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Enabling adiabatic passages between disjoint regions in parameter
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We explore topological transitions in parameter space in order to enable adiabatic passages between regions
adiabatically disconnected within a given parameter manifold. To this end, we study the Hamiltonian of two
coupled qubits interacting with external magnetic fields, and make use of the analogy between the Berry
curvature and magnetic fields in parameter space, with spectrum degeneracies associated to magnetic charges.
Symmetry-breaking terms induce sharp topological transitions on these charge distributions, and we show how
one can exploit this effect to bypass crossing degeneracies. We also investigate the curl of the Berry curvature,
an interesting but as of yet not fully explored object, which together with its divergence uniquely defines this
field. Finally, we suggest a simple method for measuring the Berry curvature, thereby showing how one can
experimentally verify our results.
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I. INTRODUCTION

Geometric ideas always played an important role in the
understanding and unification of physical phenomena, the
most prominent example demonstrating this synergy being
general relativity. More recently, the discovery of topological
insulators [1–4] brought a huge interest in the subject of
topology to the field of condensed matter physics. The
manifestation of geometry in quantum systems evolving
adiabatically was first described by M. V. Berry [5] in 1984.
In this seminal paper, he showed the existence of a phase with
the remarkable geometric property of depending only on the
path taken in parameter space and not on the rate of evolution.
This geometric phase is nowadays known as the Berry phase.

We consider the case where the Hamiltonian of a sys-
tem H (�λ) depends on three real-valued parameters �λ =
(λ1,λ2,λ3)T ∈ R3, thereby describing a three-dimensional
parameter space. Focusing on the ground-state manifold, the
Berry phase γ acquired by |�0(�λ)〉 after the parameters evolve
adiabatically along a closed path C reads

γ (C) =
∮

C

�A · d�λ =
∫∫

S

�F · d �S,

(1)

where �A = i〈�0| �∇|�0〉 is the Berry connection. The last
equality defines the Berry curvature �F = �∇ × �A, where the
surface S is bounded by the path C. The Berry connection
behaves like a U(1) gauge potential and therefore cannot
directly be observed, whereas the Berry curvature is a local and
gauge-invariant object manifesting the geometric properties of
its associated eigenstate.

An analogy with electromagnetism (EM), also presented
by M. V. Berry [5], shows that the Berry connection plays
the role of a magnetic vector potential and yields through
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its curl the Berry curvature, which can be interpreted as an
effective magnetic field. For each degeneracy in the spectrum,
one can choose a closed Gaussian surface �i that encloses it
in parameter space. The flux of the Berry curvature through
�i defines a topological quantized invariant

ch1 = 1

2π

∫∫
�i

�F · d ��i, (2)

known as the first Chern number. By noting that �∇ · �F =
�∇ · ( �∇ × �A), one can see that the Berry curvature has zero
divergence except at singularities. These singularities corre-
spond to the degeneracies in the spectrum of the Hamiltonian,
which play the role of effective magnetic charges in parameter
space. The first Chern number quantization simply reflects the
quantization of these magnetic charges. Various systems illus-
trating this analogy have been studied, each exhibiting different
monopole charge configurations in parameter space [6–13].

In this paper, we study a system of two coupled qubits
which exhibits sharp topological transitions from continuous
closed surfaces carrying a magnetic charge density to discrete
magnetic charges in parameter space. We then show how
introducing symmetry-breaking terms to the Hamiltonian,
one can bypass these closed degeneracy surfaces and open
adiabatic passages between topologically disjoint regions. This
illustrates how one can make adiabatic transitions between
different topological magnetic charge configurations. Such
method allows access to the entire parameter space, and might
facilitate the engineering of entangled states for quantum
computation and quantum information [14].

In addition, we address the issue of the previously presented
analogy with EM not being complete, since in general the
Berry curvature generated by more than one degeneracy is not
the same as the superposition of the effective magnetic fields
of individual Berry monopoles situated at the degeneracies.
The superposition principle is then not necessarily obeyed. We
also present scenarios where degeneracies show a vanishing
Chern number, which is equivalent to a zero effective magnetic
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charge. In such cases, the curl of the Berry curvature is shown
to be nonvanishing, and thus serves as a probe to identify such
points experimentally. Finally, new sources akin to electric
currents appear alongside the well-known magnetic charges in
the curl of �F .

The paper is organized as follows. In Sec. II, we introduce
the interacting system investigated and analyze two different
scenarios in Secs. III and IV, where the degeneracies of the
system create disjoint regions not adiabatically connected in
the parameter space. Then, in Sec. V, we outline how one
can gain access to those forbidden regions by adiabatically
breaking and reintroducing symmetries in the Hamiltonian,
with topological arguments ensuring that such procedure is
robust. We further discuss the symmetry-broken cases in
Secs. VI and VII. Finally, we present analytical and numerical
analysis of a behavior repeatedly observed for all the studied
cases on the curl of the Berry curvature in Sec. VIII, and
present our conclusions in Sec. VIII. More detailed analytical
calculations can be found in the Appendixes.

II. TWO QUBIT SYSTEM

We consider a system of two interacting qubits (represented
here by quantum spins−1/2), coupled to tunable external mag-
netic fields. This choice was inspired by a recent experiment
which measured the Berry curvature [15]. The Hamiltonian of
the system is given by

H = �B · (γ1 �σ1 + γ2 �σ2) + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
+ gzσ

z
1 σ z

2 + B0 σ z
1 , (3)

where �σi ≡ (σx
i ,σ

y

i ,σ z
i )T are Pauli matrices for the ith spin,

�B is the external magnetic field acting simultaneously on
both spins, anisotropically (isotropically) if γ1 �= γ2 (γ1 =
γ2), g describes the xy coupling, B0 is an offset magnetic
field applied only to the first spin, breaking the exchange
symmetry if nonzero, and gz indicates the interaction in
the z direction, which can turn the system into the SU(2)
Heisenberg Hamiltonian for the choice of constants gz = 1,
g = 2, γ1 = γ2 = 1, and B0 = 0.

In the present analysis, we will fix γ1, γ2, g, B0, and gz

and restrict ourselves to consider the Berry curvature with
respect to the external applied magnetic field �B ∈ R3, defining
our parameter space. The vector �B will interchangeably
be written in spherical (B,θ,φ) or Cartesian (Bx,By,Bz) ≡
(x,y,z) coordinates, whichever is more convenient. The term
g merely sets the energy scale, and so we will consider units
in which g = 2 from here onward.

The eigenenergies of (3) possess azimuthal symme-
try, since the Hamiltonian and ground-state at arbitrary
φ are trivially connected to their expressions at φ = 0.
In other words, H (B,θ,φ) = R†(φ)H (B,θ,0)R(φ), where
R(φ) = exp(i φ σ z

tot/2), and similarly for the ground-state,
|�0(B,θ,φ)〉 = R†(φ)|�0(B,θ,0)〉. The Hamiltonian is real at
φ = 0, and therefore a gauge choice is made requiring the
eigenfunctions to be real-valued. As a consequence of this
gauge, the components AB and Aθ of the Berry connection
vanish, and the only nonzero component Aφ can be calculated

explicitly (see Appendix A):

�A = 1

B sin θ

〈
σ z

tot

〉
2

φ̂ . (4)

One can thus use this result to experimentally measure the
Berry connection by measuring the ground-state expectation
value of the total magnetization, with the Berry curvature
obtained by taking the curl of Eq. (4).

In analogy with EM, one of Maxwell’s equations in R3 for
the vector field �F is

�∇ · �F = 2πρm, (5)

with ρm denoting the effective magnetic charge density. The
expression above is nothing but the differential form of
Eq. (2), showing that the divergence of �F is equal to the
effective magnetic charge (first Chern number). The role of
Chern numbers as topological quantifiers in quantum systems
has been widely investigated, and it is still a very active
field [16,17]. A direct measurement of the Berry curvature
was proposed in [18,19], where it was shown to be given by
the nonadiabatic response of certain physical observables. This
was experimentally confirmed with systems of superconduct-
ing qubits [15,20], where the first Chern number quantization
was readily confirmed.

However, the role of �∇ × �F has not been explored so
far. In three-dimensional space, any vector field is uniquely
represented by its divergence and curl. The divergence of �F , as
seen from Eq. (5), is given by effective magnetic charges, while
the curl is analogous to “electric” currents. In what follows, we
then study in detail the divergence and curl of �F for different
fixed set of values of the parameters γ1, γ2, gz, and B0. We
start with the choice that makes the Hamiltonian (3) SU(2)
symmetric, and break symmetries in each subsequent case.

III. HEISENBERG INTERACTION

The simplest system extending the aforementioned EM
analogy to continuous magnetic charge densities has the
Hamiltonian H = �B · (�σ1 + �σ2) + �σ1 · �σ2. A similar system
and its charge configuration was studied in [6]. Ours cor-
responds to the two-spin Heisenberg model in an external
�B field, possessing SU(2) symmetry. It is obtained from the
Hamiltonian (3) by setting the parameters to γ1 = γ2 = gz = 1
and B0 = 0.

The ground-state degenerates on the sphere of radius B =
2, dividing the parameter space into two disjoint regions. The
Berry curvature in this case is

�F =
{

0, B < 2,
1
2qm

B̂
B2 , B > 2 ,

(6)

where qm = 2 gives the effective magnetic charge (see
Appendix B). The effective magnetic field defined by the
Berry curvature above is akin to the electric field of a hollow
conducting sphere of radius two. The total magnetic charge
is equal to the Chern number, ch1 = 2, and can be obtained
from Eq. (2). The magnetic charge density distribution ρm is
uniform since the sphere is a surface of constant curvature.
The curl of �F is equal to zero since the field falls of radially
as 1/B2. This will not be the case in the following examples.
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FIG. 1. XXZ interaction (gz = 0): (a) Berry curvature �F (light
arrows) and magnetic surface charge density σm (color bar).
(b) �∇ × �F , with magnitude shown in the xz plane. The curl has only a
φ component, and the colors on the ellipsoid illustrate the magnitude
of the electric surface current density �Ke = Keφ̂, with direction
indicated by the darker arrows. Anisotropic fields (gz = 0, α = 0.3):
(c) Berry curvature �F (light arrows), showing two charges (yellow
dots) on the z axis, plus an uncharged ring (green) in the xy plane.
(d) The curl of the Berry curvature, shown only in the xz plane since it
has azimuthal symmetry. Broken exchange symmetry (gz = 0, α = 0,
B0 = 1): (e) Berry curvature �F (light arrows) showing now the only
two magnetic charges on the z axis. (f) �∇ × �F shown in the xz plane.

IV. XXZ INTERACTION

Let us now consider the case where gz �= 1, and as before,
γ1 = γ2 = 1, B0 = 0. Unlike the Heisenberg case, if |gz| < 1
(|gz| > 1), we find that the SU(2) symmetry is broken, and the
charged sphere of the prior case gets continuously squeezed
(stretched) along the z axis, becoming an oblate (prolate)
ellipsoid of revolution. In analogy to the charge distribution
on conductors in electrostatics, the magnetic charge density
is no longer uniformly distributed, but accumulates in regions
of higher curvature [see Fig. 1(a)]. In spite of the nonuniform
surface charge density, the total charge on the entire surface
remains the same as for the previous case (ch1 = 2). This
can be concluded from the fact that the ground state remains

fully polarized at large B, yielding the total effective charge
enclosed as a topologically protected integer equal to ch1 = 2.

Figure 1(b) shows the existence of a surface current �Ke �= 0
defined by the discontinuity of the parallel component of
�F across the surface, which implies that �∇× �F �= 0 (see

Appendix C). The Berry curvature has only B̂ and θ̂ com-
ponents, and therefore its curl is parallel to φ̂. The nonuniform
magnetic charge distribution produces a quadrupole in the curl
of �F .

In the previous two cases, we have explored situations of
high symmetry, where the magnetic charges occur as surface
densities spread on closed degeneracy surfaces, instead of
the more commonly studied discrete monopole charges [5].
Similar cases of continuous surfaces with magnetic charge
densities have been explored elsewhere [6]. The newest aspect
of the aforementioned results is shown by the curl of the Berry
curvature, which displays a characteristic quadrupole pattern.

V. BYPASSING DEGENERACY CROSSINGS

The points belonging to the closed surfaces in the two
previous cases indicate the locus in parameter space where
there are degeneracies in the ground state. Interestingly,
inside all the previous surfaces, the ground-state is a singlet
|�0〉 ≡ 1√

2
(|↑↓〉 − |↓↑〉), i.e., a Bell entangled state of the

two qubits (see Appendixes B and C). Equation (4) then
implies a vanishing Berry connection and curvature; in the
region outside the closed surfaces, |�0〉 has contributions
of the other vectors in the spin-product basis. At first sight,
it might seem impossible to experimentally start with a
high polarizing field Bz � Bx ≈ 0 where |�0〉 ≈ |↑↑〉 to
subsequently prepare adiabatically a pure singlet state without
crossing the continuous degeneracy surface, which would
introduce excitations and break the adiabaticity.

In order to bypass this topological constraint, we now
consider situations with significantly reduced symmetry, and
we observe a sharp collapse of the surface charge density to
the more familiar case of magnetic monopoles. This singular
change in the topology of the monopole charge density is
unlike anything in classical EM, and we explore this phase
transition to open a passage and access the interior regions of
the previous cases by adiabatically breaking and reestablishing
symmetries (see Fig. 2). We also show how the effective
electromagnetic fields respond to this transition.

VI. ANISOTROPIC FIELDS

Anisotropy is introduced by setting γ1 = 1 + α, γ2 = 1 − α

with α �= 0 and gz = B0 = 0. The introduction of α breaks
the symmetry that allows the existence of a two-dimensional
manifold where the ground-state degeneracies occurs. The
previous surfaces now collapse to two points, located on
the z axis at ±g/(2

√
(1 − α2)) due to azimuthal symmetry of

the eigenenergies. These two points correspond to energy level
crossings in the ground-state manifold and act like sources of
�F . The total Chern number in the entire parameter space is

topologically protected and equal to +2, therefore each source
carries an effective magnetic charge equal to +1.

These magnetic monopoles are visible as singularities in the
divergence of the Berry curvature, which is unsurprisingly zero

094106-3



TIAGO SOUZA et al. PHYSICAL REVIEW B 94, 094106 (2016)

�3 �2 �1 0 1 2 3 �3 �2 �1 0 1 2 3 �3 �2 �1 0 1 2 3 �3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

Bz

Bx Bx Bx Bx

B0�0, gz�1 B0�0.5, gz�1 B0�1, gz�1 B0�0, gz�1

0 0.05 0.10 0.15 0.20 0.25
�F
→
�

0 0.1 0.2 0.3 0.4
�F
→
� 0

5

10

15

20

25
�F
→
�

0 0.05 0.10 0.15 0.20 0.25
�F
→
�

FIG. 2. Opening an adiabatic passage between topologically disjoint regions in parameter space. First panel: starting with a point in
parameter space corresponding to a state outside the sphere defined by the Heisenberg Hamiltonian. Second and third panel: breaking
symmetry by adiabatically introducing a pinning field in one of the spins creates a different topological magnetic charge distribution (with the
total magnetic charge conserved). One can now evolve the system to a previously adiabatically inaccessible region. Fourth panel: reintroducing
the symmetry by removing the symmetry-breaking term allows one to bypass the continuous crossing surface and enter a previously adiabatically
disconnected region in parameter space.

away from these two singularities. For the curl of the Berry
curvature, we find a quadrupolar field pattern very similar to
what we saw in the previous section for the charged surface.
However, surprisingly, we also find the appearance of two
other points on the x axis. Respecting the model’s symmetry
by revolving the plotted planes around the z axis, one can see
that these points in fact correspond to a ring of degeneracies,
centered at the origin in the xy plane, with radius � =√

2(1 + α2)/(1 − α2) [see Fig. 1(c)]. Most interestingly, this
ring is uncharged as can be inferred from a topological argu-
ment: the total Chern number for the entire parameter manifold
must remain equal to +2, and the monopoles on the z axis each
carries a unit charge, as can be verified using Gauss law. The
Berry curvature in its vicinity exhibits a saddle-point behavior,
rather than acting like a sink or source for the �F vector field.
The analogous configuration in EM are two electric charges
with a conducting ring placed halfway in between, which
introduces boundary conditions for the fields. As can be seen in
Fig. 1(c), the curl of Berry curvature shows a hexapole pattern
for the intersections on the xy plane. Thus the presence of the
uncharged ring, although not obvious from the Berry curvature
field, can clearly be observed in the �∇ × �F graph, as they
exhibit a distinct pattern compared to degeneracies having an
effective charge. The curl then apparently contains additional
geometric information about the ground-state manifold of the
system, which has not been explored so far.

It is readily confirmed that the gap vanishes at this ring of
singularities despite the absence of effective magnetic charge.
Interestingly, crossing this degeneracy by fixing Bx = � and
varying Bz, we find that the energies exhibit a quadratic
touching, which in the chemistry literature is known as
Renner-Teller intersection points [6,21–23], fundamentally
different from conical intersections since they do not give rise
to a geometric phase, and consequently have a Chern number
equal to 0. This quadratic touching comes from a symmetry
of the Hamiltonian, namely Bz → −Bz, and therefore is not
present for curves that do not cross the degeneracy vertically,
e.g., the energy levels for fixed Bz = 0 when varying Bx .

VII. BROKEN EXCHANGE SYMMETRY

For the final case, consider γ1 = γ2 = 1, gz = 0, and B0 =
1. Due to the pinning field B0 on the first spin, the exchange
symmetry between the two spins is broken, and only the
azimuthal symmetry in the eigenenergies is left. The crossing
points now lie solely on the z axis, with the two monopoles
located at B(±)

z ≡ (−B0 ± δ)/2, where δ ≡
√

B2
0 + g2 is the

degenerate ground-state energy for the case in consideration.
The curl of �F for this case shows a persistent quadrupole
pattern around the crossing points in the z axis, although one
observes a bending of the lobes toward each other, which
increases with B0 [see Fig. 1(e)]. The point charges along the
z axis are no longer symmetric with respect to the xy plane,
and their location varies as a function of B0, given by B(±)

z .

VIII. CURL ANALYSIS

To understand the curl behavior of �F analytically, we calcu-
late the Berry connection for the broken exchange symmetry
case at the degeneracy points B(±)

z using perturbation theory
and obtain �∇ × �F around B(±)

z (see Appendix E). The leading
order expression for the curl is given by

�∇ × �F(±) = −3

4

β2 sin 2ϑ

γ 2(1 − β2 sin2 ϑ)5/2

1

dB3
φ̂ + · · · , (7)

where β2 ≡ g/δ, γ ≡ 1/
√

(1 − β2), and with respect to the
coordinate system centered at the monopole B(±)

z respectively,
given in spherical coordinates (dB,ϑ,φ). This expression
reproduces qualitatively the quadrupole seen numerically [see
Fig. 1(d) and Appendix F] and suggests the possibility that this
pattern may be robust in the vicinity of Berry curvature sources.

IX. CONCLUSION

The analogy between EM and degeneracies in quantum
systems has been outlined many years ago, and it is still
a field of active research, mainly due to its applications to
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adiabatic quantum computing and the recent burst of interest
in topological transitions. For highly symmetric systems, we
have shown how symmetry-breaking perturbations allows
one to open adiabatic passages in previously topologically
disjoint regions, thereby allowing the full parameter space
to be explored. The procedure outlined in this paper is
general and robust, and not necessarily restricted to qubits.
We note that by identifying angles of the magnetic field
with quasimomenta, the two-spin system here analyzed can
be mapped to a four-band model of a topological insulator
with a rich phase diagram, similar to the construction in
Ref. [15]. Therefore results presented in this paper can find
direct analogues in other systems. The system in analysis was
chosen as a good illustrative example due to experimental
feasibility of measuring the Berry connection �A by relating it to
the ground-state expectation value of the total magnetization.
The Berry curvature and its curl can then be experimentally
obtained, and the results here presented can be verified.

We also highlighted the existence of degeneracy points with
vanishing Chern number, and exemplified how they fit within
the EM analogy as boundary conditions for the �F field. Finally,
the curl of the Berry curvature was explored, with different
behavior near charged and uncharged points, indicating the
possibility that this quantity might carry geometrical informa-
tion about the ground-state manifold previously unexplored.
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APPENDIX A: LOCATIONS OF THE EFFECTIVE
MAGNETIC CHARGES FOR AN INTERACTING

TWO-QUBIT SYSTEM

In the main text, we plot the Berry curvature and its
curl for the ground-state |�0〉 to illustrate the locations of
the ground-state degeneracies in parameter space. We use
the analogy with electromagnetism, pointed out by M. V.
Berry [5], that identifies the Berry curvature �F with an effective
magnetic field in parameter space whose vector potential is
the Berry connection �A = i〈�0| �∇|�0〉. The locations of the
associated magnetic charges are given by the ground-state
degeneracies, and their charge is determined by the first Chern
number. The fact that degeneracies of the ground-state act as
magnetic charges can be seen by the following reasoning:
the vector identity �∇ · ( �∇ × �A) = 0 holds only if �A has
continuous derivatives. This is no longer the case when the
ground-state becomes degenerate, since at these points |�0〉
undergoes a discontinuous change and so the derivatives of �A
become discontinuous. As a result, at the degeneracies we have
�∇ · ( �∇ × �A) �= 0, and in analogy with Maxwell’s equations we

can write an equivalent Gauss’s law for the Berry curvature

�∇ · �F = 2πρm, (A1)

where ρm is the effective magnetic charge density. The volume
integral of (A1) yields∫∫

�

�F · d �S = 2π

∫∫∫
V

ρmdV, (A2)

where the divergence theorem was applied to the left-hand
side of the equation. According to the Chern theorem [24],
the integral of the Berry curvature over a closed manifold �

is quantized in units of 2π , and this number defines the first
Chern number

ch1 = 1

2π

∫∫
�

�F · d �S. (A3)

The comparison of the previous two equations implies the
quantization of

∫∫∫
V

ρmdV , which also defines the effective
charge enclosed by the manifold �.

For a single magnetic monopole charge qm, the magnetic
charge density is ρm = qm δ(�r) and the associated magnetic
field is then given, in view of Eq. (A2), by

�F = 1

2
qm

r̂

|�r|2 , (A4)

where the prefactor of 1/2 sets the units such that the charge
qm is equal to the Chern number. This example is realized by a
single qubit (spin-1/2) in an external magnetic field �B, where
the resulting Berry curvature is given by (A4) and therefore
analogous to an effective magnetic field in parameter space
(Bx,By,Bz), or �r ≡ �B, created by a magnetic monopole sitting
at B = 0 and carrying a charge qm = 1.

Finally, we note that the Berry curvature �F associated with
the ground state can also be rewritten, using the resolution
of the identity

∑
m |�m〉〈�m| = 1, as a sum over all other

eigenstates

�F = i
∑
m�=0

〈�0| �∇H |�m〉 × 〈�m| �∇H |�0〉
(E0 − Em)2

. (A5)

This equation highlights that degeneracies in the ground-state,
E0 = Em, act as charges for �F . In particular, the expres-
sion (A5) is useful to compute the Berry curvature numerically,
if the Hamiltonian is not analytically diagonalizable.

In the following, we illustrate the calculations that lead to
the localization of the ground-state degeneracies in parameter
space for the two-qubit systems considered in the main text. We
also calculate the corresponding Berry connection, curvature
and its curl. First, however, let us review some important prop-
erties of the system studied in the main text, consisting of two
interacting qubits, with each qubit separately coupled to exter-
nal magnetic fields. The Hamiltonian of this system is given by

H = �B · (γ1 �σ1 + γ2 �σ2) + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
+ gzσ

z
1 σ z

2 + B0 σ z
1 , (A6)

where �σi ≡ (σx
i ,σ

y

i ,σ z
i )T are the usual Pauli matrices for the

ith spin

σx
i =

(
0 1
1 0

)
, σ

y

i =
(

0 −i

i 0

)
, σ z

i =
(

1 0
0 −1

)
,

(A7)
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with i = 1,2. The external magnetic field is �B = (Bx,By,

Bz)T ≡ (x,y,z)T , which acts isotropically on both spins if
γ1 = γ2, and anisotropically if γ1 �= γ2. The field B0 is a
local magnetic field applied only to the first spin in the z

direction, and allows us to break the exchange symmetry
between the two spins. The term g is the energy scale of the
interaction between the two spins in the x and y direction,
and gz indicates the interaction in the z direction.

As mentioned in the main text, we consider the param-
eters γ1, γ2, g, B0, and gz as fixed and restrict ourselves
to the case of an adiabatically varying external magnetic
field �B that spans the parameter space M ≡ R3. The mag-
netic field �B in spherical coordinates (B,θ,φ) reads �B =
B (sin θ cos φ, sin θ sin φ, cos θ )T = B B̂(θ,φ), where B̂(θ,φ)
is the unit vector in the radial direction. The Hamiltonian in
spherical coordinates can be rewritten as

H (B,θ,φ) = B B̂(θ,φ) · (γ1 �σ1 + γ2 �σ2) + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
+ gzσ

z
1 σ z

2 + B0 σ z
1 , (A8)

and written in this form, it is evident that the Hamiltonian at
arbitrary φ can be obtained from the one at φ = 0 by

H (B,θ,φ) = R†(φ)H (B,θ,0)R(φ), (A9)

where R(φ) = exp(i φ σ z
tot/2) and σ z

tot = σ z
1 + σ z

2 . Equa-
tion (A9) implies that the eigenstates of H (B,θ,φ) are simply
given by a rotation of the eigenstates of H (B,θ,0),

|�m(B,θ,φ)〉 = R†(φ)|�m(B,θ,0)〉, (A10)

and that the eigenenergies of H (B,θ,φ) and H (B,θ,0) are the
same, Em(B,θ,φ) = Em(B,θ,0). Note that Eq. (A9) does not
provide any additional conservation laws but it is useful for
the calculation of the Berry connection and curvature.

We emphasize that the Berry connection is a connection
one-form on the parameter space M, in general defined
by A ≡ i〈�0|d|�0〉, where d is the exterior derivative. The
corresponding Berry curvature is a two-form defined by
F = dA. In local coordinates (x1,x2, . . .), we can write

A = Aμdxμ, Aμ = i〈�0|∂μ|�0〉, (A11)

and where ∂μ = ∂
∂xμ , μ = 1,2, . . .. Similarly, the Berry curva-

ture in local coordinates reads

F = 1
2Fμνdxμ ∧ dxν, Fμν = ∂μAν − ∂νAμ, (A12)

where dxμ ∧ dxν is the wedge product of two one-forms. For a
three-dimensional parameter spaceM as the one studied in the
main text, the components of the Berry connection one-form
Aμ can be collected in a vector as �A = i〈�0| �∇|�0〉. Similar,
the Berry curvature two-form can be mapped to a vector
through �F = �∇ × �A. This mapping can be seen explicitly
from the definition of the Berry curvature in local coordinates
Fμν = ∂μAν − ∂νAμ, which is an antisymmetric tensor. In
three dimensions, it reduces to

(Fμν) =
⎛
⎝F11 F12 F13

F21 F22 F23

F31 F32 F33

⎞
⎠ ≡

⎛
⎝ 0 F3 −F2

−F3 0 F1

F2 −F1 0

⎞
⎠ (A13)

and thus we can write �F = (F1,F2,F3)T = (F23,F31,F12)T .

In view of the discussion in the previous paragraph the Berry
connection in Cartesian coordinates, (Bx,By,Bz) ≡ (x,y,z),
reads

�A(C)(x,y,z) = Axx̂ + Ayŷ + Azẑ, (A14)

where Aμ = i〈�0|∂μ|�0〉, with μ = {x,y,z}, ∂μ = ∂
∂μ

, and
x̂, ŷ, and ẑ are the unit vectors in Cartesian coordinates. One
should be wary, since there is a potential for ambiguity in
this notation if a different choice of coordinate system is
considered. For example, with respect to spherical coordinates
(B,θ,φ), the Berry connection becomes

�A(S)(B,θ,φ) = ABB̂ + Aθ θ̂ + Aφφ̂, (A15)

where now we must define

AB = i 〈�0|∂B |�0〉,
Aθ = i

1

B
〈�0|∂θ |�0〉,

Aφ = i
1

B sin θ
〈�0|∂φ|�0〉, (A16)

since in spherical coordinates the operator �∇ is given by

�∇f = ∂f

∂B
B̂ + 1

B

∂f

∂θ
θ̂ + 1

B sin θ

∂f

∂φ
φ̂, (A17)

where

B̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ,

θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,

φ̂ = − sin φ x̂ + cos φ ŷ (A18)

are the local orthogonal unit vectors in the directions of
increasing B, θ , and φ, respectively. Note that the Cartesian
unit vectors can be expressed as

x̂ = sin θ cos φ B̂ + cos θ cos φ θ̂ − sin φ φ̂,

ŷ = sin θ sin φ B̂ + cos θ sin φ θ̂ + cos φ φ̂,

ẑ = cos θ B̂ − sin θ θ̂ (A19)

or the spherical unit vectors as

B̂ = x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

,

θ̂ = xz x̂ + yz ŷ − (x2 + y2) ẑ√
x2 + y2

√
x2 + y2 + z2

,

φ̂ = −y x̂ + x ŷ√
x2 + y2

. (A20)

The Berry phase, given by the integral of the Berry connection
along a closed loop C in parameter space, can be written as

γ =
∫
C

�A(C) · d �B =
∫
C

�A(S) · d �B, (A21)

where d �B = dx x̂ + dy ŷ + dz ẑ in Cartesian coordinates
and d �B = dB B̂ + B dθ θ̂ + B sin θ dφ φ̂ in spherical
coordinates.

The relation |�0(B,θ,φ)〉 = R†(φ)|�0(B,θ,0)〉, where
R(φ) = exp(i φ σ z

tot/2), allows us to calculate the Berry
connection in spherical coordinates straightforwardly. First,
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observe that the quantities 〈�0|∂μ|�0〉, for μ = {B,θ,φ}, must
be purely imaginary numbers. This can be seen by differenti-
ating the normalization condition 〈�0 |�0〉 = 1 with respect to
either B, θ , or φ. A gauge choice allows us to choose the eigen-
states of the Hamiltonian (A6) to be real at φ = 0, and there-
fore, for any B and θ , writing |�0(B,θ,φ)〉 ≡ |�̃0(φ)〉, we have

〈�̃0(φ)|∂B |�̃0(φ)〉 = 〈�̃0(0)|∂B |�̃0(0)〉 = 0. (A22)

A similar reasoning holds for 〈�0(B,θ,φ)|∂θ |�0(B,θ,φ)〉.
The only nonvanishing component is Aφ , which reads

Aφ = i
1

B sin θ
〈�̃0(φ)|∂φ|�̃0(φ)〉

= 1

B sin θ
〈�̃0(0)| i R(φ)∂φR†(φ)|�̃0(0)〉, (A23)

and since

i R(φ)∂φR†(φ) = i ei φ σ z
tot/2 ∂φ e−i φ σ z

tot/2 = σ z
tot

2
, (A24)

the Berry connection in spherical coordinates is finally given
by

�A(S)(B,θ,φ) = 1

B sin θ
〈�̃0(0)|σ

z
tot

2
|�̃0(0)〉 φ̂

= 1

B sin θ

〈
σ z

tot

〉
2

φ̂, (A25)

where 〈σ z
tot〉 is the ground-state expectation value of the

total magnetization in the z−direction at φ = 0. In Cartesian
coordinates, we have

�A(C)(x,y,z) =
〈
σ z

tot

〉
2

(−y x̂ + x ŷ

x2 + y2

)
, (A26)

with 〈σ z
tot〉, the ground-state expectation value of the total

magnetization in the z direction given in Cartesian coordinates
at By = 0. The Berry curvature �F is obtained by taking the
curl of the Berry connection.

APPENDIX B: HEISENBERG INTERACTION

In this section, we set γ1 = γ2 = gz = 1, g = 2, and B0 =
0 in the Hamiltonian (A6) in order to obtain the two-qubit
Heisenberg Hamiltonian

HHeis = �B · (�σ1 + �σ2) + �σ1 · �σ2. (B1)

This Hamiltonian has SU(2) symmetry, which can be seen
immediately using spherical coordinates (B,θ,φ)

HHeis(B,θ,φ) = B B̂(θ,φ) · (�σ1 + �σ2) + �σ1 · �σ2. (B2)

Namely, one observes that

D(B̂,α) HHeis D†(B̂,α) = HHeis, (B3)

where D(B̂,α) = exp[i α B̂ · (�σ1 + �σ2)] is a generic element
of SU(2) and can be interpreted as a rotation around the
axis B̂(θ,φ) by an angle α. We note that we also have
an exchange symmetry between the two qubits �σ1 ↔ �σ2.
As already mentioned previously, we can use the property
HHeis(B,θ,φ) = R†(φ)HHeis(B,θ,0)R(φ) to easily calculate

the eigenenergies, eigenstates and thus the Berry connection.
The ground-state energy is given by

E0(B) =
{−3, B < 2,

1 − 2B, B > 2,
(B4)

and the corresponding ground state reads

|�̃0(φ)〉 =
{

1√
2
(0,1,−1,0)T ,(

e−iφ sin2 θ
2 , − sin θ

2 , − sin θ,
2 , eiφ cos2 θ

2

)T

(B5)

for B < 2 and B > 2, respectively, where we used
the basis {|↑↑〉 = (1,0,0,0)T , |↑↓〉 = (0,1,0,0)T , |↓↑〉 =
(0,0,1,0)T , |↓↓〉 = (0,0,0,1)T }, since {|↑〉 = (1,0)T , |↓〉 =
(0,1)T } are the eigenstates of σ z

i . We observe that the
ground-state degenerates on a sphere of radius B = 2 in the
parameter space M ≡ R3 defined in Cartesian coordinates by
(Bx,By,Bz). As illustrated in what follows, this degeneracy
surface can be interpreted as a magnetically charged sphere in
parameter space which creates an effective magnetic field, the
Berry curvature �F .

The Berry connection in spherical coordinates can be
calculated explicitly, and we find

�A(S)(B,θ,φ) = Aφ φ̂ =
{

0, B < 2,

− 1
B

cot θ φ̂ B > 2.
(B6)

The Berry curvature, obtained by taking the curl of
�A(S)(B,θ,φ) in spherical coordinates, reads

�F (S)(B,θ,φ) = 1

B sin θ
∂θ (Aφ sin θ )B̂,

�F (S)(B,θ,φ) =
{

0, B < 2,
1
2qm

1
B2 B̂, B > 2,

(B7)

where qm = 2 can be interpreted as an effective magnetic
charge. The Berry curvature allows us to read the first Chern
number, which indeed corresponds to the effective magnetic
charge qm,

ch1 = 1

2π

∫∫
�

�F (S) · d �S,

ch1 = 1

2π

∫ π

0

∫ 2π

0

1

B2
B2 sin θ dθ dφ = 2 = qm. (B8)

We used the fact that the surface element d �S is strictly radial
d �S = B2 sin θ dθ dφ B̂, and choose a spherical Gaussian
surface � centered at the origin with radius B > 2 to calculate
the above integral. In Fig. 3, we show the spectrum of HHeis

and the effective magnetic field given by the Berry curvature

�F (C)(Bx,By,Bz) =
{

0,
1
2qm

�B
(B2

x+B2
y+B2

z )3/2 ,
(B9)

for
√

B2
x + B2

y +B2
z < 2 and

√
B2

x + B2
y + B2

z > 2,

respectively.

APPENDIX C: XXZ INTERACTION

In this section, we choose γ1 = γ2 = 1, g = 2, B0 = 0 and
gz �= 1 in the Hamiltonian (A6), which yields a two-qubit
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FIG. 3. (Left) The energy spectrum of the Heisenberg Hamiltonian HHeis as a function of B is depicted. The ground-state energy E0(B) is
shown by the thick red line. (Right) The Berry curvature in Cartesian coordinates (B9) is plotted in parameter space (Bx,By,Bz). The sphere
of radius B = 2 carries a magnetic charge qm = 2, which is uniformly distributed over the surface of this sphere.

Hamiltonian with XXZ interaction

HXXZ = �B · (�σ1 + �σ2) + (
σx

1 σx
2 + σ

y

1 σ
y

2

) + gzσ
z
1 σ z

2

= �B · (�σ1 + �σ2) + �σ1 · �σ2 − (1 − gz) σ z
1 σ z

2 . (C1)

This Hamiltonian is no longer SU(2) symmetric but still
has the exchange symmetry between the two qubits. Further,
due to the property HXXZ(B,θ,φ) = R†(φ)HXXZ(B,θ,0)R(φ),
we can set By = 0 and using a more appropriate basis given
by {|↑↑〉, |↓↓〉, (|↑↓〉 + |↓↑〉)/√2, (|↑↓〉 − |↓↑〉)/√2}, the
Hamiltonian is written as a 4 × 4 matrix,

HXXZ =

⎛
⎜⎜⎜⎝

2Bz + gz 0
√

2 Bx 0

0 −2Bz + gz

√
2 Bx 0√

2 Bx

√
2 Bx 2 − gz 0

0 0 0 −2 − gz

⎞
⎟⎟⎟⎠. (C2)

One can immediately see that the singlet-state (|↑↓〉 −
|↓↑〉)/√2 is an eigenstate with eigenenergy Esinglet = −(2 +
gz). More precisely, the singlet state is the ground state inside

the locus of crossing points given by

B2
x

2(1 + gz)
+ B2

y

2(1 + gz)
+ B2

z

(1 + gz)2
= 1. (C3)

The above expression defines the surface of an ellipsoid in the
parameter space (Bx,By,Bz), and can be obtained by solving
the equation for the energy crossing between the singlet-state
and the only other state with negative energy for By = 0,
applying next the rotation R(φ) = exp(i φ σ z

tot/2) to obtain the
result (C3) for By �= 0 (see Fig. 4). The ground state inside the
ellipsoid is thus the Bell entangled singlet state

|�0〉 = 1√
2

(|↑↓〉 − |↑↓〉) = 1√
2

(0,1,−1,0)T , (C4)

and hence the Berry connection vanishes inside the ellipsoid,
since �A(S) = 1

B sin θ
〈σ z

tot〉φ̂ . The Berry connection acquires only
a nonzero value outside the ellipsoid, which was calculated
numerically using the standard numerical diagonalization

FIG. 4. (Left) The two lowest eigenenergies of HXXZ are plotted as a function of Bx and Bz for gz = 0.01 and By = 0. The singlet-state
has constant energy given by Esinglet = −(2 + gz), and is shown by the constant (orange) plane, which cuts the (blue) surface corresponding to
the eigenenergy of the next lowest eigenstate. The crossing curve, defined by the intersection of these two lowest eigenenergies, is given by an
ellipse (yellow). (Right) The locus of the ground-state degeneracy defined by (C3), the surface of an ellipsoid, is plotted in parameter space
(Bx,By,Bz).
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FIG. 5. (Left) The surface charge density σm is shown as a function of θ for different values of gz. Note that we plot θ from 0 to 2π , which
means we go once around the entire ellipsoid. One can see the charge accumulates on the equator as gz decreases from 1 to 0. (Right) The
surface current density Ke as a function of θ for different gz values is depicted. Ke changes sign at the equator (π/2 and 3π/2), indicating the
quadrupole configuration pattern of �∇ × �F .

techniques. The corresponding Berry curvature and its curl
are depicted in Fig. 6.

Surface and Charge Density on the Ellipsoid

The magnetic surface charge density σm and effective
electric surface current �Ke associated with the curl of �F are
calculated in the following by considering the discontinuity
in the normal and parallel components of the magnetic field
�F across the degeneracy surface (the ellipsoid) [25]. The

magnetic surface charge density can be calculated from the
identity

(F⊥
out − F⊥

in ) = 2πσm, (C5)

where F⊥
out (F⊥

in ) refers to the perpendicular component
of �F just outside (inside) the charged boundary surface.
The total charge qm in this example is obtained by qm =

1
2π

∫∫
S

σm(�r) dS, where dS is the differential area element
of the ellipsoid surface. Further, the electric surface current
can be calculated through

n̂ × ( �Fout − �Fin) = 2π �Ke, (C6)

where �Fout ( �Fin) refers to �F just outside (inside) the ellipsoid
and n̂ is a unit vector perpendicular to the surface. Both

the surface charge density and surface current density are
plotted in Fig. 5 versus the polar angle θ for different
values of gz. We note that the property HXXZ(B,θ,φ) =
R†(φ)HXXZ(B,θ,0)R(φ) implies that σm and �Ke are indepen-
dent of the azimuthal angle φ. In Fig. 6, we plot σm and Ke on
the surface of the ellipsoid. The total charge was also computed
numerically and found to be qm = +2 for any value of gz, as
required from topological considerations (ch1 = 2).

APPENDIX D: ANISOTROPIC INTERACTION

In this section, we set γ1 = 1 + α, γ2 = 1 − α, g = 2, B0 =
0 and gz = 0, with −1 < α < 1 in the Hamiltonian (A6), such
that we obtain a two-qubit Hamiltonian where the magnetic
field �B acts anisotropically on each spin

Hani = �B · [(1 + α) �σ1 + (1 − α) �σ2] + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
.

(D1)
Writing this Hamiltonian in spherical coordinates, it can be
seen that Hani(B,θ,φ) = R†(φ)Hani(B,θ,0)R(φ), still holds
and therefore it is sufficient to study the spectrum for
By = 0. Let us rewrite Hani for By = 0 in the basis
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, defining α± ≡ (1 ± α) for notational

FIG. 6. (a) The surface charge density σm on the ellipsoid with �F for gz = 0. (b) The corresponding | �F | in the xz plane. (c) The surface
electric current density Ke with �∇ × �F for gz = 0 and in (d) we plotted ( �∇ × �F )y in the xz plane.
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FIG. 7. (Left) A plot of the energy spectrum of Hani(0,0,Bz), in the middle the eigenenergies of Hani(Bx,0,0) and (right) we depict the
ground-state degeneracies in the parameter space (Bx,By,Bz).

brevity,

Hani(Bx,Bz) =

⎛
⎜⎜⎝

2 Bz α− Bx α+ Bx 0
α− Bx 2 α Bz 2 α+ Bx

α+ Bx 2 −2 α Bz α− Bx

0 α+ Bx α− Bx −2 Bz

⎞
⎟⎟⎠.

(D2)

Obviously, for Bx = 0, the matrix becomes block-diagonal,
and the ground-state energy crossings are located at

β(±)
z = ± 1√

(1 − α2)
. (D3)

In the case of Bz = 0, the Hamiltonian Hani(Bx,0,0) com-
mutes with σx

1 σx
2 and therefore they have a common basis

of eigenvectors given by {(−|↑↑〉 + |↓↓〉)/√2, (−|↑↓〉 +
|↓↑〉)/√2, (|↑↑〉 + |↓↓〉)/√2, (|↑↓〉 + |↓↑〉)/√2 }. With re-
spect to this basis, Hani(Bx,0,0) is block-diagonal,

Hani(Bx,0,0) =

⎛
⎜⎝

0 −2 α Bx 0 0
−2 α Bx −2 0 0

0 0 0 2 Bx

0 0 2 Bx 2

⎞
⎟⎠,

(D4)

where the corresponding eigenenergies can easily be calcu-
lated,

E1 = 1 −
√

1 + 4 B2
x , E2 = −1 −

√
1 + 4 α2B2

x ,

E3 = −1 +
√

1 + 4 α2B2
x , E4 = 1 +

√
1 + 4 B2

x , (D5)

and it can be seen that the ground-state energy degenerates
(E1 = E2) at B(±)

x = ±
√

2 (1 + α2)/(1 − α2). The azimuthal
invariance of the eigenenergies [the property Hani(B,θ,φ) =
R†(φ)Hani(B,θ,0)R(φ)], implies that these two points in the
xz plane actually correspond to a ring centered at the origin in
the xy plane, with radius

� =
√

2 (1 + α2)

(1 − α2)
. (D6)

In Fig. 7, we plot the spectrum of the two-qubit Hamiltonian
with an anisotropic magnetic field and the ground-state

degeneracies in parameter space (Bx,By,Bz), given by a ring
in the xy plane and two points on the z axis.

Finally, we note that the ring has no charge, which can
be seen by calculating the first Chern number numerically,
ch1(ring) = 0. On the contrary, the two point charges on the z

axis carry each a charge of +1. This was also confirmed by a
numerical evaluation of the first Chern number. Energy-level
crossings that yield a trivial Berry phase when encircled, and
therefore have an associated zero Chern number, are know as
Renner-Teller level touchings [22]. The energy level touching
can be observed by fixing Bx = � and varying Bz (see Fig. 8).

APPENDIX E: BROKEN EXCHANGE SYMMETRY

In this section, we calculate the Berry connection �A (vector
potential), Berry curvature �F (magnetic field) and the curl
of the Berry curvature ∇ × �F (current) using a degenerate
perturbation theory for the interacting two-qubit system with
broken exchange symmetry. First, we derive the location of the
ground-state degeneracies (level crossings) in the parameter
space. Next, we compute the ground state of the system up
to second-order using a degenerate perturbation theory. The
resulting ground state allows us then to calculate the Berry
connection, Berry curvature and the curl of the Berry curvature

�3 �2 �1 0 1 2 3

�6

�4

�2

0

2

4

6

Bx

E

FIG. 8. Renner-Teller level touching for Bx = � and changing
Bz, i.e., vertically crossing the ring.
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in the vicinity of the effective magnetic monopole charges
(ground-state degeneracies).

Location of the magnetic monopoles

The Hamiltonian for two interacting qubits with a broken
exchange symmetry is given by

HBES = �B · (�σ1 + �σ2) + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

) + B0 σ z
1 , (E1)

which can be obtained by setting γ1 = γ2 = 1 and gz = 0
in the Hamiltonian (A6). The ground-state degeneracies are
restricted to the Bz axis, since the eigenenergies of the
Hamiltonian (E1) have an azimuthal symmetry, and since the
Hamiltonian (E1) itself has no more symmetries. The positions
of the ground-state degeneracies in parameter space can
therefore be determined by diagonalizing the Hamiltonian (E1)
for Bx = By = 0. In the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, the
Hamiltonian becomes block-diagonal:

HBES(0,0,Bz) =

⎛
⎜⎜⎜⎝

B0 + 2Bz 0 0 0
0 B0 g 0
0 g −B0 0
0 0 0 −B0 − 2Bz

⎞
⎟⎟⎟⎠,

(E2)

and thus the corresponding eigenenergies En and eigenstates
|ψn〉, with n = 1,2,3,4, are given by

E1 = −B0 − 2Bz, |ψ1〉 = (0,0,0,1)T ,

E2 = −δ, |ψ2〉 = 1√
(B+

z )2 + (
g

2

)2

(
0, − B+

z ,
g

2
,0

)T

,

E3 = B0 + 2Bz, |ψ3〉 = (1,0,0,0)T ,

E4 = δ, |ψ4〉 = 1√
(B−

z )2 + (
g

2

)2

(
0, − B−

z ,
g

2
,0

)T

, (E3)

where we defined

δ ≡
√

B2
0 + g2,

B+
z ≡ 1

2 (−B0 + δ), B−
z ≡ 1

2 (−B0 − δ). (E4)

In Fig. 9, we plot the eigenenergies En as a function of Bz for
Bx = By = 0 with fixed B0 and g. It shows that the ground-
state energy-level crosses with the excited energy levels at
Bz = B−

z and Bz = B+
z .

These degeneracies act as magnetic monopoles in parame-
ter space. The ground-state energy of the system as a function
of Bz for Bx = By = 0 can be written as

E0(Bz) =

⎧⎪⎨
⎪⎩

−B0 − 2Bz, Bz � B+
z ,

−δ, B−
z � Bz � B+

z ,

B0 + 2Bz, Bz � B−
z

(E5)

and the corresponding ground state reads

|�0(Bz)〉 =

⎧⎪⎪⎨
⎪⎪⎩

(0,0,0,1)T , Bz � B+
z ,

(0,−B+
z , g/2, 0)T√

(B+
z )2 + (g/2)2

, B−
z � Bz � B+

z ,

(1,0,0,0)T , Bz � B−
z .

(E6)

�3 3�2 2�1 10Bz
� Bz

�

�5

0

5

Bz

En

E1 E2 E3 E4

FIG. 9. Eigenenergies as a function of Bz for Bx = By = 0 and
fixed B0 and g. The degeneracies of the ground state occur at Bz = B−

z

and Bz = B+
z .

APPENDIX F: DEGENERATE PERTURBATION THEORY:
COORDINATE SYSTEM CENTERED AT MONOPOLES

In what follows, we use a degenerate perturbation theory
to calculate the ground-state of our two qubit system close
to the degeneracies at B+

z and B−
z . We will present only the

results for small deviations around the degeneracy B+
z ; the

results around B−
z are obtained in a similar way. Let us

consider the location of the degeneracy, given vectorially
by �B ′ = (0,0,B+

z )T , as the origin of a new coordinate
system. With respect to this new coordinate system, a point
in parameter space (Bx,By,Bz) is indicated by the vector
d �B = (dBx,dBy,dBz)T and it is related to the original
coordinate system by d �B = �B − �B ′ (Fig. 10), which yields
the following relations between the two coordinate systems:

�B =
⎛
⎝Bx

By

Bz

⎞
⎠ = �B ′ + d �B =

⎛
⎝ dBx

dBy

dBz + B+
z

⎞
⎠. (F1)

The Hamiltonian (E1) in the new coordinates reads

HBES = dBx

(
σx

1 + σx
2

) + dBy

(
σ

y

1 + σ
y

2

)
+ dBz

(
σ z

1 + σ z
2

) + B+
z

(
σ z

1 + σ z
2

)
+ g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

) + B0 σ z
1 . (F2)

FIG. 10. The two different coordinate systems: �B and d �B.
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We treat the deviation from the monopole (degeneracy) as
a small perturbation, i.e., |d �B| � 1. It is therefore useful to
express (F1) in spherical coordinates

d �B =
⎛
⎝dB sin ϑ cos φ

dB sin ϑ sin φ

dB cos ϑ

⎞
⎠ = �B − �B ′ =

⎛
⎝ B sin θ cos φ

B sin θ sin φ

B cos θ − B+
z

⎞
⎠,

(F3)

which yields the relations

dB sin ϑ = B sin θ, dB cos ϑ = B cos θ − B+
z . (F4)

Let us focus on the xz plane defined by By = 0, or in spherical
coordinates, by φ = 0. Such choice implies dBy = 0, and
thus we have

HBES = dBx

(
σx

1 + σx
2

) + dBz

(
σ z

1 + σ z
2

)
+B+

z

(
σ z

1 + σ z
2

) + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

) + B0 σ z
1

= H0 + dB H ′ (F5)

where

H0 = B+
z

(
σ z

1 + σ z
2

) + g

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

) + B0 σ z
1 ,

H ′ = sin ϑ
(
σx

1 + σx
2

) + cos ϑ
(
σ z

1 + σ z
2

)
. (F6)

1. Degenerate perturbation theory: ground-state calculation

First, we calculate the eigenvalues and eigenstates of H0.
The eigenenergies are given by

E
(0)
1 = −

√
B2

0 + g2, E
(0)
2 = −

√
B2

0 + g2,

E
(0)
3 =

√
B2

0 + g2, E
(0)
4 =

√
B2

0 + g2, (F7)

and the corresponding eigenstates read

∣∣�(0)
1

〉 = (0,0,0,1)T ,

∣∣�(0)
2

〉 =
⎛
⎝0, − B+

z√
(B+

z )2 + (
g

2

)2
,

(
g

2

)
√

(B+
z )2 + (

g

2

)2
,0

⎞
⎠

T

,

∣∣�(0)
3

〉 =
⎛
⎝0, − B−

z√
(B−

z )2 + (
g

2

)2
,

(
g

2

)
√

(B−
z )2 + (

g

2

)2
,0

⎞
⎠

T

,

∣∣�(0)
4

〉 = (1,0,0,0)T . (F8)

The location of the energy level crossings of the ground-state
and the first excited states on the z axis appear at

B+
z = 1

2

(−B0 +
√

B2
0 + g2

)
,

B−
z = 1

2

(−B0 −
√

B2
0 + g2

)
. (F9)

We note the following useful identities:

B+
z + B−

z = −B0, B+
z − B−

z =
√

B2
0 + g2 ≡ δ. (F10)

Let us also introduce the following notations:

δ ≡
√

B2
0 + g2, β2 ≡ g

δ
,

� ≡ B+
z − g

2√
(B+

z )2 + (
g

2

)2
, η ≡ (B−

z ) − g

2√
(B−

z )2 + (
g

2

)2
. (F11)

The unperturbed eigenstates {|�(0)
1 〉,|�(0)

2 〉} and {|�(0)
3 〉,|�(0)

4 〉}
are degenerate, therefore one needs to use a degenerate
perturbation theory to compute the first-order corrections. To
this end, we write the matrix

W =
(〈

�
(0)
1

∣∣H ′∣∣�(0)
1

〉 〈
�

(0)
1

∣∣H ′∣∣�(0)
2

〉
〈
�

(0)
2

∣∣H ′∣∣�(0)
1

〉 〈
�

(0)
2

∣∣H ′∣∣�(0)
2

〉
)

=
⎛
⎝ −2 cos ϑ − B+

z −g/2√
(B+

z )2+(g/2)2
sin ϑ

− B+
z −g/2√

(B+
z )2+(g/2)2

sin ϑ 0

⎞
⎠

=
(−2 cos ϑ −� sin ϑ

−� sin ϑ 0

)
. (F12)

The matrix W has eigenvalues

E
(1)
± = − cos ϑ ±

√
cos2 ϑ + �2 sin2 ϑ

= − cos ϑ ±
√

1 − β2 sin2 ϑ, (F13)

where we used the identities

�2 = (B+
z − g/2)2

(B+
z )2 + (g/2)2

= 1 − 2B+
z (g/2)

(B+
z )2 + (g/2)2

,

�2 ≡ 1 − g

δ
≡ 1 − β2. (F14)

The eigenvalues E
(1)
± of the matrix W give the first-order

correction to the two lowest eigenenergies, namely E1,2 =
E

(0)
1 + dB E

(1)
± . The eigenvectors of W are written as |w1,2〉

and read

|w1〉 =
(

a1

b1

)
=

⎛
⎝ E

(1)
−√

(E(1)
− )2+�2 sin2 ϑ

− � sin ϑ√
(E(1)

− )2+�2 sin2 ϑ

⎞
⎠,

|w2〉 =
⎛
⎝ E

(1)
+√

(E(1)
+ )2+�2 sin2 ϑ

− � sin ϑ√
(E(1)

+ )2+�2 sin2 ϑ

⎞
⎠. (F15)
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The “good” linear combination for the ground state at zeroth order is therefore given by∣∣�(0)
0

〉 = a1

∣∣�(0)
1

〉 + b1

∣∣�(0)
2

〉

= E
(1)
−√

(E(1)
− )2 + �2 sin2 ϑ

(0,0,0,1)T +
⎛
⎝ −� sin ϑ√

(E(1)
+ )2 + �2 sin2 ϑ

⎞
⎠

⎛
⎝0,

−B+
z√

(B+
z )2 + (

g

2

)2
,

(
g

2

)
√

(B+
z )2 + (

g

2

)2
,0

⎞
⎠

T

= 1√
(E(1)

− )2 + �2 sin2 ϑ

⎛
⎝0,

B+
z � sin ϑ√

(B+
z )2 + (

g

2

)2
,

−(
g

2

)
� sin ϑ√

(B+
z )2 + (

g

2

)2
,E

(1)
−

⎞
⎠

T

. (F16)

The first-order correction to the ground state is

∣∣�(1)
0

〉 =
∑

n�={1,2}

〈
�(0)

n

∣∣H ′∣∣�(0)
0

〉
(
E

(0)
1 − E

(0)
n

) ∣∣�(0)
n

〉 = − 1

2 δ

1√
(E(1)

− )2 + �2 sin2 ϑ

⎛
⎜⎜⎜⎜⎝

�2 sin2 ϑ

B−
z

B−
z − g

2
η2 E

(1)
− sin ϑ

−
g

2

B−
z − g

2
η2 E

(1)
− sin ϑ

0

⎞
⎟⎟⎟⎟⎠. (F17)

The second-order correction to the ground state is given by

∣∣�(2)
0

〉 =
∑

k �={1,2}

∑
l �={1,2}

〈
�

(0)
k

∣∣H ′∣∣�(0)
l

〉〈
�

(0)
l

∣∣H ′∣∣�(0)
0

〉
(
E

(0)
1 − E

(0)
k

)(
E

(0)
1 − E

(0)
l

) ∣∣�(0)
k

〉 − 1

2

∣∣�(0)
0

〉 ∑
k �={1,2}

〈
�

(0)
0

∣∣H ′∣∣�(0)
k

〉〈
�

(0)
k

∣∣H ′∣∣�(0)
0

〉
(
E

(0)
1 − E

(0)
k

)2 +

−
∑

k �={1,2}

〈
�

(0)
0

∣∣H ′∣∣�(0)
0

〉〈
�

(0)
k

∣∣H ′∣∣�(0)
0

〉
(
E

(0)
1 − E

(0)
k

)2

∣∣�(0)
k

〉
(F18)

= 1

4 δ2

�2 sin2 ϑ√
(E(1)

− )2 + �2 sin2 ϑ

⎛
⎜⎜⎜⎜⎝

η2

�2 E
(1)
− + 2 cos ϑ

B−
z

B−
z − g

2
η2 sin ϑ

−
g

2

B−
z − g

2
η2 sin ϑ

0

⎞
⎟⎟⎟⎟⎠ − 1

8 δ2

�2 sin2 ϑ√
(E(1)

− )2 + �2 sin2 ϑ

(
η2

�2 (E(1)
− )2 + �2 sin2 ϑ

)
(E(1)

− )2 + �2 sin2 ϑ

×

⎛
⎜⎜⎜⎜⎜⎝

0
B+

z

B+
z − g

2
�2 sin ϑ

−
g

2

B+
z − g

2
�2 sin ϑ

E
(1)
−

⎞
⎟⎟⎟⎟⎟⎠ + 1

2 δ2

E
(1)
− sin ϑ√

(E(1)
− )2 + �2 sin2 ϑ

(E(1)
− cos ϑ − �2 sin2 ϑ)

(E(1)
− )2 + �2 sin2 ϑ

⎛
⎜⎜⎜⎜⎝

�2 sin ϑ

B−
z

B−
z − g

2
η2 E

(1)
−

−
g

2

B−
z − g

2
η2 E

(1)
−

0

⎞
⎟⎟⎟⎟⎠. (F19)

The ground state can then be expressed up to second order by

|�0(dB,ϑ,0)〉 = ∣∣�(0)
0

〉 + dB
∣∣�(1)

0

〉 + dB2
∣∣�(2)

0

〉
, (F20)

and the dependence on the azimuth angle φ is obtained through the following rotation:

|�0(dB,ϑ,φ)〉 = R†(φ) |�0(dB,ϑ,0)〉, (F21)

where R(φ) = exp(i φ (σ̂ z
1 + σ̂ z

2 )/2).

2. Berry connection: effective magnetic vector potential

We are now able to calculate the Berry connection in spherical coordinates �A(S)
+ (dB,ϑ,φ), where the + sign indicates that

we are considering small radial deviations dB close to the degeneracy located at B+
z . The operator �∇ in spherical coordinates

(dB,ϑ,φ) is given by

�∇ =
(

∂

∂(dB)
,

1

dB

∂

∂ϑ
,

1

dB sin ϑ

∂

∂φ

)T

, (F22)
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therefore the only nonzero component of the Berry connection is Aφ,+ and reads

Aφ,+ = i
1

dB sin ϑ
〈�0(dB,ϑ,φ)|∂φ|�0(dB,ϑ,φ)〉

= 1

dB sin ϑ
〈�0(dB,ϑ,0)|1

2

(
σ̂ z

1 + σ̂ z
2

)|�0(dB,ϑ,0)〉

= 1

dB sin ϑ

[〈
�

(0)
0

∣∣1

2

(
σ̂ z

1 + σ̂ z
2

)∣∣�(0)
0

〉 + 2 dB
〈
�

(0)
0

∣∣1

2

(
σ̂ z

1 + σ̂ z
2

)∣∣�(1)
0

〉

+ dB2

(
2
〈
�

(0)
0

∣∣1

2

(
σ̂ z

1 + σ̂ z
2

)∣∣�(2)
0

〉 + 〈
�

(1)
0

∣∣1

2

(
σ̂ z

1 + σ̂ z
2

)∣∣�(1)
0

〉) + · · ·
]

= 1

dB sin ϑ

[
− (E(1)

− )2

(E(1)
− )2 + �2 sin2 ϑ

+ dB2 1

4 δ2

�4 sin4 ϑ

(E(1)
− )2 + �2 sin2 ϑ

+ dB2 1

4 δ2

(
η2

�2
(E(1)

− )2 + �2 sin2 ϑ

)
(E(1)

− )2

(E(1)
− )2 + �2 sin2 ϑ

�2 sin2 ϑ

(E(1)
− )2 + �2 sin2 ϑ

+ · · ·
]

= 1

dB sin ϑ

[
−1

2

(
1 + cos ϑ√

1 − β2 sin2 ϑ

)
+ dB2 1

8 δ2

(
1 − cos ϑ√

1 − β2 sin2 ϑ

)
(1 − β2) sin2 ϑ

+ dB2 1

8 δ2
sin2 ϑ

(
1 + (1 + β2) cos ϑ√

1 − β2 sin2 ϑ
+ β2 cos2 ϑ

1 − β2 sin2 ϑ

)
+ · · ·

]

≈ 1

dB sin ϑ

[
−1

2

(
1 + cos ϑ√

1 − β2 sin2 ϑ

)
+ dB2 1

8 δ2
sin2 ϑ

(
2 − β2 + 2β2 cos ϑ√

1 − β2 sin2 ϑ
+ β2 cos2 ϑ

1 − β2 sin2 ϑ

)]
, (F23)

where

β2 = g

δ
= g√

B2
0 + g2

,
η2

�2
= 1 + β2

1 − β2
. (F24)

In summary, one can write the Berry connection (vector potential) in spherical coordinates �A(S)
+ (dB,ϑ,φ) = Aφ,+ φ̂, with

Aφ,+ ≈ 1

dB sin ϑ

[
−1

2

(
1 + cos ϑ√

1 − β2 sin2 ϑ

)
+ dB2 1

8 δ2
sin2 ϑ

(
2 − β2 + 2β2 cos ϑ√

1 − β2 sin2 ϑ
+ β2 cos2 ϑ

1 − β2 sin2 ϑ

)]
, (F25)

and keeping only the leading order term for Aφ,+, we have

Aφ,+ ≈ −1

2

1

dB sin ϑ

(
1 + cos ϑ√

1 − β2 sin2 ϑ

)
. (F26)

3. Berry curvature: effective magnetic field

The Berry curvature �F (S)(dB,ϑ,φ) is obtained by taking the curl of (F26). The curl operator in spherical coordinates (dB,ϑ,φ)
reads

�F (S)(dB,ϑ,φ) = �∇ × �A(S)(dB,ϑ,φ)

= 1

dB sin ϑ
(∂ϑ (Aφ sin ϑ) − ∂φAϑ ) ˆdB + 1

dB

(
1

sin ϑ
∂φAdB − ∂dB(dBAφ)

)
ϑ̂

+ 1

dB
(∂dB(dBAϑ ) − ∂ϑAdB)φ̂, (F27)

where �A(S)(dB,ϑ,φ) = AdB
ˆdB + Aϑϑ̂ + Aφφ̂. The only nonvanishing component of �A(S)

+ (dB,ϑ,φ) is Aφ,+ and hence in the
leading order of dB, we find

�F (S)
+ (dB,ϑ,φ) = �∇ × �A(S)

+ (dB,ϑ,φ) ≈ 1

2

1

γ 2 (1 − β2 sin2 ϑ)3/2

1

dB2
ˆdB, (F28)

where we introduced γ ≡ 1/
√

1 − β2.
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FIG. 11. A density plot of the y component of �∇ × �F in Cartesian coordinates as a function of Bx and Bz is shown for By = 0, g = 2 and
B0 = 1. The curl of the Berry curvature has only a y component in the plane defined by By = 0. Negative values indicate that the vectors point
perpendicularly out of the plane and positive values indicate the vectors point perpendicularly into the plane. On the left, we show the curl of
the Berry curvature obtained by perturbation theory and on the right, obtained by exact diagonalization.

4. Curl of Berry curvature

Finally, the curl of the Berry curvature to the leading order in dB near the monopole B+
z can be calculated, and reads

�∇ × �F (S)
+ (dB,ϑ,φ) ≈ −3

4

β2 sin 2ϑ

γ 2 (1 − β2 sin2 ϑ)5/2

1

dB3
φ̂. (F29)

Following exactly the same procedure described above, but applied to the degeneracy located at B−
z , one finds that the leading

order of Aφ,− is given by

Aφ,− ≈ 1

2

1

dB sin ϑ

(
1 − cos ϑ√

1 − β2 sin2 ϑ

)
, (F30)

with respect to the coordinate system centered on B−
z . The Berry curvature �F (S)

− (dB,ϑ,φ) and �∇ × �F (S)
− (dB,ϑ,φ) can then be

calculated accordingly. The curl of the Berry curvature with respect to the original Cartesian coordinate system (Bx,By,Bz) takes
then the form

�∇ × �F (C)
(±) ≈ −3

2

β2Bx(Bz − B(±)
z )

γ 2
[
(1 − β2)B2

x + (Bz − B
(±)
z )2

]5/2

(−By x̂ + Bx ŷ√
B2

x + B2
y

)
. (F31)

In the Bx-Bz plane, corresponding to By = 0, only the y component of �∇ × �F (C)
(±) is nonzero. This situation is plotted in Fig. 11. For

comparison, we also plot the y component of the curl of the Berry curvature calculated numerically by using exact diagonalization.
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Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
(2007).

[4] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Nature (London) 452, 970 (2008).

[5] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[6] S. Oh, Phys. Lett. A 373, 644 (2009).
[7] S.-C. Li, L.-B. Fu, and J. Liu, Phys. Rev. A 89, 023628 (2014).
[8] B. Wu, Q. Zhang, and J. Liu, Phys. Lett. A 375, 545 (2011).
[9] J. Wiemer and F. Zhou, Phys. Rev. B 70, 115110 (2004).

[10] E. Sjoqvist, R. Rahaman, U. Basu, and B. Basu, J. Phys. A:
Math. Theor. 43, 354026 (2010).

[11] D. Viennot, J. Math. Phys. 47, 092105 (2006).
[12] A. I. Nesterov and F. Aceves de la Cruz, J. Phys. A: Math. Theor.

41, 485304 (2008).
[13] P. Bruno, Phys. Rev. Lett. 96, 117208 (2006).
[14] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[15] P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana,
N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen et al.,
Nature (London) 515, 241 (2014).

[16] X.-G. Wen, Quantum Field Theory of Many-body Systems: From
the Origin of Sound to an Origin of Light and Electrons (Oxford
University Press, New York, 2004).

[17] A. B. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University Press,
Princeton, NJ, 2013).

094106-15

http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1016/j.physleta.2008.12.023
http://dx.doi.org/10.1016/j.physleta.2008.12.023
http://dx.doi.org/10.1016/j.physleta.2008.12.023
http://dx.doi.org/10.1016/j.physleta.2008.12.023
http://dx.doi.org/10.1103/PhysRevA.89.023628
http://dx.doi.org/10.1103/PhysRevA.89.023628
http://dx.doi.org/10.1103/PhysRevA.89.023628
http://dx.doi.org/10.1103/PhysRevA.89.023628
http://dx.doi.org/10.1016/j.physleta.2010.12.030
http://dx.doi.org/10.1016/j.physleta.2010.12.030
http://dx.doi.org/10.1016/j.physleta.2010.12.030
http://dx.doi.org/10.1016/j.physleta.2010.12.030
http://dx.doi.org/10.1103/PhysRevB.70.115110
http://dx.doi.org/10.1103/PhysRevB.70.115110
http://dx.doi.org/10.1103/PhysRevB.70.115110
http://dx.doi.org/10.1103/PhysRevB.70.115110
http://dx.doi.org/10.1088/1751-8113/43/35/354026
http://dx.doi.org/10.1088/1751-8113/43/35/354026
http://dx.doi.org/10.1088/1751-8113/43/35/354026
http://dx.doi.org/10.1088/1751-8113/43/35/354026
http://dx.doi.org/10.1063/1.2345473
http://dx.doi.org/10.1063/1.2345473
http://dx.doi.org/10.1063/1.2345473
http://dx.doi.org/10.1063/1.2345473
http://dx.doi.org/10.1088/1751-8113/41/48/485304
http://dx.doi.org/10.1088/1751-8113/41/48/485304
http://dx.doi.org/10.1088/1751-8113/41/48/485304
http://dx.doi.org/10.1088/1751-8113/41/48/485304
http://dx.doi.org/10.1103/PhysRevLett.96.117208
http://dx.doi.org/10.1103/PhysRevLett.96.117208
http://dx.doi.org/10.1103/PhysRevLett.96.117208
http://dx.doi.org/10.1103/PhysRevLett.96.117208
http://dx.doi.org/10.1038/nature13891
http://dx.doi.org/10.1038/nature13891
http://dx.doi.org/10.1038/nature13891
http://dx.doi.org/10.1038/nature13891


TIAGO SOUZA et al. PHYSICAL REVIEW B 94, 094106 (2016)

[18] V. Gritsev and A. Polkovnikov, Proc. Natl. Acad. Sci. USA 109,
6457 (2012).

[19] J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth, New J. Phys.
13, 053042 (2011).

[20] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg,
J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and K. W.
Lehnert, Phys. Rev. Lett. 113, 050402 (2014).

[21] D. R. Yarkony, Acc. Chem. Res. 31, 511 (1998).
[22] D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
[23] J. W. Zwanziger and E. R. Grant, J. Chem. Phys. 87, 2954 (1987).
[24] M. Nakahara, Geometry, Topology and Physics (Institute of

Physics, London, 2003).
[25] D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall,

Upper Saddle River, NJ, 1999).

094106-16

http://dx.doi.org/10.1073/pnas.1116693109
http://dx.doi.org/10.1073/pnas.1116693109
http://dx.doi.org/10.1073/pnas.1116693109
http://dx.doi.org/10.1073/pnas.1116693109
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1103/PhysRevLett.113.050402
http://dx.doi.org/10.1103/PhysRevLett.113.050402
http://dx.doi.org/10.1103/PhysRevLett.113.050402
http://dx.doi.org/10.1103/PhysRevLett.113.050402
http://dx.doi.org/10.1021/ar970113w
http://dx.doi.org/10.1021/ar970113w
http://dx.doi.org/10.1021/ar970113w
http://dx.doi.org/10.1021/ar970113w
http://dx.doi.org/10.1103/RevModPhys.68.985
http://dx.doi.org/10.1103/RevModPhys.68.985
http://dx.doi.org/10.1103/RevModPhys.68.985
http://dx.doi.org/10.1103/RevModPhys.68.985
http://dx.doi.org/10.1063/1.453083
http://dx.doi.org/10.1063/1.453083
http://dx.doi.org/10.1063/1.453083
http://dx.doi.org/10.1063/1.453083



