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Renormalization group analysis of graphene with a supercritical Coulomb impurity
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We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By
introducing an Aharonov–Bohm solenoid at the potential center, the critical Coulomb charge can be made
arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes
possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the
renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing
the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge
and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the
distance from the potential center. Our findings are consistent with the previous prediction obtained by directly
solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
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I. INTRODUCTION

One of the great successes of quantum mechanics was
Bohr’s explanation for the stability and structure of atoms [1].
Quantum mechanics was later married with special relativity
to give birth to relativistic quantum mechanics. In particular,
Paul Dirac derived the celebrated wave equation, which was
solved for an electron in a nuclear Coulomb potential leading
to the fine structure of atoms [2]. However, when the nuclear
charge Z exceeds the reciprocal of the fine structure constant
α = e2/(4πε0�c) ≈ 1/137, ordinary solutions to the Dirac
equation break down by producing a complex spectrum in the
lowest angular-momentum channel [3]. While this problem is
usually evaded by allowing a finite size for the charged nucleus
[4,5], it is less well known that universal physics independent
of such short-distance details can be extracted by reimposing
the appropriate boundary condition at the location of the point
nucleus [6,7].

To elaborate along the lines of Ref. [8], we recall that the
radial Dirac equation in a supercritical angular-momentum
channel admits two linearly independent solutions which,
toward the potential center, behave as powers of the radius
∼r±iγ with exponents complex conjugate to each other.
Because they correspond to inward and outward spherical
waves, the unitarity requires superposing the two solutions
equally. To this end, a new length scale r∗ must be introduced
to unify their dimensions, for example, by multiplying the
one solution ∼r−iγ by r

2iγ
∗ . Obviously, the resulting physics

is invariant under the replacement of r∗ with its multiple
by a factor of enπ/γ for arbitrary integer n. The physical
consequences of such discrete scale invariance include not
only the geometric sequence of so-called atomic collapse
resonances [9–11] but also the log-periodic oscillation in the
vacuum polarization, which are universally related through the
single quantity r∗ [8].

While these intriguing phenomena caused by a supercritical
Coulomb potential have been predicted by directly solving the
Dirac equation [8–11], the present paper is aimed at developing
an alternative field-theoretic approach to such peculiarities
of relativistic quantum mechanics. In particular, we focus
on massless Dirac fermions in two dimensions because they
emerge in low-energy physics of graphene with an effective

fine structure constant as large as e2/(4πε0�vF) ≈ 2 and thus
just a few charged impurities are sufficient to produce the
supercritical Coulomb potential [12–15]. Furthermore, the
critical Coulomb charge in two-dimensional systems can in
principle be controlled by introducing an Aharonov–Bohm
solenoid at the potential center [16], which facilitates our
theoretical analysis as discussed below.

II. FIELD-THEORETIC FORMULATION

The second-quantized Hamiltonian describing massless
Dirac fermions in two dimensions is

H =
∫

d r�†(r){vF[−i�∇ + eA(r)] · σ − eV (r)}�(r),

(1)

where −e < 0 is the electron charge but the electron-electron
interaction is neglected. The Coulomb potential produced by
a net charge of Ze centered at the origin is

V (r) = Ze

4πε0r
, (2)

while the Aharonov–Bohm solenoid centered at the same point
provides

A(r) = �

2π

(
− y

r2
,
x

r2

)
, (3)

with a net magnetic flux of �. This constitutes our Aharonov–
Bohm–Coulomb–Dirac (ABCD) problem.

Because of the rotational symmetry in Eq. (1), the partial-
wave expansion of

�(r) =
∞∑

j=−∞

(
ei(j− 1

2 )θ 0

0 iei(j+ 1
2 )θ

)
e−i π

4 σ1
ψj (r)√

2πr
(4)

decouples the Hamiltonian into different partial-wave sectors
as

H = �vF

∞∑
j=−∞

∫ ∞

0
drψ

†
j (r)

(
−i∂rσ3 − g

r
σ0 + j + φ

r
σ1

)

×ψj (r). (5)
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Here j = ±1/2, ± 3/2, . . . is the total angular momentum
and we defined the dimensionless Coulomb coupling

g ≡ Ze2

4πε0�vF
, (6)

as well as the magnetic flux in units of h/e:

φ ≡ e�

2π�
. (7)

Besides the kinetic term, each radial Hamiltonian in Eq. (5)
consists of the Coulomb potential and the centrifugal potential,
both of which are in the scale-invariant form of 1/r . Because
the role of the Aharonov–Bohm solenoid is just to shift the
total angular momentum by φ, all solutions to the radial Dirac
equation obtained previously in Refs. [8–11] remain valid by
replacing j with j + φ. In particular, the critical Coulomb
coupling becomes |j + φ| which can be made arbitrarily
small, in principle, by controlling the magnetic flux [16] (see
also Ref. [17]).

Physical quantities of our interest are the charge den-
sity ρ(r) = −e〈�†(r)�(r)〉 and the current density J(r) =
−evF〈�†(r)σ�(r)〉 in the ground state of the ABCD Hamil-
tonian (1). With the use of the partial-wave expansion (4), the
charge density can be expressed as

ρ(r) = − e

2πr

∞∑
j=−∞

〈ψ†
j (r)σ0ψj (r)〉, (8)

and the current density as

Jr (r) = − evF

2πr

∞∑
j=−∞

〈ψ†
j (r)σ3ψj (r)〉 (9)

in the radial direction and as

Jθ (r) = − evF

2πr

∞∑
j=−∞

〈ψ†
j (r)σ1ψj (r)〉 (10)

in the angular direction. Therefore, our task is to compute their
contributions from each partial-wave sector.

To develop a field-theoretic approach to a particular
partial-wave sector, we recall that the point charge (2) and
the line solenoid (3) assumed implicitly above are effective
descriptions valid at distances sufficiently longer than the
actual charge and solenoid radii ∼�−1. This motivates us to
consider a semi-infinite one-dimensional problem defined by
the following imaginary-time action:

S =
∫ ∞

−∞
dτ

∫ ∞

0
drψ

†
j (τ,r)(∂τσ0 − i∂rσ3)ψj (τ,r) (11a)

−
∫ ∞

−∞
dτ

∫ ∞

�−1

dr

r
ψ

†
j (τ,r)(g0σ0 + g1σ1)ψj (τ,r) (11b)

−
3∑

a=0

∫ ∞

−∞
dτψ

†
j (τ,0)vaσaψj (τ,0). (11c)

Here we set � = vF = 1 and dimensionless couplings for the
1/r potentials in Eq. (11b) are g0 ≡ g and g1 ≡ −(j + φ)
according to Eq. (5), which are now cut off at r = �−1 > 0.
On the other hand, new contact terms with dimensionless
couplings v0, v1, v2, and v3 are introduced at the potential
center to ensure the cutoff independence of long-distance
physics.

The physical meaning of Eq. (11c) can be further clarified
by writing down the bare propagator generated by Eq. (11a),
which is

G(ε,r − r ′) ≡
∫ ∞

−∞
dτeiετ 〈T ψj (τ,r)ψ†

j (0,r ′)〉0

= sgn(ε)σ0 + sgn(r − r ′)σ3

−2i
e−|ε||r−r ′|, (12)

and thus nonzero only in the upper-left (lower-right) element
when sgn(ε)sgn(r − r ′) > 0 (<0). Therefore, the upper and
lower components of ψj for ε > 0 correspond to the outward
(r > r ′) and inward (r < r ′) spherical waves, respectively,
while their roles are reversed for ε < 0. This in turn means that
the upper-right (lower-left) element of

∑3
a=0 vaσa in Eq. (11c)

plays the role of reflecting particle at the potential center
for ε > 0 (<0), while the other elements play no physical
role in our semi-infinite one-dimensional problem defined
only for r,r ′ > 0. Accordingly, the corresponding coupling
v1 − isgn(ε)v2 represents a scattering amplitude for reflection
of particle at the potential center and its energy dependence is
to be determined by the renormalization group analysis.

III. RENORMALIZATION GROUP ANALYSIS

To facilitate our theoretical analysis, we regard g0 and
g1 as small perturbations. To their lowest order at O(g),
there are four distinct diagrams that renormalize v0, v1,
v2, and v3 as depicted in Fig. 1. After straightforward
calculations summarized in Appendix A, the renormalization
group equation that governs the running of v1 − iεv2 is found
to be

d(v1 − iεv2)

d ln �
= g1 + 2iεg0(v1 − iεv2) − g1(v1 − iεv2)2,

(13)

with iε ≡ isgn(ε). We note that the beta function is quadratic
in terms of v1 − iεv2 which is not altered even by higher-
order corrections in g0 and g1. Furthermore, because the
complex coupling v1 − iεv2 represents a scattering amplitude

(a) (b) (c) (d)

FIG. 1. Feynman diagrams to the lowest order in g0 and g1 that renormalize v0, v1, v2, and v3. The solid lines represent the fermion
propagator in Eq. (12), the wavy lines represent the 1/r potentials in Eq. (11b), the dots represent the contact terms in Eq. (11c), and the double
lines represent the potential center located at r = 0.
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|g0| < |g1| |g0| > |g1|

Im Im

Re Re

FIG. 2. Renormalization group flow of v1 − iεv2 in its complex
plane. In the subcritical case (left figure), the running coupling subject
to the unitarity condition flows on the unit circle from the ultraviolet
fixed point (◦) into the infrared fixed point (•). On the other hand,
in the supercritical case (right figure), the two fixed points are “pair
annihilated” from the unit circle and the renormalization group limit
cycle emerges.

for reflection of particle at the potential center, the unitarity
requires its modulus to be unity. The resulting solution exhibits
qualitatively different behavior depending on whether the
Coulomb coupling is subcritical or supercritical as illustrated
in Fig. 2 (see also Refs. [18,19]).

In the case of subcritical Coulomb coupling |g0| < |g1|,
the general solution to the renormalization group equation
(13) subject to the unitarity condition |v1 − iεv2| = 1 can be
obtained as

v1 − iεv2 = iε
g0

g1
+ γ̄

g1
tanh

(
γ̄ ln

�

2|ε| + arctanh
iε γ̄

g0 ± g1

)
,

(14)

with γ̄ ≡ (g2
1 − g2

0)1/2. Here an arbitrary energy scale ε should
be identified with the scattering energy of particle up to an
unimportant factor because it is the only energy scale possible
in our scattering amplitude. Accordingly, we find that the
resulting scattering amplitude flows on the unit circle into
an infrared fixed point at

lim
|ε|/�→0

v1 − iεv2 → iε
g0

g1
+ γ̄

g1
(15)

in the low-energy or large-cutoff limit.
On the other hand, in the case of supercritical Coulomb cou-

pling |g0| > |g1|, the general solution to the renormalization
group equation (13) turns into

v1 − iεv2 = iε
g0

g1
− γ

g1
tan

(
γ ln

�

2|ε| + arctan
iεγ

g0 + g1

)
(16)

by replacing γ̄ in Eq. (14) with iγ ≡ i(g2
0 − g2

1)1/2. Here the
upper sign in g0 ± g1 was chosen without loss of generality
because their difference can be absorbed by the redefinition of
�. Remarkably, we find that the resulting scattering amplitude
subject to the unitarity condition |v1 − iεv2| = 1 exhibits log-
periodic revolutions in its complex plane as a function of the
scattering energy ε. This is nothing short of the renormalization
group limit cycle revealing the emergence of discrete scale

invariance by a factor of enπ/γ for arbitrary integer n [20]. In
particular, when ε > 0 is analytically continued to a complex
variable iE, the scattering amplitude (16) has an infinite tower
of poles at

En = − i

2
�∗e−( 1

2 +n)π/γ , (17)

with

�∗ ≡ � exp

(
1

γ
arctan

iγ

g0 + g1

)
, (18)

which corresponds to the geometric sequence of atomic
collapse resonances [9–11]. We note that the renormalization
group limit cycle in the context of graphene with a supercritical
Coulomb impurity was also discussed in Refs. [21,22] from a
different perspective.

IV. INDUCED CHARGE AND CURRENT

We now study the physical consequences of our findings
from the renormalization group analysis to the charge and
current densities induced by the Coulomb potential with the
Aharonov–Bohm solenoid. Feynman diagrams that potentially
contribute to 〈ψ†

j (r)σ0,3,1ψj (r)〉 at O(1) and O(g) are depicted
in Figs. 3 and 1, respectively, whose expressions are summa-
rized in Appendix B.

The contributions of Figs. 3 and 1(d) to the charge density
〈ψ†

j (r)σ0ψj (r)〉 vanish and thus the lowest contributions are
O(g) and are evaluated as

Fig. 1(a) = g0

πr
(19)

and

Fig. 1(b) = Fig. 1(c)

= −g1

π

∫ ∞

0
dεIm[v1 − iεv2]�(0,2εr), (20)

where (v1 − iεv2)∗ = (v1 − iεv2)|ε→−ε is used. Their sum
leads to 〈ψ†

j (r)σ0ψj (r)〉 = 0 in the subcritical case of Eq. (15)
but

〈ψ†
j (r)σ0ψj (r)〉 = γ

πr

∫ ∞

0
dzIm

[
tan

(
γ ln

r�∗
z

)]
�(0,z)

(21)

in the supercritical case of Eq. (16). Therefore, while the
subcritical Coulomb potential does not induce a tail in the
charge density [23], a power-law tail is induced by the
supercritical Coulomb potential with its coefficient being a
log-periodic function of r . Because only one partial-wave
sector can be supercritical for |g0|  1, the charge density

FIG. 3. Feynman diagram at O(1) that potentially contributes to
the charge and current densities by closing the two external solid
lines at a position r > 0 with an appropriate σ matrix. The possible
contributions at O(g) are already presented in Fig. 1.
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(8) including all partial waves is found to be

ρ(r) = − e

2π2r2

{
γ

∫ ∞

0
dzIm

[
tan

(
γ ln

r�∗
z

)]
�(0,z)

}
,

(22)

which is consistent with the previous prediction obtained by
directly solving the Dirac equation [8].

Similarly, the contributions of Figs. 3 and 1(a) and 1(d) to
the radial current density 〈ψ†

j (r)σ3ψj (r)〉 vanish and the other
nonzero contributions are evaluated as

Fig. 1(b) = −Fig. 1(c)

= −i
g1

π

∫ ∞

0
dεRe[v1 − iεv2]�(0,2εr), (23)

which are, however, summed up to 〈ψ†
j (r)σ3ψj (r)〉 = 0 in

both the subcritical and supercritical cases. On the other
hand, the lowest contribution to the angular current density
〈ψ†

j (r)σ1ψj (r)〉 is O(1) and is evaluated as

Fig. 3 = 1

π

∫ ∞

0
dεRe[v1 − iεv2]e−2εr , (24)

which leads to 〈ψ†
j (r)σ1ψj (r)〉 = γ̄ /(2g1πr) in the subcritical

case of Eq. (15) but

〈ψ†
j (r)σ1ψj (r)〉 = − γ

2g1πr

∫ ∞

0
dzRe

[
tan

(
γ ln

r�∗
z

)]
e−z

(25)

in the supercritical case of Eq. (16). Therefore, while the
angular current density has a power-law tail even for the
subcritical Coulomb potential [24], its constant coefficient is
turned into a log-periodic function of r by the supercritical
Coulomb potential. Because only one partial-wave sector can
be supercritical for |g0|  1, the current density in the angular
direction (10) including all partial waves is found to be

Jθ (r)=− evF

2π2r2

{
# − γ

2g1

∫ ∞

0
dzRe

[
tan

(
γ ln

r�∗
z

)]
e−z

}
,

(26)

where # is an unknown constant contributed by all subcritical
sectors.

V. SUMMARY AND CONCLUSION

In summary, the ABCD problem, i.e., massless Dirac
fermions in a Coulomb potential accompanied by an
Aharonov–Bohm solenoid [Eq. (1)], was studied from a
field-theoretic perspective. To this end, we wrote down an
effective action describing one partial-wave sector [Eq. (11)]
and performed a perturbative renormalization group anal-
ysis enabled by suppressing the centrifugal barrier with
the Aharonov–Bohm effect. We showed that a scattering
amplitude for reflection of particle at the potential center flows
into an infrared fixed point [Eq. (15)] when the Coulomb
potential is subcritical, while it exhibits the renormalization
group limit cycle [Eq. (16)] for the supercritical Coulomb
potential revealing the emergence of discrete scale invariance.
Such a peculiar behavior is physically reflected not only in the
geometric sequence of atomic collapse resonances [Eq. (17)]
but also in the induced charge density [Eq. (22)] and current
density [Eq. (26)], both of which were found to have power-law
tails with coefficients log periodic with respect to the distance
from the potential center. Hopefully, our intriguing findings
can in principle be realized by graphene experiments with
charged impurities [12–15], where the induced charge and
current densities are multiplied by four due to spin and valley
degeneracy. While they are all consistent with the previous pre-
diction obtained by directly solving the Dirac equation [8], our
field-theoretic approach will be advantageous in incorporating
the so-far-neglected electron-electron interaction [25].
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APPENDIX A: EVALUATION OF DIAGRAMS IN FIG. 1
FOR RENORMALIZATION GROUP EQUATIONS

The diagrams in Fig. 1 are logarithmically divergent at
� → ∞ and are evaluated as

Fig. 1(a) =
∫

�−1

dr

r
(g0σ0 + g1σ1) = (g0σ0 + g1σ1) ln � + finite terms, (A1)

Fig. 1(b) + Fig. 1(c) =
3∑

a=0

∫
�−1

dr

r
(g0σ0 + g1σ1)G(ε,r)vaσa +

3∑
b=0

∫
�−1

dr

r
vbσbG(ε, − r)(g0σ0 + g1σ1)

= iεg0(v0σ0 + v1σ1 + v2σ2 + v3σ3) ln � + g0(v2σ1 − v1σ2) ln �

+ iεg1(v1σ0 + v0σ1) ln � + g1(v2σ0 + v0σ2) ln � + finite terms, (A2)

Fig. 1(d) =
3∑

a,b=0

∫
�−1

dr

r
vbσbG(ε, − r)(g0σ0 + g1σ1)G(ε,r)vaσa

= −g1

2

[(
v2

0 + v2
1 − v2

2 − v2
3

)
σ1 + 2v1(v0σ0 + v2σ2 + v3σ3)

]
ln �

+ iε
g1

2

[(
v2

0 − v2
1 + v2

2 − v2
3

)
σ2 + 2v2(v0σ0 + v1σ1 + v3σ3)

]
ln � + finite terms. (A3)
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From the coefficients of σ0, σ1, σ2, and σ3, the renormalization group equations for v0, v1, v2, and v3 are extracted to be

dv0

d ln �
= g0 + iεg0v0 + iεg1v1 + g1v2 − g1v0v1 + iεg1v0v2, (A4a)

dv1

d ln �
= g1 + iεg0v1 + g0v2 + iεg1v0 − g1

2

(
v2

0 + v2
1 − v2

2 − v2
3

) + iεg1v1v2, (A4b)

dv2

d ln �
= iεg0v2 − g0v1 + g1v0 + iε

g1

2

(
v2

0 − v2
1 + v2

2 − v2
3

) − g1v1v2, (A4c)

dv3

d ln �
= iεg0v3 − g1v1v3 + iεg1v2v3. (A4d)

By combining these couplings to match with each element of
∑3

a=0 vaσa , their renormalization group equations are
simplified to

d(v0 ± v3)

d ln �
= −[g1(v1 − iεv2) − iεg0](v0 ± v3 − iε), (A5a)

d(v1 + iεv2)

d ln �
= −g1(v0 + v3 − iε)(v0 − v3 − iε), (A5b)

d(v1 − iεv2)

d ln �
= −g1(v1 − iεv2)2 + 2iεg0(v1 − iεv2) + g1. (A5c)

As discussed in the main text below Eq. (12), the complex coupling v1 − iεv2 represents a scattering amplitude for reflection of
particle at the potential center, while the other couplings have no physical meaning in our semi-infinite one-dimensional problem.
To confirm the unitarity of solutions presented in Eqs. (14) and (16), it is useful to derive the renormalization group equation for
|v1 − iεv2|2 from Eq. (13), which is

d|v1 − iεv2|2
d ln �

= g1[(v1 − iεv2) + (v1 − iεv2)∗](1 − |v1 − iεv2|2), (A6)

and thus |v1 − iεv2| = 1 corresponds to its fixed point.

APPENDIX B: EVALUATION OF DIAGRAMS IN FIGS. 3 and 1 FOR CHARGE AND CURRENT DENSITIES

The diagrams in Figs. 3 and 1 contributing to 〈ψ†
j (r)σcψj (r)〉 are O(1) and O(g), respectively, and are expressed as

Fig. 3 = −
3∑

a=0

∫ ∞

−∞

dε

2π
Tr[σcG(ε,r)vaσaG(ε, − r)], (B1)

Fig. 1(a) = −
∫ ∞

−∞

dε

2π

∫ ∞

�−1

dr ′

r ′ Tr[σcG(ε,r − r ′)(g0σ0 + g1σ1)G(ε,r ′ − r)], (B2)

Fig. 1(b) = −
3∑

a=0

∫ ∞

−∞

dε

2π

∫ ∞

�−1

dr ′

r ′ Tr[σcG(ε,r − r ′)(g0σ0 + g1σ1)G(ε,r ′)vaσaG(ε, − r)], (B3)

Fig. 1(c) = −
3∑

b=0

∫ ∞

−∞

dε

2π

∫ ∞

�−1

dr ′

r ′ Tr[σcG(ε,r)vbσbG(ε, − r ′)(g0σ0 + g1σ1)G(ε,r ′ − r)], (B4)

Fig. 1(d) = −
3∑

a,b=0

∫ ∞

−∞

dε

2π

∫ ∞

�−1

dr ′

r ′ Tr[σcG(ε,r)vbσbG(ε, − r ′)(g0σ0 + g1σ1)G(ε,r ′)vaσaG(ε, − r)], (B5)

with c = 0 for the charge density, c = 3 for the radial current density, and c = 1 for the angular current density. While most of
these expressions can be evaluated straightforwardly as presented in the main text, the part of Fig. 1(a) for c = 0 proportional to
g0 is tricky to evaluate as we elaborate here.

The tricky part is nothing short of the linear term of the following resummed expression:

n0(r) =
∫ ∞

−∞

dε

2π
Tr

[
〈r| 1

iε − Ĥ0 − V̂0
− 1

iε − Ĥ0
|r〉

]

=
∫ ∞

−∞

dε

2π

∫ ∞

−∞
dr ′Tr

[
〈r| 1

iε − Ĥ0 − V̂0
|r ′〉V0(r ′)〈r ′| 1

iε − Ĥ0
|r〉

]
. (B6)
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Here 〈r|Ĥ0|r ′〉 = −i∂rσ3δ(r − r ′) is the kinetic operator and 〈r|V̂0|r ′〉 = V0(r)δ(r − r ′) is the potential operator with V0(r) =
−(g0/r)θ (r − �−1) in our case. The use of energy eigenfunctions eikrσ3 for Ĥ0 and eiKrσ3−iσ3

∫ r

0 dr ′′V0(r ′′) for Ĥ0 + V̂0 leads to

n0(r) =
∫ ∞

−∞

dε

2π

∫ ∞

−∞
dr ′

∫ ∞

−∞

dK

2π

∫ ∞

−∞

dk

2π
Tr

[
1

iε − K

1

iε − k
V0(r ′)ei(K−k)(r−r ′)σ3−iσ3

∫ r

r′ dr ′′V0(r ′′)
]
. (B7)

By integrating over ε and then r ′, we obtain

n0(r) = 4π

∫ ∞

−∞

dK

2π

∫ ∞

−∞

dk

2π
[θ (−K)θ (k) − θ (K)θ (−k)]δ(K − k − V0(r)) = −V0(r)

π
, (B8)

which is presented in Eq. (19) for r > �−1.
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