
higher temperatures, the finite-size effects we wish to gauge
are important primarily at lower temperatures. For this reason,
we have pushed our calculations to the largest combinations
of system size and temperature allowed by our computational
resources.

One specific advantage of ED is that we have access
to the weight of individual poles of the spectral function,
i.e., the coefficients of the individual δ functions in the
limit η = 0. In the context of full diagonalization, this is
contained in the spectral representation [Eq. (3)], while in
the continued-fraction expansion these weights are obtained
from the eigenvectors of the associated tridiagonal Lanczos
matrix [85].

The effects of the finite temperature are incorporated
through Boltzmann weighting factors e−Ei/T on every energy
level Ei in the spectrum. We have performed calculations
for ladders of L = 6, 8, 10, 12, 14, and 16 rungs at zero
temperature, and up to L = 14 at finite temperatures, in
order to analyze the effects of finite system size. We will
demonstrate that these effects are in general very limited,
because of the extremely short correlation length of the
maximally frustrated system, and it is only arbitrarily close to
j ′ = j ′

c (in fact where multi-triplon bound states with n ≈ L

become relevant) that they become visible in the dynamical
response.

The two-leg ladder has two types of spectral function, those
symmetric or antisymmetric between the legs, corresponding
as above to the quantum numbers k⊥ = 0 and π , and we will
show both. At j ′ > j ′

c (rung-singlet ground state), processes
changing the number of triplons, l, by an odd number appear
in the antisymmetric channel, while those involving even
numbers (including zero, as in intramultiplet transitions) are
symmetric. The selection rules of a neutron-scattering process,
and indeed of the matrix elements in Eq. (3), are that the change
in total spin may be only �S = 0,±1.

For the fully frustrated ladder, these rules combine with
the conservation law on the total spin of each rung [49] to
dictate that direct processes are allowed only from sectors
with l excited rung triplons to sectors with l or l ± 1. At zero
temperature, the rung-singlet ground state may therefore be
excited by the antisymmetric operators of Eq. (3) only into the
antisymmetric channel, and we stress that it is not possible to
couple directly to the triplet branch of an n-triplon bound state
with n � 2. Because the rung spin is a good quantum number
for all parameters, the same is true for the rung-triplet ground
state. This result is a consequence of the perfect frustration
and can be relaxed if the frustration is incomplete, albeit
with small matrix elements, as we will illustrate in Secs. III C
and IV.

As a consequence, all excitation processes of the fully
frustrated ladder to sectors of higher l take place only at
finite temperatures, where the probability for multi-triplon
states to be populated is nonvanishing. However, the transitions
between these states and others within the thermal population
remain restricted to those obeying the selection rules �S =
0,±1 and �l = 0,±1. The effect of the temperature is to

alter the relative weights of the different terms in Eq. (3),
establishing the thermal evolution of S(�k,ω).

B. Fully frustrated ladders

We first provide results to illustrate the evolution of the
dynamical spectral function with temperature. Our primary
focus is on the fully frustrated ladder (J‖ = J× = 1), for
which we compare the situations within and beyond the exact
bound-state regime (j ′ > j ′

c and j ′ < j ′
c), with particular

attention paid to the critical region around j ′ = j ′
c. To gain

more perspective on these results, we also compare the fully
frustrated case with unfrustrated (J× = 0) and less frustrated
ladders (J× = 0.9J‖).

1. j ′ > j ′
c

We begin by presenting the calculated dynamical structure
factor for a fully frustrated ladder with J⊥ = 2 and J‖ =
J× = 1. Figure 3 shows the spectral weights for a range of
temperatures between 0 and J⊥, with the symmetric channel
in the left panels and the antisymmetric channel on the right.
We draw attention to the fact that the color contours in
all the figures in this section represent logarithmic intensity
scales, and thus the strong branches are indeed features of
very high relative weight. At low temperatures, only one
feature is visible, the one-triplon excitation appearing in the
antisymmetric channel. Its band dispersion, ω(k) = J⊥, is
completely flat as a consequence of the perfect frustration.
As the temperature increases, increasing spectral weight may
be found in this channel at a significant number of different,
discrete, and nondispersive energy levels, which must arise
from two- or more-triplon excitations. The number of visible
levels continues to increase with T , as, with one obvious
exception, does the weight they contain. The one-triplon mode
has clearly lost appreciable spectral weight once T = 0.5J⊥,
and this loss continues with T .

In the symmetric channel, we also find a range of discrete,
nondispersive excitations, but these have zero spectral weight
at k‖ = 0 and a maximum at k‖ = π , causing a modulation of
the scattered intensity. Again, both the number of visible levels
and their weight increase with temperature. An explanation for
the origin, possible degeneracy, and intensity evolution of the
strongest energy levels is deferred to Sec. IV.

2. j ′ < j ′
c

Remaining with fully frustrated ladders, in Fig. 4, we show
similar results for a ladder with J⊥ = J‖ = J× = 1, values for
which the system is located in the rung-triplet (Haldane-type)
phase. The antisymmetric channel again shows completely
nondispersive triplet bands at zero temperature, but in this
case more than one. As the temperature is increased, these are
joined by a larger number of weaker levels, which have almost
merged into an intensity continuum when T = J⊥. We observe
that the one-triplon level dominating the low-T spectrum has
vanished almost completely at this temperature.

In the symmetric channel, at low temperatures, one may
recognize the characteristic triplet (“magnon”) dispersion
relation of the Haldane chain, whose dynamical structure
factor at T = 0 is shown in Fig. 4(b) of Ref. [88] for similar
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FIG. 3. Dynamical structure factor in (a), (c), (e), and (g) the
symmetric and (b), (d), (f), and (h) the antisymmetric channel for the
ladder of Fig. 1 with coupling parameters J⊥ = 2 and J‖ = J× = 1,
for temperatures of (a) and (b) T/J⊥ = 0 (16×2 spins), (c) and (d)
0.2 (12×2 spins), (e) and (f) 0.5, and (g) and (h) 1. The system size for
T = 0.5 and 1 is 10×2 spins and a Lorentzian broadening η = J‖/20
is applied to the data.

system sizes. More specifically, in Fig. 4(a), we compute a
band minimum at k‖ = π of �/J‖ � 0.443 for the L = 16
case [52,89], compared with the true Haldane gap of �/J‖ =
0.4105, and find the band maximum where it is cut off by
the descent of the two-magnon continuum towards k‖ = 0 and
2π [90]. At intermediate temperatures, more flat-band features
begin to appear in the spectral weight, and at high temperatures
the weight distribution is quite similar to the case with J⊥ = 2,
shown in Fig. 3, suggesting the predominance of local physics.
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FIG. 4. Dynamical structure factor in (a), (c), and (e) the
symmetric and (b), (d), and (f) the antisymmetric channel for the
ladder of Fig. 1 with coupling parameters J⊥ = J‖ = J× = 1, for
temperatures of (a) and (b) T/J⊥ = 0 (16×2 spins), (c) and (d) 0.3
(12×2 spins), and (e) and (f) 1 (10×2 spins). A Lorentzian broadening
η = J‖/20 is applied to the data.

3. j ′ → j ′
c

As discussed in Sec. II and demonstrated in the thermo-
dynamic properties of the system [34], the most dramatic
phenomena in the fully frustrated ladder occur close to the
quantum phase transition (j ′

c), where large numbers of multi-
triplet bound states appear at very low energies. However, these
are of necessity extended objects, and therefore our calcula-
tions for small systems are no longer perfectly representative of
the thermodynamic limit as j ′ → j ′

c. Nevertheless, in Fig. 5 we
show Szz(k,ω,T ) calculated for a ladder with J⊥ = 1.45 and
J‖ = J× = 1, where we find our results to be largely converged
at L = 14; thus the critical regime dominated by truly high-n
bound states remains rather narrow [34]. It is clear that the
spectral weight evolves with temperature in a manner very
similar to the J⊥ = 2 case (Fig. 3), which may be regarded as
representing generic and noncritical fully frustrated behavior,
but in an accelerated manner. The weight growth visible in
Fig. 5 is equivalent to an effective rescaling of the temperature
by a factor of approximately 2.5 compared with Fig. 3, and yet
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FIG. 5. Dynamical structure factor in (a), (c), (e), and (g) the
symmetric and (b), (d), (f), and (h) the antisymmetric channel for the
ladder of Fig. 1 with coupling parameters J⊥ = 1.45 and J‖ = J× =
1, for temperatures of (a) and (b) T/J⊥ = 0 (16×2 spins), (c) and
(d) 0.2 (14×2 spins), (e) and (f) 0.4 (12×2 spins), and (g) and (h) 1
(10×2 spins). A Lorentzian broadening η = J‖/20 is applied to the
data.

was obtained with no rescaling of energies (although we note
that T is normalized to J⊥).

To summarize our observations for fully frustrated ladders
in the rung-singlet regime, the dynamical spectral function is
dominated by discrete and nondispersive excitations, whose
origin lies in the existence of exact bound states. As a function
of temperature, all of the bound-state levels are populated
increasingly at the cost of the intensity in the one-triplon
band. The intensity distribution is k‖-independent in the

antisymmetric channel, but peaked at k‖ = π and vanishing
at k‖ = 0 in the symmetric channel. The dependence of this
thermal evolution effect on the inter-rung coupling ratio may
be broadly characterized, from studies we do not show here for
reasons of space, as follows. The dynamical spectral function
for ladders with values of j ′ � 3 varies little from the case
j ′ = ∞ (isolated rung singlets) for any realistic values of
the temperature. For values 1.5 � j ′ � 3, we observe the
essential phenomenon of thermal evolution in a frustrated
system, that spectral weight from the one-triplon band is
redistributed to lower and higher energies by the formation
of few-triplon bound states. For values j ′

c � j � 1.5, we find
highly anomalous versions of this effect, with extremely rapid
spectral-weight transfer out of the one-triplon band and into
bound states of many different triplons. For values j < j ′

c, we
find a composite spectral function containing some features
of the Haldane chain [90] and some of local excitations
(rung-singlet bound states), a topic we discuss in more detail
in Sec. IV.

C. Unfrustrated and partially frustrated ladders

To benchmark the effects of frustration on the temperature
dependence of the dynamical spectral function, we switch
them off in whole or in part. In Fig. 6, we show results
analogous to those of Fig. 3, but for an unfrustrated 14-rung
ladder with J⊥ = 2, J‖ = 1, and J× = 0. In this case, the
one-triplon band visible in the low-temperature antisymmetric
response has a clear dispersion, with its minimum (ω/J‖ ≈ 1)
at k‖ = π and a band width of approximately 2J‖. This
band is broadened into a continuum of available states as
a function of increasing temperature, and at T ≈ J⊥ it has
a width of order J⊥, as expected for conventional thermal
broadening. The low-temperature spectrum in the symmetric
channel is that of a dispersive two-triplon bound state [91–94],
which has a strongly k‖-dependent intensity and a loss of
weight from the high-energy feature reappearing at low
energies for higher temperatures. In the thermodynamic limit,
these bands are continuous, and simply broaden at finite
temperatures into a continuum of available states with equal
weights.

The characteristic features arising from the discrete energy
spectrum of the fully frustrated case can be recovered if
the frustration parameter, J×, is increased continuously from
0 to 1. The conventional spectral features of Fig. 6 are
changed smoothly into the very different form of Fig. 3 by
the emergence of preferred, discrete levels from the continua,
whose widths decrease systematically to very narrow values,
and whose dispersion decreases until the bands become
completely flat. This evolution is represented in Fig. 7 for
the case J× = 0.9. The frustration in this case is strong, and
the bands only weakly dispersive, such that the fingerprints of
multi-triplon bound states emerge with increasing temperature.
However, the continuum nature of the bands remains evident in
the two-magnon response at T = 0 in the symmetric channel,
as well as in the continuous nature of the thermal broadening
in the antisymmetric channel at T/J⊥ = 1, which on close
inspection lacks the weakly varying intensity bands visible
between the primary modes in Figs. 3 and 5.
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FIG. 6. Dynamical structure factor in (a), (c), (e), and (g) the
symmetric and (b), (d), (f), and (h) the antisymmetric channel for
the ladder of Fig. 1 with coupling parameters J⊥ = 2, J‖ = 1, and
J× = 0, for temperatures of (a) and (b) T/J⊥ = 0 (16×2 spins), (c)
and (d) 0.2 (12×2 spins), (e) and (f) 0.5, and (g) and (h) 1 (both
10×2 spins). A Lorentzian broadening η = J‖/20 is applied to the
data.

D. Infinite-temperature spectral functions

One of the most striking features of the spectra we calculate
is their behavior at very high temperatures. Figure 8 shows the
dynamical spectral functions for all the ladders of Figs. 3 to
7 as T → ∞. The conventional expectation is the situation
illustrated in Figs. 8(g) and 8(h) for the unfrustrated ladder,
where the spectral weight is spread uniformly to all available
energies. By contrast, the primary spectral features of the
fully frustrated ladders [Figs. 8(a)–8(f)] not only persist at

 0

 1

 2

 3

 4

 5

 6

ω

10-2

10-1

1
(a) T=0, 16x2

 0

 1

 2

 3

 4

 5

 6

ω

10-2

10-1

1
(b)

 0

 1

 2

 3

 4

 5

 6

ω

10-2

10-1

1
(c) T/J⊥=0.2, 12x2

 0

 1

 2

 3

 4

 5

 6

ω

10-2

10-1

1
(d)

0 π/2 π 3π/2 2π
k||

 0

 1

 2

 3

 4

 5

 6

ω

10-2

10-1

1
(e) T/J⊥=1, 10x2

0 π/2 π 3π/2 2π
k||

 0

 1

 2

 3

 4

 5

 6

ω

10-2

10-1

1
(f)

FIG. 7. Dynamical structure factor in (a), (c), and (e) the sym-
metric and (b), (d), and (f) the antisymmetric channel for the ladder
of Fig. 1 with coupling parameters J⊥ = 2, J‖ = 1, and J× = 0.9, for
temperatures of (a) and (b) T/J⊥ = 0 (16×2 spins), (c) and (d) 0.2
(12×2 spins), and (e) and (f) 1 (10×2 spins). A Lorentzian broadening
η = J‖/20 is applied to the data.

infinite temperature but remain completely sharp. It is clear that
the discrete support, by which is meant the T = 0 spectrum
of nondispersive bound states, leads to preferred scattering
processes at these specific energies at all temperatures.
This perfect discreteness is the consequence of the perfect
frustration, and in the nearly-frustrated ladder [Figs. 8(i) and
8(j)] one observes that the sharpness begins to be lost, although
the levels do persist; we examine both effects in more detail in
Sec. IV.

IV. ANALYSIS OF SPECTRAL WEIGHTS

We begin a quantitative discussion of our results for the
dynamical structure factor by displaying our intensity data
(Figs. 3 to 8) as functions of energy for one specific wave
vector, taken to be k‖ = π ; although the intensities are identical
for all wave vectors in the antisymmetric channel, this is not
the case in the symmetric channel. Again these data are most
transparent on a logarithmic scale and Figs. 9 to 13 demonstrate
clearly the increasing importance of increasing numbers of
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FIG. 8. Dynamical structure factor in (a), (c), (e), (g), and (i) the
symmetric and (b), (d), (f), (h), and (j) the antisymmetric channel at
infinite temperature for ladders with coupling parameters J⊥ = 2 and
J‖ = J× = 1 (a) and (b); J⊥ = J‖ = J× = 1 (c) and (d); J⊥ = 1.45
and J‖ = J× = 1 (e) and (f); J⊥ = 2, J‖ = 1, and J× = 0 (g) and (h);
J⊥ = 2, J‖ = 1, and J× = 0.9 (i) and (j). The system size is 10×2
spins throughout this figure and a Lorentzian broadening η = J‖/20
is applied to the data.

bound-state energy levels as the temperature is raised. In every
panel, we show data obtained for three successive system sizes
in order to gauge their finite-size effects. The lines display
data obtained with a broadening factor of η = 0.05J‖, and we
comment that, as a result of the logarithmic intensity scale,
the entire line shape visible in the figures of this section is a
consequence of η.

The primary features of the dynamical spectral functions
for which we seek a quantitative explanation are (i) the nature
of the processes generating the discrete spectra of the fully
frustrated ladder, which we address in Sec. IV A, and (ii) the
origin of the rapid transfer of spectral weight, which we discuss
in Secs. IV B and IV C. We first summarize the qualitative
features of the results we show for the two different types of
ground state, namely the rung-singlet phase of Figs. 9 and 11
and the rung-triplet (Haldane) phase of Fig. 10. Although it
stands to reason that there are different types of excited state
for j ′ > j ′

c and j ′ < j ′
c, the lower-energy states of one phase

are higher-energy excitations of the other, and thus both sides
of the transition contain messages for interpreting the opposite
one.

In the rung-singlet phase shown in Fig. 9, we comment
first that very few finite-size effects (discrepancies between
the curves obtained for the three system sizes shown) are
visible, indicating that even these short systems capture all
of the physics away from j ′

c. The one-triplon peak in the an-
tisymmetric channel loses weight systematically as a function
of temperature to a small number of dominant and, for this
parameter choice, symmetrically distributed states lying above
a rising background. The response in the symmetric channel is
strongest at zero energy, and shows weaker finite-temperature
contributions from a greater number of levels. Figure 11 shows
the same physics developing at lower temperatures, as well as
additional peaks appearing due to the deliberate asymmetry of
the parameters (Sec. IV A).

The spectrum of the rung-triplet phase (j ′ < j ′
c, Fig. 10)

shows the predominance of weight in the symmetric channel,
and displays significant finite-size effects. These are expected
in general if the origin of the features lies in the “Haldane” part
of the spectrum, which contains long-wavelength excitations,
but not from the localized (bound-state) features. However,
we comment that the strongest finite-size effects in Fig. 10(a)
actually appear in the three-particle continuum [90], whereas
those in the one-triplon line are small. The loss of strong
finite-size features at higher temperatures implies that the
primary contributions in this regime are in fact from few-rung
processes; here one may borrow from the j ′ > j ′

c phase to
interpret these as isolated rung singlets, and (nonexact) bound
states of rung singlets, in a background of rung triplets.
Similarly, as noted in Sec. II, the interpretation of the spectral
function at j ′ > j ′

c can also be borrowed from the j < j ′
c side

in the form of open n-site Haldane chains separated by singlet
rungs. The presence of such segmented Haldane chains is
clearest in the symmetric channel, in the shape of the envelope
of spectral weight in Figs. 3 to 5.

The physics of the spectral-weight distribution, and of its
thermal redistribution, is shown most clearly in Fig. 5 for a
system close to j ′

c. The intensities of the discrete energy levels
over the entire spectrum rise rapidly with temperature, and
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FIG. 9. Intensity at k|| = π in (a), (c), (e), and (g) the symmetric
and (b), (d), (f), and (h) the antisymmetric channel, shown as
a function of energy for the ladder of Fig. 1 with the system
size specified, coupling parameters J⊥ = 2 and J‖ = J× = 1, and
η = J‖/20, for temperatures of (a) and (b) T/J⊥ = 0, (c) and (d) 0.2,
(e) and (f) 0.5, and (g) and (h) 1.

the concomitant fall in the intensity of the one-triplon band is
quantified in Fig. 11. The redistribution effect among discrete
levels shown in this figure provides a stark contrast with the
unfrustrated ladder, whose intensity at k‖ = π is shown in
Fig. 12. For the minimum of the dispersive ladder bands,
one observes a dominant low-lying peak in the antisymmetric
channel spreading nonuniformly to all energies with increasing
temperature, whereas the symmetric channel preserves distinct
but dispersive low- and high-energy contributions to significant
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FIG. 10. Intensity at k|| = π in (a), (c), and (e) the symmetric and
(b), (d), and (f) the antisymmetric channel, shown as a function of
energy for the ladder of Fig. 1 with the system size specified, coupling
parameters J⊥ = J‖ = J× = 1, and η = J‖/20, for temperatures of
(a) and (b) T/J⊥ = 0, (c) and (d) 0.3, and (e) and (f) 1.

temperatures; the dominant low-temperature feature is the
two-triplon bound state mentioned in Sec. III C [91–94].

Figure 13 provides the imperfectly frustrated hybrid of
the two different types of response. The perfect frustration
therefore produces a very unusual but characteristic spectrum
of discrete, flat bands, which are determined by the bound
states discussed in Sec. II; the fact that they appear in the
spectral function with a very specific hierarchy of spectral
weights indicates that their ratios are determined not only by
the temperature but also by specific matrix elements.

A. Excitation processes

To identify the excitation processes present in the calculated
spectra, we use the energies of the known bound states and
begin with the smallest clusters. The results for the spectra
of the n = 2 and 3 multiplets are given in Appendix A. Our
choice of parameters in all the figures of Secs. III and IV
for fully frustrated ladders is such that J‖ = J× = 1, with
only J⊥ changing the ratio j ′. Because J‖ determines the
multiplet splitting of the bound states, and all level separations
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FIG. 11. Intensity at k|| = π in (a), (c), (e), and (g) the symmetric
and (b), (d), (f), and (h) the antisymmetric channel, shown as a
function of energy for the ladder of Fig. 1 with the system size
specified, coupling parameters J⊥ = 1.45 and J‖ = J× = 1, and
η = J‖/20, for temperatures of (a) and (b) T/J⊥ = 0, (c) and (d)
0.2, (e) and (f) 0.4, and (g) and (h) 1.

are integral for n = 2 and 3, any excitations with irrational
energies must automatically be a consequence of transitions
involving clusters with n = 4 or higher. However, this situation
has the twin disadvantages that primary n = 2 and 3 levels are
always degenerate and that “commensurate” values of J⊥/J‖
can cause additional energetic degeneracies between different
excitation processes.

Considering only the antisymmetric channel, the one-
triplon excitation is located at an energy of j ′ (in units of J‖)
and the leading bound-state energies in Figs. 3 (9) and 5 (11)
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FIG. 12. Intensity at k|| = π in (a), (c), (e), and (g) the symmetric
and (b), (d), (f), and (h) the antisymmetric channel, shown as a
function of energy for the ladder of Fig. 1 with the system size
specified, coupling parameters J⊥ = 2, J‖ = 1, and J× = 0, and
η = J‖/20, for temperatures of (a) and (b) T/J⊥ = 0, (c) and (d)
0.2, (e) and (f) 0.5, and (g) and (h) 1.

are located at |j ′ − 2|, j ′ − 1, and j ′ + 1. These all arise
from transitions between the one-triplon state and the two-
triplon bound state (for which we adopt the notation 1 → 2),
respectively its singlet, triplet, and quintet components. We
note (Appendix A) that there is no selection rule prohibiting
excitation processes from a triplet to a triplet in the multiplet
basis. We find that the first process is degenerate with the
one-triplon band for the case j ′ = 2 and thus we use “incom-
mensurate” values of j ′ to isolate the individual contributions
from every process where possible. For the choice j ′ = 1.45,
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FIG. 13. Intensity at k|| = π in (a), (c), and (e) the symmet-
ric and (b), (d), and (f) the antisymmetric channel, shown as
a function of energy for the ladder of Fig. 1 with the system
size specified, coupling parameters J⊥ = 2, J‖ = 1, and J× = 0.9,
and η = J‖/20, for temperatures of (a) and (b) T/J⊥ = 0, (c)
and (d) 0.2, and (e) and (f) 1.

we find the dominant excitations at ω/J‖ = 0.55, 0.45, and
2.45 in Figs. 5 and 11.

The next higher energy levels, and presumably next-
strongest intensities, will arise from the 2 → 3 transitions,
which are expected at the energies |j ′ − 3|, |j ′ − 2|, j ′ − 1,
and so on. Many of these are not detectable because they
contribute at exactly the same energies as the stronger 1 → 2
signal, and cannot be separated by using different values of
j ′. The first nondegenerate option, the j ′ + 2 signal, is clearly
visible in all of Figs. 3 (9), 5 (11), and 7 (13), the last with
an inverted dispersion, but is definitely weaker than the 1 → 2
peaks at all temperatures. As noted above, processes involving
four-triplet bound states appear at irrational energies and these
form the leading contributions to the “background” of many
discrete energies visible in all of the spectra shown in Figs. 3
to 5 and 7 even at moderate T .

The logical extension of this discussion is the obvious im-
portance of “multiparticle” excitations, by which is meant the
low-lying bound states of high-n triplon clusters. Particularly
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FIG. 14. Weights of selected poles in the dynamical structure
factor in the antisymmetric channel for a fully frustrated ladder with
j ′ = 1.45, shown as a function of temperature for the total spectral
weight, the one-triplon mode, and the four most intense multi-triplon
bound states. The thermal evolution of the bound-state intensities
(inset) reflects the common origin of the three leading lines, which
differs from that of the fourth (see text). System sizes are L = 14
rungs at low T , followed by L = 12 and then L = 10 at higher
temperatures; data for identical system sizes are connected by lines.

for values of j ′ just above j ′
c, as in Fig. 5, these cause the

very rapid filling of the spectrum as the temperature is raised,
with thermal excitations populating bound states over a wide
range of n. These multi-triplon excitations are in fact rather
spatially extended objects and as such constitute exceptions
to the notion that all physics tends to be extremely local in
highly frustrated and gapped systems. This is also the origin
of problems with finite-size effects entering our calculations
as j ′ → j ′

c, some of which are visible in Fig. 11.

B. Spectral-weight redistribution

The other primary aspect of our results that can be explained
quantitatively is the redistribution of spectral weight among the
different discrete excitations as a function of the increasing
temperature. Concentrating again on the fully frustrated case
and the antisymmetric channel, the weights of the poles for any
wave vector in the spectral functions show (Figs. 9 and 11) a
clear growth with temperature of the intensity in a number of
satellite peaks at the expense of the one-triplon peak. This
information is shown in Fig. 14 for the parameter choice
j ′ = 1.45, where the three strongest satellites, at ω/J‖ = 0.55,
0.45, and 2.45, are respectively the transitions from the one-
triplon band to the singlet, triplet, and quintet of the two-triplon
bound state, and the fourth, at ω/J‖ = 3.45, contains the j ′ + 2
transitions within the set of 2 → 3 processes.

Appendix B analyzes the spectral weights of the 1 → 2
processes. Because all transitions are independent of the
wave vector, the result is an extremely straightforward form
where the bound-state intensities are related by simple ratios
multiplying a thermal factor and a single matrix element.
However, several features complicate efforts to apply this
analysis to the observed spectral weights, shown in the inset

094402-12



MULTI-TRIPLET BOUND STATES AND FINITE- . . . PHYSICAL REVIEW B 94, 094402 (2016)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

w
ei

gh
t o

f o
ne

-tr
ip

lo
n 

po
le

 a
t k

||=
k ⊥

=π

T/J||

J⊥/J|| = 2
J⊥/J|| = ⎯√3 ≈ 1.73

J⊥/J|| = 1.5
J⊥/J|| = 1.45
J⊥/J|| = 1.42

FIG. 15. Weight of the one-triplon pole in the dynamical structure
factor of the fully frustrated ladder as a function of temperature for
five different coupling ratios approaching the quantum critical point
(j ′

c = 1.40148). The system sizes used in our calculations are L = 14
at low temperatures for j ′ = 1.42 and 1.45, L = 12 at intermediate
temperatures for j ′ = 1.42 and 1.45 and at low temperatures for
j ′ = 1.5, and L = 10 otherwise. The quantity T1/2 is defined at a
given coupling ratio, j ′, as the temperature where the intensity falls
to half of its T = 0 value (horizontal line).

of Fig. 14. One is the problem noted above, concerning
the attribution of intensities due to the different, degenerate
1 → 2 and 2 → 3 processes. In principle, the intensity of
each line (i) should have a leading temperature dependence
Ii = aie

−J⊥/T + bie
−(2J⊥−li J‖)/T , with related coefficients ai

and bi , and li a small (positive, negative, or zero) integer. It
is clear that the three leading lines in the inset of Fig. 14
cross each other at temperatures as low as T = 0.2J⊥, and
very obviously at 0.4J⊥, as well as having maxima at quite
different peak values. These results imply both strong effects
from multiple contributions at rather low temperatures and
additional physics at higher temperatures, where the satellites
lose intensity again due to further thermal excitation. We draw
attention also to the fact that the fourth (weakest) line in the
inset, which from above is the strongest dominated by 2 → 3
processes, clearly has a thermal evolution characterized by an
initial-state energy (presumably of order 2J⊥) rather different
from that (J⊥) governing the three 1 → 2 processes. Because
thermal effects extend so rapidly beyond the lowest order, the
relevance of an analysis of the type shown in Appendix B could
be tested only at very low temperatures, perhaps around 0.1J⊥.
Finally, such a test could only be performed meaningfully at
values of j ′ not too close to j ′

c (j ′ > 1.45 for L = 14 ladders),
because otherwise the low-lying, Haldane-type intruder states
mentioned in Sec. II also interfere with the overall intensities
in our finite-size calculations.

C. One-triplon spectral weight

We turn next to the question motivating our entire inves-
tigation, namely the factors responsible for the anomalously
rapid loss of spectral weight from the one-triplon band visible
in a material such as SrCu2(BO3)2. We focus again on the fully

1.4 1.5 1.6 1.7 1.8 1.9 2
J⊥/J||

0

0.2

0.4

0.6

T/
J ||

Tχ
half

TC
max

T1/2, 10x2
T1/2, 12x2

FIG. 16. Temperature T1/2(j ′), at which the weight of the dy-
namical structure factor (Fig. 15) falls to one half of its peak value,
shown by the symbols for several values of the coupling ratio, j ′.
Lines indicate the values of the quantities T C

max and T
χ

half (see text)
in the thermodynamic limit, deduced from the numerical results of
Ref. [34] for the magnetic specific heat and susceptibility.

frustrated system. For all coupling ratios, j ′, there is a loss of
weight from the one-triplon mode, which can be quantified
from the weight of the one-triplon pole in Figs. 9 to 11. This
is shown in Fig. 15 for several values of j ′; a discussion of
finite-size effects in the context of this figure, specifically for
the j ′ = 1.42 and 1.45 curves, is presented in Appendix C. The
observed loss of intensity with temperature is not unusual, and
its unconventional feature is only the way it happens, between
discrete energy levels that remain sharp at all temperatures,
rather than as a conventional thermal broadening (Figs. 6
and 12). Over much of the range of j ′, the temperature at
which a significant loss of one-triplon spectral weight occurs
cannot be said to be anomalously low, as shown in Fig. 15
for parameter values such as j ′ = 2. However, our single
most important finding is that, close to j ′

c, there is a regime
where large numbers of multiparticle excitations, involving
many-rung triplon clusters in strongly bound and low-lying
states (Fig. 2), come to dominate the low-energy physics [34].
As Fig. 15 shows clearly, these states do lead to rapid transfer
of spectral weight out of the one-triplon band at anomalously
low temperatures.

To quantify the loss of spectral weight from the one-triplon
signal, we consider the temperature, T1/2, at which the intensity
falls to one half of its zero-temperature value, given by the
intersection of the different curves with the horizontal line
in Fig. 15. In Fig. 16, we show the values of T1/2 as a
function of j ′ in the rung-singlet regime, noting that the phase
transition, j ′

c ≈ 1.4015, lies essentially on the left boundary
of the figure. It is important to note that, although finite-size
effects are expected to be relevant for small values of |j ′ − j ′

c|
(Sec. II, Appendix C), our results for j ′ = 1.42, 1.45, and 1.5
from ladders of L = 12, in addition to L = 10, demonstrate
that T1/2 can still be extracted reliably in this regime with
the available system sizes. At values of j ′ far from the
transition, the one-triplon spectral weight remains close to
unity until a temperature that is a significant fraction of J‖,
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as can be seen by considering the case j ′ = 2 in Fig. 15,
where T1/2 � 0.692 J‖ = 0.346 J⊥ (Fig. 16). However, as j ′
approaches j ′

c, T1/2 falls to an anomalously low temperature,
of order 0.22 J‖ ≈ 0.15 J⊥ when j ′ = 1.42.

As a means to gain some initial insight into this emerging
low energy scale, in Fig. 16 we compare T1/2 with the
characteristic temperatures extracted from the thermodynamic
response of the system. In Ref. [34], we showed that the
magnetic specific heat C(T ) is characterized by a strong
peak, which becomes narrower and moves to lower energies
as j ′ → j ′

c, and in Fig. 16, we show its position, T C
max. The

magnetic susceptibility χ (T ) has a very broad peak, but can
be characterized quite sensitively by its rapid onset, for which
we use the temperature, T

χ

half , where χ (T ) reaches half of its
peak height. Because C(T ) is a consequence of excitations
to all available levels in the spectrum, whereas χ (T ) is a
consequence of excitations to all available magnetic levels
(S � 1), the fact that T C

max and T
χ

half track each other very
closely makes clear that the descent of singlet and triplet
bound-state branches as j ′ → j ′

c (Fig. 2) is very similar
not only in energy but also in density. To lowest order,
the temperature scale obtained from a dynamical quantity,
T1/2, is effectively identical in the vicinity of the transition
to the characteristic temperatures obtained from the static
response. This confirms that the plethora of low-lying bound
states accessible at finite temperatures near the quantum phase
transition is explicitly the origin of the rapid loss of one-
triplon spectral weight. We comment here that a connection
between C(T ) and rapid spectral-weight transfer, based on the
presence of well-localized bound-state modes of the system,
was mooted for SrCu2(BO3)2 on the basis of Raman-scattering
studies in Ref. [95]. That T1/2 rises above T C

max and T
χ

half in the
regime far from j ′

c (Fig. 16) suggests that the spectral-weight
transfer depends more critically than do C(T ) and χ (T ) on a
smaller number of processes (i.e., on a low density of levels)
whose gaps become large.

The origin of the emerging low energy scale around j ′
c is

somewhat complex, with two distinct types of contribution. In
Ref. [34], we discussed the quantity Ebond, which is effectively
the energy scale of a domain wall between the potentially long
regions of singlet and triplet rungs that characterize the system
in the vicinity of j ′

c. However, the peak in the specific heat T C
max

and the half-height temperature T
χ

half of the susceptibility are
always irrational fractions of the characteristic energy scale,
which remains on the order of the gap to the lowest excitations
(Fig. 2). The second type of contribution is from the effective
number of excited energy levels involved in draining weight
away from the one-triplon branch, and this quantity remains
difficult to define. A reasonable hypothesis for the rapid loss of
spectral weight would be that pairs of triplons scatter strongly,
with an effective scattering length significantly larger than the
lattice constant [25], and the area of this scattering region
could be used to deduce a number of states. Our analysis
demonstrates that this is not the correct picture, in that the
origin of the strong quasiparticle scattering lies in the presence
of many multi-triplon bound states rather than in extended
two-triplon ones. Although it is clear from the data of Fig. 15
that many states are involved in the loss of spectral weight, the
deduction of an effective number of multi-triplon bound-state
branches from these data remains an ill-defined task.

As to the destination of the spectral weight lost from the
one-triplon branch, this weight is transferred systematically to
the primary multi-triplon excitations, whose intensities grow
exponentially at low temperatures (as discussed above and
shown in the inset of Fig. 14) and then more slowly beyond
T/J‖ ≈ 0.5. Despite sometimes nonmonotonic behavior, these
satellite peak intensities do approach a constant ratio at high
temperatures, as we will show in Sec. IV D. If the ladder
couplings are altered away from perfect frustration, this picture
is altered due to the presence of some “continuum” thermal
effects. However, it is difficult to find a meaningful comparison
of spectral-weight shifts with the fully unfrustrated system,
where there are no special mode energies; in this case it would
be necessary to characterize the shift of intensity by integrating
the spectrum over certain frequency windows, chosen on the
basis of the low-T spectra, giving another quite ill-defined
procedure that would lose validity at higher temperatures.

In closing this section, we comment that Fig. 16 allows a
qualitative analogy with the situation in SrCu2(BO3)2. This
material is known to be located close to a first-order quantum
phase transition out of its rung-singlet phase (to a plaquette
valence-bond state), and to have an anomalously low value,
T1/2/�0 = 7 K/35 K = 0.2 [25], of the ratio between the
half-height temperature of the one-triplon intensity and the
size of the one-triplon gap. The conventional discussion of
this material is phrased using 1/j ′, with the phase transition
occurring at 1/j ′

c = 0.675 [96] and the best estimates of 1/j ′
(=0.635 [22,97]) falling within 5% of this value. While it is
tempting to place SrCu2(BO3)2 directly on Fig. 16, where the
ratio of 0.2 corresponds to j ′ = 1.42 and therefore lies very
close to the transition, finding the limiting value of T1/2/�0

for the Shastry-Sutherland system, analogous to that obtained
here for the fully frustrated ladder, will require detailed
calculations in a 2D model. In a very recent and exciting
development [98], an applied pressure has been used to drive
the SrCu2(BO3)2 system through the quantum phase transition,
i.e., to push j ′ across j ′

c, which raises the possibility of
detailed thermodynamic and spectral-weight measurements as
a function of the proximity, δj ′ = |j ′ − j ′

c|/j ′
c, to the transition.

D. High-temperature spectra

We conclude the analysis of our numerical results by
discussing the situation at high temperatures. The results of
Fig. 8 for the limit T → ∞ are shown in Fig. 17 in the form
of logarithmic intensities for the wave vector k‖ = π . For the
fully frustrated ladders [Figs. 17(a)–17(f)], as noted in Sec. III,
there are always special energies where the dynamical structure
factor has a high spectral weight. This is a consequence of the
discrete support, i.e., the T = 0 spectrum of nondispersive
bound-state energy levels arising from a hierarchy of n-triplon
clusters, and of the matrix elements associated with transitions
between these states [Appendix B]. For the unfrustrated ladder
[Figs. 17(g) and 17(h)], this weight is spread out completely
over the available states, which form continuous energy bands,
but a plateau structure emerges in both the symmetric and
antisymmetric channels. These plateaus may be ascribed to
the scattering processes connecting sectors of different triplon
number, l, specifically 0 → 1, 1 → 2, . . . in the antisymmetric
channel and 0 → 2, 1 → 3, . . . in the symmetric channel. We
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FIG. 17. Intensity at k|| = π in (a), (c), (e), (g), and (i) the
symmetric and (b), (d), (f), (h), and (j) the antisymmetric channel,
shown as a function of energy at infinite temperature for the ladder
of Fig. 1 with coupling parameters J⊥ = 2 and J‖ = J× = 1 (a) and
(b); J⊥ = J‖ = J× = 1 (c) and (d); J⊥ = 1.45 and J‖ = J× = 1 (e)
and (f); J⊥ = 2, J‖ = 1, and J× = 0 (g) and (h); J⊥ = 2, J‖ = 1,
and J× = 0.9 (i) and (j). The lines show ED data calculated for
the specified system sizes with a Lorentzian broadening η = J‖/20;
the grey shading shows binned data obtained from calculations on a
ladder of 10×2 spins with η = 0.

note that these processes are not symmetrical in energy, but that
the reverse processes start to contribute at higher temperatures,
and in fact dominate the low-energy response once many

thermally occupied states are available to give up their
energy.

Figure 17 may also be used to discuss the intrinsic line
shape of the spectral features in spin ladders as a consequence
of their frustration. To remove the effects of the Lorentzian
broadening (η = J‖/20) used in Figs. 3 to 13, we have summed
the weights of all the poles, meaning the coefficients of all the
δ-functions obtained in Eq. (3) in the limit η = 0, in bins of
sizes �ω/J‖ = 0.006, . . . , 0.015 (depending on the specific
ratio j ′) and we present the resulting histograms for ladders
of L = 10 rungs as the grey shaded regions in Fig. 17.
Focusing on the antisymmetric channel (k⊥ = π ), we observe
that in fully frustrated ladders [J× = J‖, Figs. 17(b), 17(d),
and 17(f)] the dominant modes of the dynamical spectral
function (Sec. IV A) remain as δ-functions up to T = ∞.
This complete absence of thermal broadening is due to
the complete flatness of the band, which is in one-to-one
correspondence with the conservation of every rung spin, in the
fully frustrated ladder. Figure 17(j) shows that a detuning of the
frustration to J× = 0.9 J‖ smooths the spectral function: the
previously sharp lines are now subject to thermal broadening,
which gives them an intrinsic line width, on the order of
0.1 J‖, in approximate agreement with the band width in
this case. Considering finally the unfrustrated ladder [J× = 0,
Fig. 17(h)], here the lines also disappear completely from the
binned data, leaving only the same broad plateaus observed in
the spectral function with Lorentzian broadening. We note also
that the Lorentzian broadening gives rise to high-frequency
tails in the spectral functions, which may be considered as
artifacts by comparison with the much more rapid decay
towards high frequencies found in the intrinsic line shape
(again we remind the reader of the logarithmic scale on
the intensity axes). Similar effects are also observed in the
binned data at finite temperatures, 0 < T < ∞ (not shown);
the examples shown in Fig. 17 for T = ∞ represent the upper
limit on intrinsic thermal broadening.

E. Experiment

Finally, we close our discussion of the thermal redistribu-
tion of spectral weight in the dynamical structure factor of
frustrated systems by considering the experimental situation.
To the best of our knowledge, no material has yet been
identified with the effective magnetic Hamiltonian of the
fully frustrated spin ladder. However, many low-dimensional
frustrated quantum magnets are known and many have very
narrow excitation bands as a consequence of their frustration.
Thus we expect our results to serve as a valuable paradigm
for understanding the thermodynamic [34] and dynamical
response of frustrated quantum spin systems.

Our primary motivation for this study was the anomalously
rapid loss of spectral weight in the one-triplon excitation as
a function of temperature, and we have identified the prox-
imity to a quantum phase transition, with its accompanying
plethora of multiparticle bound states, as a strong source of
such behavior. However, it is not the only possible origin
of anomalous effects on spectral weights, and a complete
interpretation requires an account of other factors. The ma-
jority of low-dimensional quantum magnets have additional
“anisotropic” terms in the magnetic Hamiltonian beyond the
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Heisenberg interaction. A good example is the spin-chain
material Cu(C6D5COO)2 · 3D2O (Cu-benzoate), where the
anomalous opening of a gap in an applied magnetic field [99]
was explained by the presence of Dzyaloshinskii-Moriya (DM)
interactions and g-tensor anisotropy [100,101]. Electron spin
resonance (ESR) studies of Cu-benzoate [102–104], KCuGaF6

[105], and Cu-pyrimidine dinitrate [66,106] report spectral
weights that vanish rapidly with increasing temperature even
in the absence of frustrating interactions, and these have been
ascribed to the presence of breather and soliton modes in
the effective quantum sine-Gordon model [100,101] for the
material. Although no comparison of the field-induced gap
with the temperature has yet shown that the thermally induced
loss of ESR spectral weight is truly anomalous, the presence
of additional modes arising due to spin anisotropy in the
Hamiltonian does serve as an additional possible route to rapid
thermal decay. Similar thermal effects are thought to be present
in the strong-leg ladder material (C7H10N)2CuBr4 (DIMPY)
[107].

The archetypal perfectly frustrated quantum magnet, whose
dynamical response at finite temperature motivated this work,
is the 2D material SrCu2(BO3)2. This system has complete
frustration in its Shastry-Sutherland geometry, a very flat
one-triplon excitation, and also possesses significant DM
interactions, ensuring a degree of anisotropy in spin space.
Here we have shown that fully frustrated spin interactions
have a pronounced effect in creating multi-triplon bound
states, whose presence causes a significant damping and
redistribution of the one-triplon spectral weight even at low
temperatures. One of our primary findings is that this effect
is dramatically stronger near the quantum phase transition out
of the rung-singlet state, where many multiparticle excitations
with anomalously low energies come to dominate the response
of the system. It is known that SrCu2(BO3)2 lies close to this
transition in the Shastry-Sutherland model, which occurs at the
ratio 1/j ′ ≡ Js/Jr � 0.675 [96] of the square-lattice and rung
couplings, and thus we strongly suspect that the emergence
of many low-lying multi-triplon bound states is precisely the
physics of this material. We point out that the measured decay
rate of the one-triplon band intensity with temperature [24,25],
compared with calculations for the Shastry-Sutherland model
exactly analogous to Fig. 15, could be used to estimate
very accurately the proximity, δj ′, of SrCu2(BO3)2 to the
critical point. Whether or not these generic properties of
a fully frustrated, SU(2)-symmetric model are enhanced by
DM interactions in causing the near-total destruction of the
one-triplon mode at T ≈ �/3 in SrCu2(BO3)2 will require
detailed analysis of anisotropic models.

V. SUMMARY

The dynamical response of low-dimensional quantum
magnets presents a major challenge both to theoretical under-
standing and to the most advanced numerical methods. This is
particularly true for highly frustrated spin systems, which are
characterized by an almost flat one-triplon excitation band at
zero temperature, where little insight is available either into
the temperature dependence of this single-particle dispersion
or into the multiparticle dynamics developing at finite temper-
ature. We have investigated these questions using the example

of the frustrated two-leg spin ladder and we present systematic
numerical results from exact diagonalization for the dynamic
structure factor as a function of temperature, coupling ratio,
and degree of frustration.

We find that the fully frustrated system has a discrete spec-
trum of excitations. As the temperature is increased, spectral
weight is transferred out of the one-triplon band to levels at a
wide range of energies, including those below the one-particle
gap; these are the energy levels of highly localized bound
states involving clusters of multiple neighboring triplons.
Close to the quantum phase transition at j ′

c = 1.4015, the
bound states lie very low in energy, they involve very large
numbers of triplets, and the weight transfer is anomalously
rapid. These many-particle excitations are extended objects
and, as a consequence of the discrete spectrum, they persist as
sharp spectral features even to infinite temperatures.

One may ask whether these two remarkable qualitative
features, the rapid transfer of spectral weight at temperatures
much lower than the one-triplon gap and the persistence of
well-defined peaks at very high temperatures, are connected.
In principle, the rapid transfer of spectral weight depends
on having a large number of low-lying energy levels in
the spectrum, whereas the well-defined peaks are a specific
consequence of having completely flat (localized) bands.
However, it remains an open question whether a truly high
density of low-lying states could be achieved in a system with
(weakly) dispersive bands or lacking an exact convergence
of levels at a quantum phase transition, and the rate of
spectral-weight transfer in such cases may be limited.

Nevertheless, the first of these remarkable features offers
an explanation for the qualitative physics underlying the
observation by inelastic neutron scattering studies of the low-
dimensional frustrated material SrCu2(BO3)2 that the intensity
of the one-triplon band is completely dispersed to states at all
energies even at temperatures only 1/3 of its gap. The second
of these features, namely the persistence of sharp excitation
peaks at high temperatures in a fully frustrated system, remains
to be investigated in experiment.
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APPENDIX A: MULTI-TRIPLON BOUND STATES

The dynamical structure factor [Eq. (3)] is obtained from the
action of local spin-raising and -lowering operators. Analytical
insight into its nature for the fully frustrated ladder begins
from the expression of the bound states in the basis of triplons
(one-rung triplet excitations). As noted in Sec. II, in the case
where the frustrating couplings j ′ = J⊥/J‖ = J⊥/J× � j ′

c �
1.4015, two triplons on neighboring rungs form an exact
bound state. This bound state consists of a singlet, which we
denote |2s〉, with energy E2s/J‖ = 2(j ′ − 1), a triplet, denoted
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|2t,m〉, m = −1, 0, 1, with energy E2t /J‖ = 2j ′ − 1, and a
quintet, |2q,m〉, m = −2, −1, . . . , 2, with E2q/J‖ = 2j ′ + 1.
In the basis |mi,mi+1〉, mi = −1, 0, 1, of two triplons on
neighboring rungs, the nine components of the bound state are
straightforward linear combinations of the nine two-triplon
states. Omitting the rung indices and denoting m = −1 by 1,
these are

|2q,2〉 = |11〉, |2q,1〉 = 1√
2
(|10〉 + |01〉),

|2q,0〉 = 1√
6
(|11〉 + 2|00〉 + |11〉),

|2t,1〉 = 1√
2
(|10〉 − |01〉), (A1)

|2t,0〉 = 1√
2
(|11〉 − |11〉),

|2s〉 = 1√
3
(|11〉 − |00〉 + |11〉),

and symmetrically for the states |2q,−1〉, |2q,−2〉, and
|2t,−1〉.

In the same way, the 27 components of states with three
triplons on neighboring rungs also form a set of multiplets,
or effective three-triplon bound states. Diagonalizing the
three-rung Hamiltonian in the different Sz sectors yields
the energies E3h/J‖ = 3j ′ + 2 (heptet, |3h,m〉), E3qa/J‖ =
3j ′ + 1 (quintet, |3qa,m〉), E3ta/J‖ = 3j ′ (triplet, |3ta,m〉),
E3qb/J‖ = E3tb/J‖ = 3j ′ − 1 (degenerate quintet, |3qb,m〉,
and triplet, |3tb,m〉), E3s/J‖ = 3j ′ − 2 (singlet, |3s〉), and
E3tc/J‖ = 3j ′ − 3 (triplet, |3tc,m〉). We draw attention to the
fact that the lowest-lying state of the multiplet is a triplet, and
that this is a generic property of all odd-length multi-triplon
clusters [34,65]. The wave functions of these states may be
expressed as

|3h,3〉 = |111〉,
|3h,2〉 = 1√

3
(|110〉 + |101〉 + |011〉),

|3h,1〉 = 1√
15

(2|100〉 + 2|010〉 + 2|001〉
+ |111〉 + |111〉 + |111〉),

|3h,0〉 = 1√
10

(|101〉 + |011〉 + |110〉
+ 2|000〉 + |110〉 + |011〉 + |101〉), (A2)

for the heptet, with symmetrical expressions for m = −1, −2,
and −3,

|3qa,2〉 = 1√
2
(|110〉 − |011〉),

|3qa,1〉 = 1
2 (|100〉 + |111〉 − |111〉 − |001〉), (A3)

|3qa,0〉 = 1
2
√

3
(2|101〉 − |011〉 − |110〉

+ |110〉 + |011〉 − 2|101〉),
|3qb,2〉 = 1√

6
(|110〉 − 2|101〉 + |011〉),

|3qb,1〉 = 1
2
√

3
(|100〉 − 2|010〉 + |001〉

− |111〉 + 2|111〉 − |111〉),
|3qb,0〉 = 1

2 (|110〉 − |011〉 − |110〉 + |011〉), (A4)

for the quintets,

|3ta,1〉 = 1√
3
(|010〉 − |111〉 − |111〉), (A5)

|3ta,0〉 = 1√
3
(|000〉 − |101〉 − |101〉),

|3tb,1〉 = 1
2 (|100〉 − |001〉 − |111〉 + |111〉), (A6)

|3tb,0〉 = 1
2 (|110〉 − |011〉 − |011〉 + |110〉),

|3tc,1〉 = 1
2
√

15
(−3|100〉 + 2|010〉 − 3|001〉

+ |111〉 + 6|111〉 + |111〉),
|3tc,0〉 = 1

2
√

15
(−2|101〉 + 3|011〉 + 3|110〉

− 4|000〉 + 3|110〉 + 3|011〉 − 2|101〉), (A7)

for the triplets, and

|3s〉 = 1√
6
(|101〉 + |011〉 + |110〉

− |110〉 − |011〉 − |101〉) (A8)

for the singlet.
One may continue the process for all higher-n multiplets.

Results for n = 4 are obtained most readily by numerical
diagonalization of the four-site Haldane chain with open
boundary conditions (Sec. II) [34]. We do not find strong
contributions from four-triplon bound states in the dynamical
response and do not enter into further detail here. We note
only that the two lowest-lying states of the multiplet are a total
singlet with energy E1

4s/J‖ = 4j ′ − 4.64575 and a triplet with
E1

4t /J‖ = 4j ′ − 4.13658, with the singlet the lowest level as
for all even-n bound states.

APPENDIX B: DYNAMICAL SPECTRAL FUNCTION

We consider the analytical calculation of the contributions
from small-n bound states to the dynamical spectral function
in the antisymmetric channel. In its most general form,

Sαβ (q,ω,T ) =
∑

ij

pi〈i|Sα
q |j 〉〈j |Sβ

q |i〉δ(ω − Ej + Ei), (B1)

where |i〉 and |j 〉 denote the initial and final states of
the scattering process. For a system with a Heisenberg
Hamiltonian [preserving SU(2) symmetry], Sαβ(q,ω,T ) obeys
the symmetries Sxx = Syy = Szz = S+− = S−+, and here
it is most straightforward to obtain Szz (3) from S+−.
The form of Eq. (3) is obtained by considering the delta
function as πδ(E) = limη→0 Im[E − iη]−1. The temperature
dependence of the dynamical spectral function is contained
within the energy δ-function and in the probability function
pi = e−Ei/T /Z(T ) for the occupation of the initial state.

In this Appendix, we specialize to the case of the dynamical
structure factor for inelastic neutron scattering. In the highly
restricted single-rung basis, a neutron spin-flip changes both
the S and Sz quantum numbers by ±1, also changing the
rung parity, and therefore the corresponding Sαβ appears
exclusively in the antisymmetric channel (Secs. III and IV). An
incident neutron may either alter the triplon number, explicitly
changing the state of the ladder between two different sectors
with l and l + 1 triplons, or may cause excitations within single
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bound-state multiplets of n � 2. Because the latter require
higher activation energies [Ei in Eq. (B1)] than processes with
zero or one initial triplons, they are significantly weaker and
will not be considered explicitly here. As noted above, we also
restrict our presentation to the fully frustrated ladder, where
the fact that the band energies are completely independent of
the wave vector, k‖, means that the real-space matrix elements
provide the full information required. Thus we may consider
only the action of a neutron incident on a single ladder rung,
whose scattering matrix element from the zero- to the one-
triplon sector (0 → 1) is given by M = 〈1|S+|0〉, to deduce
the relative intensities of all higher processes (l → l + 1).

The calculation of S+−(q,ω,T ) for these cases proceeds
directly from the wave functions specified in Eqs. (A1)–(A8).
The case 1 → 2 involves scattering of a neutron incident on
a singlet rung, one of whose neighbors is a triplon. The final
state of these two ladder rungs is then one of the bound states
of two triplons specified in Eq. (A1). The probability of finding
a suitable initial state with an isolated triplon on site i + 1 is
given by

2pi(T ) = 2pt (T )ps(T ) = 2e−J⊥/T /Z, (B2)

where pt = e−J⊥/T is the probability for a rung triplon excita-
tion, ps ≡ 1/Z is the (temperature-dependent) probability of
the neighboring rung to be in its singlet (i.e., unexcited) state,
and the factor of 2 is for the two possible processes of exciting
the neighboring rung singlet.

In the basis of rung quantum numbers, a singlet excited to
the triplet state with mi = 1, and with a triplet of arbitrary
mi+1 located at site i + 1, results in the two-rung states |1,1〉,
|1,0〉, and |1,1〉. Clearly, the first is identically the two-rung
state |2q,2〉, the second may be part of the state |2q,1〉 or |2t,1〉
[each, from Eq. (A1), with probability 1/2], and the third may
be part of the states |2q,0〉, |2t,0〉, or |2s,0〉 (with respective
probabilities 1/6, 1/2, and 1/3). In the basis of multiplet
quantum numbers, one finds the conventional, less restrictive
selection rules for neutron scattering, �S = �Sz = 0,±1. The
contributions of one- to two-triplon scattering processes to the
dynamical structure factor are then

S+−
|1t〉→|2q,2〉(q,ω,T ) = 2pt (T )ps(T )|M|2δ(ω−J −J ′),

S+−
|1t〉→|2q,1〉(q,ω,T ) = pt (T )ps(T )|M|2δ(ω−J −J ′),

S+−
|1t〉→|2q,0〉(q,ω,T ) = pt (T )ps(T )|M|2δ(ω−J −J ′),

S+−
|1t〉→|2t,1〉(q,ω,T ) = 1

3pt (T )ps(T )|M|2δ(ω−J +J ′),

S+−
|1t〉→|2t,0〉(q,ω,T ) = pt (T )ps(T )|M|2δ(ω−J +J ′),

S+−
|1t〉→|2s,0〉(q,ω,T ) = 2

3pt (T )ps(T )|M|2δ(ω−J +2J ′), (B3)

all independent of the neutron wave vector, q. We note
in addition that these expressions contain, as specified in
Eq. (B1), no explicit dependence of the intensity on the
final-state energy, and thus all the branches of each n-triplon
bound state have similar probabilities in the same sector
(differing only by the coefficients in their wave functions).
We draw attention to the fact that, although the scattering
energy, ω, in Eqs. (B3) can become negative for |1t〉 → |2s,0〉
processes in the range j ′

c < j ′ < 2, the excitation energy for
the initial state remains positive; this is indeed the dominant

process observed in Secs. III and IV to gain spectral weight at
finite temperatures.

A similar exercise can be applied to deduce the probabilities
of the two-triplon bound states and, with an additional
excited triplet, their overlap with the three-triplon bound states
[Eqs. (A2)–(A8)], to obtain the complete contribution to the
dynamical structure factor from 2 → 3 processes. Although
some of these are visible in our results at intermediate
temperatures, as discussed in Sec. IV, their contributions
remain small compared to 1 → 2 processes. Thus their energies
are visible but their intensities are difficult to characterize
quantitatively, and so we do not perform the spectral-weight
calculation explicitly here.

APPENDIX C: FINITE-SIZE ANALYSIS OF
THE ONE-TRIPLON SPECTRAL WEIGHT

We consider the finite-size effects in our calculation of
Szz(k‖ = π,k⊥ = π,ω) close to the critical point, j ′

c, of the
fully frustrated ladder (J× = J‖). Among all of the features
studied, the spectral weight of the one-triplon excitation,
appearing at ω = J⊥, exhibits the most severe finite-size
effects, and so we focus on this quantity. At T = 0, the pole at
ω = J⊥ in Szz(k‖,k⊥ = π,ω) has a weight of 1/2, irrespective
of the ladder length, whence finite-size effects appear only for
T > 0. Also at high T , any dependence of our results on the
system size is weak and as a consequence we may restrict our
focus further to the region of low but finite temperatures.

The primary problem in the calculation of the spectral
weight is caused by the presence of the intruder states
discussed in Sec. II and illustrated in Fig. 2. For coupling
ratios j ′ = 1.45 and 1.42, the spurious Haldane ground state
lies below the first true excitation of the rung-singlet phase
for ladders with L � 14 rungs, as shown by the symbols in
Fig. 2. Nevertheless, this state is nondegenerate, whereas the
true low-lying excitations are at least L-fold degenerate, and
thus we will find that systems with L � 14 rungs are in fact
sufficient to approximate the thermodynamic limit.

Figure 18 shows the case j ′ = 1.45. As a gauge of the
temperatures at which finite-size effects matter, the L = 6
ladder can be considered as converged to the thermodynamic
limit for T/J‖ � 0.5 and the L = 10 ladder as a good
approximation to the infinite system for T/J‖ � 0.35. At
lower temperatures, our data for ladders of L = 12 and 14
rungs show that finite-size effects remain visible, but that
corrections between L = 10 and 14 are small (of order 5%)
and converging. Overall, the largest available system presents
a reasonable approximation to the thermodynamic limit for
each temperature shown in Fig. 18.

Figure 19 shows the case j ′ = 1.42, where the coupling
ratio approaches the critical point. Because the finite-size
critical value for the L = 6 ladder is j ′

c = 1.436, j ′ = 1.42
lies on the rung-triplet side of the transition for this system
and the low-energy spectrum is completely different from
the rung-singlet side; the L = 6 data must therefore be
excluded from the analysis of j ′ = 1.42. In this case, the
L = 10 ladder remains a good approximation to the infinite
system for T/J‖ � 0.3. The situation at temperatures below
T/J‖ � 0.25 cannot be said to approach convergence for
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FIG. 18. Dependence on temperature of the weight of the one-
triplon pole in the dynamical structure factor calculated for fully
frustrated ladders of sizes 6 � L � 14 rungs and with couplings
J⊥ = 1.45 and J‖ = J× = 1.

ladders up to L = 14. If one were to analyze the onset of
the drop in spectral weight, which the L = 14 ladder places in
the region 0.02 � T/J‖ � 0.04, this would in all probability
underestimate the temperature scale that would be extracted
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FIG. 19. Dependence on temperature of the weight of the one-
triplon pole in the dynamical structure factor calculated for fully
frustrated ladders of sizes 8 � L � 14 rungs and with couplings
J⊥ = 1.42 and J‖ = J× = 1.

from studies of longer ladders. However, for the temperature
scale T1/2 discussed in the main text, both the 12- and even
10-rung ladders appear to provide a satisfactory approximation
to the thermodynamic limit, T1/2 ≈ 0.225 J‖.
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[12] Ch. Rüegg, B. Normand, M. Matsumoto, Ch. Niedermayer, A.
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[81] I. Pižorn, V. Eisler, S. Andergassen, and M. Troyer, New J.

Phys. 16, 073007 (2014).
[82] B. Lake, D. A. Tennant, J.-S. Caux, T. Barthel, U. Schollwöck,
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Panagopoulos, S. S. Saxena, M. Ellerby, D. F. McMorrow,
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