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Resistivity minimum in granular composites and thin metallic films
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We analyze the temperature dependence of conductivity in thick granular ferromagnetic compounds NiSiO2 and
in thin weakly coupled films of Fe, Ni, and Py in the vicinity of the metal-to-insulator transition. Development of a
resistivity minimum followed by a logarithmic variation of conductivity at lower temperatures is attributed to the
granular structure of compounds and thin films fabricated by conventional deposition techniques. The resistivity
minimum is identified as a transition between temperature dependent intragranular metallic conductance and
thermally activated intergranular tunneling.
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I. INTRODUCTION

A number of universal features are demonstrated by a vari-
ety of materials in the vicinity of the metal-to-insulator transi-
tion. One of them is the existence of the resistivity minimum at
temperature Tmin, usually followed by a logarithmic increase
of resistivity with decreasing temperature. The effect was ob-
served in numerous thin, considered as two-dimensional (2D),
and thick, considered as three-dimensional (3D), crystalline
and amorphous normal metals [1–3]; paramagnetic and ferro-
magnetic materials [4–8], and superconductors in their normal
state [9,10]. Historically, the phenomenon of a resistivity
minimum associated with a very small amount of paramagnetic
impurities in crystalline and amorphous alloys was understood
as arising from the spin flip scattering of conduction electrons
off the local magnetic moments, randomly distributed in the
alloys [11]. Within the accepted Kondo theory, the minimum is
suppressed with increasing impurity concentration and finally
washed out as magnetic ordering sets in, since magnetic order-
ing of the local spins destroys the freedom of the spin to flip, the
basic mechanism needed to have a resistivity minimum. Thus,
observation of the effect in ferromagnetic materials below
the magnetic ordering temperature [4–8] raised a question of
fundamental conceptual importance: since magnetic ordering
destroys the Kondo explanation, what then is the source of the
observed resistivity minimum? While much work was done in
attempts to settle the Kondo model with macroscopic ferro-
magnetism [12,13], it was noted by Cochrane et al. [6] that the
logarithmic dependence of resistivity below Tmin in different
ferromagnetic materials fabricated by different methods by
different groups was totally unaltered by application of a high
magnetic field and thus might be not related to magnetism
at all.

The next round of interest to the effect came with prediction
and observation of quantum corrections to resistivity of disor-
dered materials: weak localization and electron-electron inter-
actions [14,15]. Both mechanisms predict similar logarithmic
temperature dependence of conductivity, but in 2D cases only.
Experimentally, not only thin disordered films but also thick
3D granular materials in the vicinity of the metal-to-insulator
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transition were found to demonstrate the logarithmic temper-
ature variation of resistivity. It was suggested by Deutscher
et al. [16] that although thick granular films are ostensibly 3D,
they consist of a labyrinth structure in which the metal matrix
has a connectivity determined by many tenuous links that may
be only a few nanometers wide; such a structure is neither
one-dimensional (1D) nor 3D, and its fractal dimensionality
close to the percolation threshold may be described as 2D.
While questionable for 3D cases, observation of a resistivity
minimum followed by the logarithmic temperature depen-
dence in thin films is now commonly attributed to the onset of
quantum corrections [17–24].

The last, so far, interpretation of the logarithmic tempera-
ture dependence of conductivity was suggested by Efetov and
Tschersich [25,26] for granular materials both in 2D and 3D
structures. As a reminder, granular materials in this context
are defined as metal-insulator composites below a geometrical
percolation threshold where metal grains with bulk lattice
structure are surrounded by a thin insulator layer. Granular
structures should be distinguished from random composites
where both metallic and insulator phases play a symmetric
role. A rule has been proposed [27] that the structure of
thick composite films containing several layers of grains
is granular when the insulator is amorphous and random
when it is crystalline. Granular composite films composed
of metallic grains coated by an amorphous insulator reach
the percolation threshold at a higher value of metal volume
content, on the order of 50% or more. The threshold value in 3D
random composites is close to 20%, the value predicted for a
random continuum. Following Efetov and Tschersich [25,26],
resistivity of granular material depends on intergranular
tunneling conductance. One defines the normalized tunneling
conductance gt = Gt

G0
, where Gt is the tunneling conductance

and G0 = e2

�
= 2.43 × 10−4�−1 = 1

4.108 k�
is the quantum

conductance. The theory is applicable under the condition
gg � gt, where gg = Gg

G0
is the normalized intragranular

conductance, with Gg being the intragranular conductance,
and thus assumes that tunneling intergranular conductance
dominates the overall transport properties. Depending on
strength of intergranular tunneling, one distinguishes two
cases: weakly insulating and strongly insulating. The weakly
insulating regime occurs in granular systems with intergranular
tunneling conductance exceeding the quantum conductance
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gt > 1 and is characterized by a logarithmic dependence of
conductivity on temperature,

σ = σ0(1 + C ln T ), (1)

both in 2D and 3D materials, where σ0 is the classical global
Drude conductivity. The strongly insulating range is ascribed
to tunnel junction conductance smaller than the quantum
conductance gt < 1 and is characterized by an exponential
variation of conductivity with temperature as

σ = σ0exp[(−B/T )n], (2)

where n can be different from 1 due to, e.g., distribution of
grain sizes. It is important to emphasize that the meaning of
weakly and strongly insulating granular systems in this context
is different from the usually accepted terminology of weak and
strong localization. The model is calculated for temperatures
high enough to suppress the effects of weak localization,
intragranular energy level spacing, and Coulomb blockade.

As mentioned above, the transport phenomena described
by the model [25,26] are implemented in regime gg � gt.
It is an open question whether the regime with gg � gt can
exist in granular materials. The temperature coefficient of
intragranular metallic conductivity is negative, while that
of the intergranular tunneling one is positive. Tunneling
conductivity of a monoatomic insulator layer at elevated
temperatures in densely packed granular structures can be
quite high, exceeding the intragranular conductivity. One can
then envision the state at which gt(T ) intersects with gg(T )
with gg(T ) > gt(T ) at temperatures below the intersection and
gg(T ) < gt(T ) above. The intersection would be marked by the
local maximum of conductivity or minimum of resistivity.

The problem is intertwined with another one: how to de-
termine whether the system is above or below the geometrical
percolation threshold? It is generally accepted that composite
material demonstrating a negative resistivity temperature
coefficient at room temperature is below the geometrical per-
colation threshold. Namely, the metallic component does not
generate an infinite continuous conducting cluster extending

across the entire sample but is interrupted by the insulator
partitions. A negative resistivity temperature coefficient is due
to thermally assisted tunneling across insulating partitions
that have a higher resistance than that of metallic clusters.
It is equally accepted that composite material demonstrating a
positive temperature resistivity coefficient at room temperature
is above the percolation threshold, and current flows along
an infinite metallic path uninterrupted by the insulator phase.
However, if thickness of the insulator coating is on the order of
a monolayer, its resistance at elevated temperature can be lower
than that of the metallic cluster it embeds. In this case, the total
observable resistance of a sample below percolation threshold
would be that of the metallic clusters, despite their finite size.
The question then becomes: can a composite material demon-
strating a positive resistivity temperature coefficient at room
temperature be below the geometrical percolation threshold?

This paper is an attempt to elucidate the physical meaning
of the resistivity minimum in metal-insulator mixtures and
in thin, weakly coupled films composed of a single metal,
with no artificial addition of insulating material, fabricated
by conventional deposition techniques. Ferromagnetic metals
were chosen to avoid the Kondo-type phenomena. We find
that 3D Ni-SiO2 mixtures and thin weakly coupled ferro-
magnetic films of iron, nickel, and permalloy demonstrating
a resistivity minimum are well described by the model of
Efetov and Tschersich [25,26] below Tmin and can therefore
be considered topologically granular below the geometrical
percolation threshold. We identify the resistivity minimum
as the transition between regimes dominated by temperature
dependent intragranular metallic conductance above Tmin and
thermally activated intergranular tunneling below Tmin.

II. RESULTS AND DISCUSSION

A. NiSiO2

We start with Nix(SiO2)1−x mixtures fabricated by e-beam
codeposition of Ni and SiO2 from two separate crucibles.
Figure 1 presents transmission electron microscopy (TEM)

FIG. 1. TEM images of Nix(SiO2)1−x films grown by e-beam codeposition with Ni concentration x = 0.5 (a), and 0.8 (b). Dark areas are
crystalline Ni; light are amorphous SiO2.
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FIG. 2. Normalized resistivity of 200-nm-thick Nix(SiO2)1−x

films as a function of temperature for several Ni volume concen-
trations x: 0.22, 0.24, 0.26, 0.48, and 0.72. Resistivity is normalized
by its room temperature value.

images of two 10-nm-thick samples with Ni volume concen-
trations x = 0.5 [Fig. 1(a)], and 0.8 [Fig. 1(b)]. Ni and SiO2

are mutually immiscible and form a typical granular structure
with crystalline Ni and amorphous SiO2 totally or partially
encapsulating Ni clusters. Ni clusters are polycrystalline
composed of 3–5-nm Ni crystallites. The Ni0.5(SiO2)0.5 sample
[Fig. 1(a)] is clearly below Ni continuity threshold with
metallic clusters of 5–10-nm diameter embedded within thick
amorphous SiO2. Metallic clusters grow with Ni concentration,
while the volume occupied by SiO2 shrinks to narrow finite
channels. Visual examination of Fig. 1(b) does not allow one to
judge whether Ni forms a continuous infinite cluster, because
TEM resolution is not sufficient to identify monolayer-thick
SiO2 partitions and estimate their continuity.

We turn now to transport measurements. Films studied
here were 200 nm thick and can be considered 3D [28].
Figure 2 is a general presentation of Nix(SiO2)1−x resistivity
as a function of temperature for samples with several Ni
volume concentrations. Resistivity of samples is normalized
to their room temperature value. The resistance behavior
changes gradually from a purely metallic (resistivity decreases
with decreasing temperature and saturates to the remnant
value in the low temperature limit) in samples with high Ni
concentration (x = 0.72), to the insulating one in samples with
reduced Ni content showing a negative resistivity temperature
coefficient α = 1

ρ

dρ

dT
< 0 in the entire temperature range

between 1.5 K to room temperature (x = 0.22). Intermediate
samples have a resistivity minimum at temperature Tmin, with
α < 0 at temperatures below Tmin and α > 0 above Tmin. The
feature is illustrated in Fig. 3 for a number of samples with
Ni volume concentrations between x = 0.3 to x = 0.55. Here,
the resistivity is normalized by its value at Tmin. Below Tmin,

resistivity varies as the logarithm of temperature. Appearance
of a resistivity minimum in Nix(SiO2)1−x does not depend on
the fabrication method; it was also observed in Nix(SiO2)1−x

films prepared by rf magnetron sputtering [29].

FIG. 3. Resistivity as a function of logarithm of temperature and
resistivity minima in Nix(SiO2)1−x samples with Ni concentration
x: 0.3, 0.35, and 0.55. The data are normalized by the minimum
resistivity.

Following Refs. [25] and [26], conductivity of a granular
material below the percolation threshold can be described
either by Eq. (1) in the weakly insulating regime or by
Eq. (2) in the strongly insulating regime. Figure 4 illustrates a
gradual change of the conductivity temperature dependence
with reducing metal content. The same data are analyzed
either as conductivity versus the logarithm of temperature
[Eq. (1)], left column, or as the logarithm of conductivity
versus T −n, with n = 1/2 or n = 1/4 [Eq. (2)], right column.
Samples demonstrating a resistivity minimum (conductivity
maximum), Fig. 4(a), follow the logarithmic temperature
dependence at temperatures below Tmin and, as such, can be
classified as belonging to the weakly insulating granular range.
On the other hand, high resistivity samples with low Ni content,
demonstrating a monotonic decrease of conductivity with
decreasing temperature, are well presented by the exponential
dependence [see Fig. 4(f) with n = 1/4] and can be classified
as strongly insulating. An exact determination of the power
index n, 1/2, or 1/4, is rather ambivalent since changes in
conductivity are not sufficiently large. Intermediate samples
showing a transition between logarithmic to exponential
thermal dependence [Figs. 4(b) and 4(e)] correspond to the
transition range between the weakly and strongly insulating
regimes. Following the terminology of Refs. [25,26], samples
can be characterized by their normalized conductance, esti-
mated as g = (ρ/a)−1/G0, where ρ is resistivity and a is an
average metallic cluster size. For a = 10 nm, the calculated
values are g ≈ 20 for the sample, with concentration x = 0.55
[Figs. 4(a) and 4(b)], demonstrating a resistivity minimum
and logarithmic conductance; g ≈ 10−3 for the strongly
insulating sample x = 0.22 [Figs. 4(e) and 4(f)] showing
exponential conductance; and g ≈ 0.3 for the intermediate
sample x = 0.26 [Figs. 4(c) and 4(d)]. This estimation is
in very good agreement with the theory predicting transi-
tion between the logarithmic and exponential behaviors at
g = 1.

Up to not very high temperatures, resistivity of samples
demonstrating resistivity minimum and logarithmic variation
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FIG. 4. Conductivity versus logarithm of temperature, left column, and logarithm of conductivity versus T −n with n = 1/2 (lower axis)
and n = 1/4 (upper axis), right column, for Nix(SiO2)1−x samples with x = 0.55 (a, b), x = 0.26 (c, d), and x = 0.22 (e, f). g is the calculated
normalized conductivity.

of conductance below Tmin can be presented as

ρ(T) = ρ0 + aT ν − Aρ2
0 ln T , (3)

where ρ0 is the remnant zero temperature resistivity, aT ν is
the major thermally dependent scattering term, and the last
logarithmic term is obtained from Eq. (1), assuming that
conductivity does not change significantly at low temperatures:
(σ0 − σ )/σ0 � 1. Upon minimization, we obtain

Tmin =
(

A

aν

) 1
ν

(ρ0)
2
ν . (4)

Figure 5 presents Tmin as a function of ρmin. (We assume
ρmin ≈ ρ0). The dependence is linear, which gives the power
index ν = 2. This value is consistent with classical electron-
electron scattering usually found in bulk ferromagnetic mate-
rials [30].

Thus, resistivity of samples demonstrating a resistivity
minimum can be understood as a superposition of temperature
dependent intragranular resistivity, typical for ferromagnetic
materials, and thermally assisted intergranular tunneling,
while Tmin is the temperature at which a positive intra-
granular resistivity temperature coefficient equals a negative
intergranular tunneling one. The fact that the behavior of

NiSiO2 composites follows so well predictions of the granular
model implies that their structure meets the requirements of
the model: the material is composed of metallic grains or

FIG. 5. Tmin as a function of ρmin for a series of Nix(SiO2)1−x .
Solid line is a guide for the eye.
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FIG. 6. TEM images of 5-nm-thick (a) and 7-nm-thick (b) Fe films grown by RF sputtering on a carbon grid. Light areas are unfilled gaps
in between Fe clusters. Scale ruler is 10 nm (a) and 20 nm (b).

polycrystalline clusters separated by an insulating coating and
is below the geometrical percolation threshold.

B. Thin films

The physical meaning of a resistivity minimum can also be
asked for thin metallic films grown by conventional deposition
techniques. Multiple deposited materials form well-separated
islands at early fabrication stages. With the addition of
material, islands grow, gradually cover the plane, fill the voids,
and coalesce into continuous media. Gaps unfilled by material
play the same role as the insulator in granular metal-insulator
mixtures. It is well known that morphology, crystallite size,
and thickness at which conductance percolation is reached
depend on material, substrate, temperature, deposition rate,
etc. Typical morphology of thin Fe films is illustrated for 5 nm
thick [Fig. 6(a)] and 7 nm thick [Fig. 6(b)] films. Average
thickness here is defined as a total mass deposited per unit area
divided by bulk density. Dark areas are crystalline Fe, and light
areas are unfilled voids. Individual separated metallic grains
can be well identified in Fig. 6(a). Metallic clusters grow in
thicker films. However, unfilled gaps are clearly present also in
the 7-nm-thick film [Fig. 6(b)], and we might wonder whether
these voids still form an infinite cluster.

We switch to the transport properties of thin Ni, Fe, and
Py ferromagnetic films. Data shown here are representative
for multiple samples deposited by e-beam deposition or rf
sputtering on glass, GaAs, or other substrates patterned to
Hall bar geometry or having rectangular form and measured
using Van der Pauw protocol. In the following, we discuss
series of Ni and Fe films with various thicknesses and Py
films of a constant thickness where variation of resistivity
was achieved by postfabrication annealing. Ni and Fe series
with thicknesses between 2.5 and 100 nm were deposited
on room temperature substrates. A batch of 17-nm-thick Py
samples were deposited on sapphire substrates and passed a
sequence of mild annealing treatments at temperatures from
100 °C to 250 °C for periods of a few hours. Each annealing

stage gradually reduced resistivity of a sample, finally reaching
about 50% of the initial preannealing value.

Figure 7 presents the temperature dependence of resistivity
of a series of Fe films between 10 and 2.5 nm thick. Similar
to NiSiO2 composites, resistivity of single-element thin films
varies from metallic (α � 0 between room temperature and
1.5 K) in thick films to insulating (α < 0 in the entire
temperature range) in thin ones, while films of intermediate
thicknesses demonstrate a transition between α < 0 and α > 0
with a resistivity minimum at a certain temperature Tmin, as
shown in the Fig. 7 inset for a series of Fe films. In Ni and Fe
series, we observed Tmin reaching 90–100 K when thickness
was reduced from 10 to 3 nm. In the Py series, Tmin decreases
with annealing from 60 to 30 K. Below Tmin conductivity

FIG. 7. Temperature dependence of resistivity of a series of Fe
films between 10 and 2.5 nm thick. The data are normalized by room
temperature resistivity. Inset: normalized resistivity versus logarithm
of temperature for Fe films 10, 7, 6, 5, 4, and 3 nm thick. Resistivity
is normalized by ρmin.
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(a)

(b)

FIG. 8. Change of conductance as a function of temperature in
films demonstrating conductance maximum (resistance minimum):
(a) Ni films 8, 7, 5, and 4 nm thick; (b) Py film as deposited and after
several postdeposition annealing treatments. �σ = σ − σ (4.2 K).

of all series follows logarithmic temperature dependence
�σ ∝ ln T , illustrated in Fig. 8 for the Ni and Py series.

Traditionally, logarithmic dependence of conductance in
thin films is attributed to two quantum correction mechanisms:
weak localization (WE) and electron-electron interactions
(EE). In 2D, both mechanisms predict similar temperature
dependent corrections to conductance,

�σ WE
2D (T ) = α ln T , (5)

for weak localization and

�σ EE
2D (T ) = α

(
1 − 3

4 F̃σ

)
ln T (6)

for electron-electron interaction, where α = e2/2π2
� ∼=

1.23 × 10−5�−1, and F̃σ is the electron screening factor,
defined to range from 0 (no screening) to 1 (complete
screening). While the temperature dependence of the two
mechanisms is similar, their response to a magnetic field is
different: weak localization is expected to be suppressed by
quite weak fields that induce dephasing of electronic scattering
loops. We show in Fig. 9 the resistance of Fe (main panel) and
Py (inset) samples measured as a function of temperature at
several fields applied normal to the film plane. The 16 Tesla

FIG. 9. Resistivity of 4-nm-thick Fe film (main panel) measured
as a function of temperature at zero and 16-tesla (T) magnetic field
applied normal to the film plane. Inset: resistivity of Py film (after the
third annealing) measured at 0, 2, 9, and 16 T fields.

(16 T) field is a few orders of magnitude above the value
sufficient to destroy the coherent effect of weak localization
and cause the logarithmic correction to vanish. Application of
high fields does not affect Tmin. We therefore dismiss weak
localization as the mechanism responsible for the resistivity
minimum in ferromagnetic films, in agreement with previous
studies [17–19,31]. Vertical shift between the zero and high
field curves is due to a combination of magnetoresistance
mechanisms: anisotropic magnetoresistance, linear positive
magnetoresistance, and temperature dependent spin-magnon
scattering [31].

The coefficient of the logarithmic conductance dependence
is analyzed in Fig. 10. Here, the normalized logarithmic slope
of conductance 1

α
dσ

d ln T
(left axis) and the screening factor F̃σ

(right axis) are shown as a function of sheet resistance for Fe
samples 2.5–10 nm thick. The screening parameter is extracted

FIG. 10. Normalized logarithmic slope of conductance 1
α

dσ

d ln T

(left axis) and the screening factor F̃σ (right axis) as a function of
sheet resistance for Fe films 2.5–10 nm thick. Solid line is a guide for
the eye.
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(a)

(b)

FIG. 11. Normalized logarithmic temperature coefficient C =
1
σ0

dσ

d ln T
as a function of sheet resistance Rsheet (bottom axis) and

the normalized conductance g = G/G0, where G = 1/Rsheet (upper
axis), for a series of Fe (a) and Ni (b) films of various thicknesses.
Symbols indicate the experimental data, and lines are calculated for
z = 6 (solid line) and z = 4 (dotted line).

as: F̃σ = 4
3 (1 − 1

α
dσ

d ln T
). Roughly, the measured logarithmic

slopes are close to the theoretical α value. However, we observe
a clear tendency of a growing slope in thinner films with higher
sheet resistance. In thin films with resistance above 1000
�/�, the measured slope exceeds the maximum expected for
2D electron-electron corrections, and the calculated screening
factor becomes negative, which is unphysical in the framework
of the conventional model. Ni and Py series show a similar
trend. Slopes larger than predicted for 2D electron-electron
interaction were found in narrow Co nanowires [17,18] when
their width was reduced below a few hundred nanometers. The
effect was attributed to reduced dimensionality of the system
and transition from 2D to 1D regimes. Such an explanation
can be hardly accepted for our macroscopically wide films.

We analyzed our data in the framework of the granular
model. Following Ref. [32], the slope of the logarithmic
temperature dependence of conductivity C [Eq. (1)] for an
arbitrary periodic lattice is given by C = (πzg)−1, where

FIG. 12. Tmin as a function of resistivity (inset) and normalized
conductance g (main panel) for thick granular NiSiO2 samples
(crosses) and thin films of Ni (solid circles).

g is the normalized conductance and z is an average co-
ordination number (an average number of adjacent grains).
For the simple case of periodic cubic lattice z = 2d, where
d is dimensionality, however, in less ordered structures, the
effective number of neighbors might be different. Figure 11
presents the normalized logarithmic temperature dependence
coefficient C = 1

σ0

dσ
d ln T

as a function of sheet resistance Rsheet

(bottom axis) and the normalized conductance (g = G/G0,
where G = 1/Rsheet) for series of Fe [Fig. 11(a)] and Ni
[Fig. 11(b)] films of various thicknesses. Symbols indicate
the experimental data and lines are calculated for z = 6 (solid
line) and z = 4 (dotted line). Both Ni and Fe series appear
to follow well the predictions of the granular model, with an
average of six neighbors per grain.

It is interesting to compare explicitly the resistivity mini-
mum in 3D granular samples and in thin single-element films.
The inset of Fig. 12 presents the temperature of resistivity
minimum Tmin as a function of resistivity in thick 3D granular
NiSiO2 samples and in thin films of Ni. In both systems,
Tmin increases linearly with resistivity; however, resistivity of
NiSiO2 samples is significantly larger than that of Ni films, and
no correlation between the two systems is visible. The main
panel of Fig. 12 presents the same data as a function of the nor-
malized conductance g. For thin Ni films, g was calculated as:
g = (Rsheet)−1/G0, and for thick Ni-SiO2 as: g = (ρ/a)−1/G0,
where ρ is resistivity and a is an average size of Ni clusters,
taken as a = 10 nm. Estimation of parameter g taken here is
very rough; nevertheless, similarity in behavior of 3D granular
Ni-SiO2 and thin weakly coupled Ni films is evident, and one
can suggest a universal scaling of the resistivity minimum as
a function of the normalized conductance g.

In 3D, the model of quantum electron-electron corrections
in macroscopically homogeneous disordered materials can
be distinguished qualitatively from the weakly insulating
granular model due to different dependencies of conductivity
on temperature: �σ ∝ T 1/2 and �σ ∝ log T , respectively.
We used this to identify the granular model as the source
of the resistivity minimum in thick Ni-SiO2 films. In strict 2D,
both models predict the same logarithmic behavior. Moreover,
at low temperatures, the effective electron interaction length
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grows larger than the grain size, and the system becomes
effectively homogeneous [25,26], which is identical to the
homogeneous Altshuler-Aronov model [15]. Thus, selection of
a proper interpretation in 2D depends on material morphology.
We favor the granular interpretation in cases described above
due to a heterogeneous film structure and a common resistivity
minimum scaling in thick granular Ni-SiO2, which has been
proven to follow the granular model, and thin weakly coupled
Ni films.

We discussed two types of materials: metal-insulator com-
posites and thin weakly coupled films. An additional model
system for which our arguments can be relevant are partially
crystallized amorphous films. Swamy et al. [33,34] reported
development of a resistivity minimum when amorphous, as-
deposited CoFeB films were annealed. Amorphous CoFeB has
high resistivity and a negative resistivity temperature coeffi-
cient. Annealed samples are polycrystalline with significantly
lower resistivity. Granular interpretation of resistivity minima,
as suggested by the authors [34], is applicable in this case
assuming that metallic grains stay encapsulated by a thin layer
of the remnant noncrystallized amorphous phase serving as
tunneling barriers.

“Granular” interpretation of the resistivity minimum is
quite significant for understanding real materials in the
vicinity of the metal-to-insulator transition. Observation of
the resistivity minimum was adapted as an experimental
platform for demonstration of the quantum percolation concept
in metal-insulator composites [35–37]. It was assumed that
materials demonstrating a resistivity minimum are above the
classical percolation threshold, with interconnected metallic
clusters forming an infinite conductive path. Transition from
the metallic behavior (α > 0) at T > Tmin to the insulating
one (α < 0) at T < Tmin was attributed to an increased local
quantum interference effect at low temperatures along the
infinite metallic percolation path. The quantum percolation
threshold was defined as a minimum metallic concentration
for which the conductivity temperature coefficient is positive
(α � 0) already at zero temperature. The classical percolation
threshold was defined by a transition between α < 0 and
α > 0 at T → ∞, which occurs at a metal concentra-
tion lower than the quantum percolation. The “granular”

interpretation is different: material demonstrating a resistivity
minimum is below the classical percolation threshold, and
Tmin indicates the temperature below which the temperature
dependent intergranular tunneling conductance falls below the
temperature dependent intragranular one. This interpretation
does not identify a resistivity minimum as an onset of quantum
corrections. It is important to stress that these conclusions
relate to heterogeneous granular systems and not to high
quality homogeneous 2D electron systems like metal-oxide-
semiconductor field-effect transistors (MOSFETs).

III. SUMMARY

We analyzed the resistivity temperature dependence of
thick polycrystalline metal-insulator mixtures of Ni-SiO2, thin
films of Fe and Ni of variable thickness, and films of Py at
different stages of postfabrication annealing in the vicinity of
the metal-to-insulator transition. In all these materials there is
a range of samples demonstrating a nonmonotonic variation
of resistivity as a function of temperature with a resistivity
minimum at temperature Tmin followed by a logarithmic
dependence at lower temperatures. We attribute the effect to
the granular structure of materials. A resistivity minimum at
temperature Tmin is identified as the onset of the tunneling
dominated regime, below which the temperature dependent
intragranular conductance exceeds the temperature dependent
intergranular tunneling conductance, the system enters the
weakly insulating regime, and logarithmic conductivity is due
to dominance of intergranular tunneling. A positive resistivity
temperature coefficient at T > Tmin indicates the intragranular
metallicity when intragranular conductance is smaller than
the intergranular tunneling and the intragranular resistivity
dominates the total. Following this interpretation, thin and
thick granular films demonstrating a resistivity minimum are
below the geometrical percolation threshold. Tmin can be any
high and not limited to low temperatures expected for quantum
phenomena. Granular interpretation of the resistivity minimum
is applicable to multiple heterogeneous materials, including
granular composites, metals with mechanical defaults and
cracks, thin films in the vicinity of the continuity threshold,
and semiconductors with nonuniform distribution of dopants.
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