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Symmetry-protected coherent transport for diluted vacancies and adatoms in graphene
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We study the effects of a low concentration of adatoms or single vacancies in the linear–response transport
properties of otherwise clean graphene. These impurities were treated as localized orbitals, and for each type
two cases with distinct coupling symmetries were studied. For adatoms, we considered top- and hollow-site
adsorbates (TOP and HS). For vacancies, we studied impurity formation by soft bond reconstruction (REC),
as well as the more symmetric case of charge accumulation in unreconstructed vacancies (VAC). Our results
indicate that the transport is determined by usual impurity scattering when the graphene-impurity coupling does
not possess C3v symmetry (TOP and REC). In contrast, VAC impurities decouple from the electronic states
at the Dirac points, and yield no contribution to the resistivity for a sample in charge neutrality. Furthermore,
the inversion-symmetry-conserving HS impurities also decouple from entire sets of momenta throughout the
Brillouin zone, and do not contribute to the resistivity within a broad range of parameters. These behaviors are
protected by C3v and inversion symmetry, respectively, and persist for more general impurity models.
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I. INTRODUCTION

Graphene has been hailed as a promising material due to its
unique electronic transport properties [1], governed by elemen-
tary excitations that behave as massless, chiral Dirac fermions
[2]. This leads to unique features, such as a universal minimum
ballistic conductance [3–5] σmin = 4e2/πh, expected for an
infinite “clean” graphene sample at the charge-degeneracy
point, and which has been confirmed by experiments [6,7].

The effects of short-range disorder (scattering centers, such
as impurities or defects) in the transport properties of graphene
has been the subject of intense research efforts. It has been
argued that the conductivity depends strongly on the nature
of the scattering processes [8–10], and particularly on the
symmetries of the disorder distribution [11]. Moreover, it has
been also established that impurities or defects that break the
sublattice symmetry produce intervalley scattering and lead
to nonuniversal conductivities [12,13]. In fact, experimental
results for irradiated graphene show a strong decrease in
the minimum conductivity, well below the universal value,
indicating the onset of an insulating behavior [14].

More recently, there has been rising interest in the formation
of magnetic moments in impurities and vacancies in graphene
[15–17], and the possible observation of the Kondo effect
[18,19]. In this context, it has become clear that it is crucial
considering not only the type of impurity (e.g., adatom or
defect) but, more importantly, how it couples to the graphene
lattice.

For instance, Uchoa et al. [20] find that the effective impu-
rity hybridization strongly depends on whether the graphene-
impurity coupling breaks or preserves the C3v point group
symmetry of the sublattice. If this symmetry is preserved,
the hybridization function is strongly suppressed near the
charge-degeneracy point (ε =0), since it scales with energy as
|ε|3. In contrast, C3v-breaking couplings scale as |ε| [20]. In
fact, this effective decoupling of the impurities at low energies
has been studied in the context of disorder in graphene,
leading to so-called “anomalous Anderson localization,” in
sharp contrast to symmetry-breaking impurities and Coulomb
charge centers [21].

In this paper we study the effects of a low impurity density in
the transport properties of graphene, in terms of the symmetry
of the impurity couplings. Using the Kubo formalism, we
derive general expressions for the dc electrical resistivity in
systems with different types of adatoms (top site and hollow
site) and vacancies (symmetric and reconstructed), in varying
concentrations.

The overall behaviors for impurities with different symme-
try properties are strikingly different. While top-site adsorbates
and reconstructed vacancies give a finite resistivity contribu-
tion, we find that hollow-site adatoms and symmetric vacancies
decouple from the electronic states at the Dirac points, leading
to a vanishing contribution to the resistivity in charge-neutral
graphene. Strikingly, hollow-site impurities also decouple
from entire sets of states throughout the Brillouin zone, and
do not contribute to the sample resistivity for any value of the
carrier density. These are quantum-interference effects, and
are protected by C3v and inversion symmetry, respectively.

In systems with a mixture of symmetry-preserving and
symmetry-breaking impurities (the most likely scenario in
real experiments), we find that the impurity contribution to
the resistivity can change by several orders of magnitude,
depending on the relative symmetric/nonsymmetric impurity
concentration. Our results show a strong temperature depen-
dence for the contribution of nonsymmetric impurities. Since
the graphene conductivity minimum (resistivity maximum) is
temperature independent down to 30 mK, it should be possible
to detect such a robust impurity contribution in transport
experiments.

The remainder of this paper is organized as follows:
Section II gives a brief introduction to graphene in the tight-
binding approximation, and introduces the graphene-impurity
couplings and their symmetries. In Sec. III we develop a Kubo
formalism for the low-energy regime, and derive a general
formula for the resistivity at low impurity density. Numerical
results for the resistivity of one- and two-impurity mixtures as
a function of temperature and chemical potential are presented
and discussed in Sec. IV. Finally, we present our conclusions
in Sec. V.
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II. IMPURITIES IN A GRAPHENE SAMPLE

Graphene can be described by the tight-binding Hamilto-
nian

HG = −t
∑

s

∑
Ri

3∑
j=1

{a†
s (Ri)bs(Ri + aûj ) + H.c.}, (1)

where operators a
†
s (Ri) [as(Ri)] and b

†
s (Ri) [bs(Ri)] create

(annihilate) electrons of spin projection s at the ith site of
sublattices A and B, respectively. The vector Ri in Eq. (1)
and all expressions henceforth runs over sublattice A sites.
All nearest neighbors to these sites belong to sublattice B,
and are located at positions Ri + aûj , where û1 = x̂, û2 =
−x̂/2 + ŷ

√
3/2 and û3 = −x̂/2 − ŷ

√
3/2 are unit vectors and

a is the nearest-neighbor spacing.
HG can be expressed in terms of plane-wave operators as

HG = −t
∑

ks

{�(k) a
†
k,sbk,s + H.c.}, (2)

with

�(k) ≡
3∑

j=1

eiak·ûj . (3)

This model can be diagonalized exactly, giving two energy
bands with dispersions ε±(k) = ±t |�(k)| and correspond-
ing operators c±,ks . Defining the column vectors ck,s =
(c+,k,s , c−,k,s)T and ψk,s = (ak,s , bk,s)T , the operators of the
basis in which HG is diagonal (hereafter referred to as the
“c basis”) can be related to those of the A and B sublattices
through the unitary transformation ψk,s = Ukck,s , with

Uk = 1√
2

(
�(k)
|�(k)| − �(k)

|�(k)|
1 1

)
. (4)

A single (noninteracting) impurity will be treated as a
localized level described by the term

HI =
∑

s

εd d†
s ds, (5)

where d
†
s (ds) creates (annihilates) an electron of spin pro-

jection s in the impurity orbital. How this orbital couples to
the graphene will depend on its geometry and its position in
the lattice. In this article we consider two representative types
of impurities: vacancies and adsorbates. Within these types,
we will also divide the impurities by the local symmetry of
their couplings to the graphene lattice. The impurity-graphene
couplings in real space are described in Appendix A. In the c

basis, these terms take the form [20,22]

HI-G =
∑
s,α

∑
k

{
	α

I (k) d†
s cα,k,s + H.c.

}
, (6)

where α = +,− indicates the band index and I the impurity
type.

Vacancies are atomic-scale defects consisting of missing
atoms in the graphene lattice [15,23–26]. Charged vacancies
(VAC) without bond reconstruction are the simplest from
a geometrical point of view. When this kind of vacancy
occurs in sublattice A, say, it will couple identically to all

(a) (b)

(c) (d)

FIG. 1. Single impurities in a graphene lattice: (a) Top-site
adsorbate, (b) hollow-site s-level adsorbate, (c) symmetric vacancy,
and (d) reconstructed vacancy. Lattice sites in red and blue belong to
sublattices A and B, respectively.

three surrounding carbons of sublattice B [27], as depicted in
Fig. 1(c). In a sense, sublattice B is “singled out” and inversion
symmetry is locally broken. Nonetheless, the point symmetry
of this configuration matches that of the sublattice, and is
encoded in the VAC-graphene momentum-space coupling

	±
V (k) = V√

2
�(k), (7)

which has C3v symmetry about the K and K ′ points [Fig. 2(a)].
Notice in particular that the coupling vanishes at these high-
symmetry points. This is as a result of quantum interference,
and is protected by C3v symmetry.

The situation is substantially different for vacancies with
bond reconstruction (REC) [28–30], which in addition to not
preserving local inversion also break the sublattice C3v point
symmetry, as shown in Fig. 1(d). The REC-graphene coupling
is given by

	±
R,j (k) = V√

2
eiak·ûj

∑
l �=j

e−iak·ûl , (8)

which is explicitly not invariant under C3 rotations. In deriving
Eq. (8) we have placed the impurity orbital specifically at aûj

from the vacancy site. This represents the coupling between
the sp2 orbital of the atom at aûj and the π orbitals of
the atoms at aûi (i �= j ) discussed in Refs. [28,31]. This
is only one of three possible configurations that occur with
equal probability throughout the sample, and thus have to be
averaged to properly describe an impurity distribution. The
average

|	R(k)|2 = 1

3

3∑
j=1

|	R,j (k)|2

= V 2

[
1 + |�(k)|2 − 2

3
Re �2(k)

]
, (9)
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FIG. 2. |	I (k)|2 for (a) vacancies (I = V ) and (b) reconstructed
vacancies (I = R); (c) hollow-site adatom (I = H ) upper band, and
(d) hollow-site adatom lower band. The equipotential contours show
topographic details at low energies, and the hexagons indicate the
boundaries of the first Brillouin zone. The couplings vanish at K and
K ′ for all cases except I = R, and only |	±

H (k)| display line nodes
at specific angles about these points.

shown in Fig. 2(b), demonstrates that global C3v symmetry is
recovered for an ensemble of REC impurities. However, in this
case the coupling is finite for all momenta, and particularly at
the K and K ′ points. The interference that gave rise to the
zeros in the VAC case is removed by the symmetry breaking,
and the C3v symmetry of the REC impurity distribution is
only recovered in average. It is worthwhile mentioning that,
although the details of the coupling Eq. (8) depend on the
precise location of the impurity orbital within the vacancy, the
average Eq. (9) does not.

Top-adsorbed impurities (TOP) [32–34] are adatoms lo-
cated outside the graphene plane, forming covalent bonds with
a single carbon atom in the honeycomb lattice [Fig. 1(a)].
By coupling only to one site, TOP impurities locally break
inversion symmetry [35], while still preserving full rotational
symmetry in the plane. Because we treat the TOP impurity as
a pointlike object, it will couple equally with all momentum
states in the graphene sample as

	±
T (k) = V√

2
. (10)

Thus, although the impurity isotropy preserves the sublattice
point symmetry, it is clear that this symmetry is not inherited
by the TOP-graphene coupling function.

In contrast, a hollow-site adsorbate (HS) with an s or dz2

valence orbital preserves the sublattice point symmetry. By
coupling to both sublattices with equal strength, HS impurities
are also invariant under inversion [Fig. 1(b)]. The HS-graphene
coupling function has the form

	±
H (k) = V√

2

[
�∗(k) ± �2(k)

|�(k)|
]
, (11)

which possesses full C3v symmetry about the high-symmetry
points. This is shown in Figs. 2(d) and 2(c). Strikingly,
the coupling to the upper (lower) band vanishes for all k
about the K (K ′) point at angles φ = −π/2, π/6, 5π/6, as
well as for φ = −5π/6, − π/6, π/2 about the K ′ (K) point.
These nodes are produced by quantum interference involving
momentum states from both sublattices, and in fact appear
quite independently of the specific point symmetry of the
impurity (Appendix D).

Indeed, this will be a central point in our discussion of
transport: The presence of nodes in the coupling function
	H (k) is protected by inversion symmetry. Even if the point
symmetry of the coupling were reduced, inversion symmetry
guarantees the presence of at least one node originating at each
symmetry point. As we will show in Sec. III, this decoupling of
the impurity to graphene states throughout the Brillouin zone
makes the impurity “invisible” to the overall transport behavior
of the sample, resulting in a zero contribution to the resistivity.

In the following section we develop a Kubo formula for
the resistivity of a graphene sample with an impurity density
nimp ≡ Nimp/S, where Nimp is the number of impurities per unit
cell and S = 3a2

√
3/2 is the (hexagonal) unit cell area. We

will work in the dilute regime of Nimp � 1. The impurity type
and symmetry will enter our formalism through the coupling
functions introduced above.

III. LINEAR-RESPONSE TRANSPORT

We are interested in exploring the regime of low impurity
density of a mesoscopic graphene sample by means of standard
transport measurements. At low temperatures and close to
charge neutrality, the behavior of this system is determined
entirely by momentum states near the K and K ′ points.

About these high-symmetry points the dispersion ε±(K(′) +
k) = ±t |�(K(′) + k)| ≈ 3tak/2 is linear and isotropic in k.
Furthermore, in the low-energy regime the valley index (K
or K ′) behaves as an additional spin quantum number [1],
resulting in a model that describes Dirac quasiparticles. The
vectors ψkσ and ckσ become the 4-spinors [36]

ψk,s =

⎛
⎜⎝

aK+k,s

bK+k,s

bK′+k,s

aK′+k,s

⎞
⎟⎠, ck,s =

⎛
⎜⎝

c+,K+k,s

c−,K+k,s

c−,K′+k,s

c+,K′+k,s

⎞
⎟⎠, (12)

connected by the unitary transformation

Uk= 1√
2

⎛
⎜⎜⎝

�(K+k)
|�(K+k)| − �(K+k)

|�(K+k)| 0 0
1 1 0 0
0 0 1 1
0 0 − �(K′+k)

|�(K′+k)|
�(K′+k)
|�(K′+k)| ,

⎞
⎟⎟⎠.

(13)

A. The current operator

The current operator for momentum q is given by [8]

j(q) = evF

∑
k,s

ψ
†
k,sτ

3 σ ψk+q,s , (14)

where e is the electronic charge, vF = 3ta/2 is the Fermi
velocity (� = 1), and τ i (σ i) are Pauli matrices acting on
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the valley (sublattice) subspace. In the c basis the current
components (i = 1, 2) take the form

j i(q) = evF

∑
k,s

c
†
k,sγ

i(k,q)ck+q,s , (15)

where γ i(k,q) = U
†
kτ 3 σ iUk+q. For the remainder of this

article we will work exclusively in this basis and omit the spin
index s. For zero momentum transfer (q=0), the γ i matrices
take the form

γ i(k,q=0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Re
[
σ i

12�
∗(K+k)

]
|�(K+k)|

iIm
[
σ i

12�
∗(K+k)

]
|�(K+k)| 0 0

− iIm
[
σ i

12�
∗(K+k)

]
|�(K+k)| −Re

[
σ i

12�
∗(K+k)

]
|�(K+k)| 0 0

0 0
Re
[
σ i

12�(K′+k)
]

|�(K′+k)| − iIm
[
σ i

12�(K′+k)
]

|�(K′+k)|

0 0
iIm
[
σ i

12�(K′+k)
]

|�(K′+k)| −Re
[
σ i

12�(K′+k)
]

|�(K′+k)|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

B. Kubo formula

From Eq. (15) we can calculate the two-point current
correlation function, and obtain the conductivity tensor in
linear response via the Kubo formalism (Appendix B). The
resistivity tensor ρ is then given by the inverse of the
conductivity tensor as

[ρ−1]ij (T ) = (evF )2

π

∑
k

∫
dω

[
−∂nF (ω,T ,μ)

∂ω

]

×Tr{γ i(k)Gkk(ω−)γ j (k)Gkk(ω+)}, (17)

where nF (ω,T ,μ) is the Fermi-Dirac distribution for energy ω,
temperature T , and chemical potential μ; Gkk(ω+) [Gkk(ω−)]
is the full retarded (advanced) graphene Green’s function; and
γ i(k) = γ i(k,q = 0).

Evaluating the trace in Eq. (17) requires taking the matrix
product for each impurity type. This process can be expedited
by noting that the ratio �(K(′) + k)/|�(K(′) + k)| in (13) is
a function only of the momentum azimuthal angle φ, to first
order in k. Therefore, the trace has the general form

Aij
μμ(φ)Gμμ

kk (ω−)Gμμ

kk (ω+) + Bij
μν(φ)Gμμ

kk (ω−)Gνν
kk(ω+)

+Cij
μν(φ)Gμν

kk (ω−)Gμν

kk (ω+) + Dij
μν(φ)Gμν

kk (ω−)Gνμ

kk (ω+),

(18)

where the matrices Aij , Bij , Cij ,Dij are impurity dependent,
and sums over repeated Greek indices are implied. This
expression can be simplified by a few general considerations.
First, if our result is to be valid for any uniform distribution
of impurities in the dilute limit, the Green’s functions in
Eq. (17) must be interpreted as the average over all possible
uniform distributions. Assuming a very low impurity density,
the self-energy associated with the Green’s function can be
approximated as [37]

�(ω±) = nimpT(ω±) + O
(
n2

imp

)
, (19)

where T(ω±) is the single-impurity T matrix. The T matrix
can be put in terms of the impurity local Green’s function
Gd (ω±) using the equation-of-motion method [38,39]

T
μν

kk′ (ω±) = 	
μ

I (k)Gd (ω±)	ν
I
∗(k′), (20)

where 	
μ

I are the elements of the 1 × 4 coupling ma-
trix: 	1

I (k) = 	+
I (K + k), 	2

I (k) = 	−
I (K + k), 	3

I (k) =

	−
I (K′ + k), and 	4

I (k) = 	+
I (K′ + k). Using the symmetry

properties of the coupling functions about K and K ′, and
considering that the trace will be integrated over φ, the sums
in expression (18) can be limited to μ,ν = 1,2. Further-
more, it can be shown that the intraband-intravalley terms
G

μμ

kk (ω−)Gμμ

kk (ω+) dominate in the dilute limit (Appendix C),
and we need to calculate only the prefactors A

ij

11(φ) and A
ij

22(φ).
With these approximations, the impurity contribution to the

resistivity is simplified to

[ρ−1]ij = 2(evF )2S

(2π )3

∫
d2k

∫ ∞

−∞
dω

[
−∂nF (ω,T ,μ)

∂ω

]

×
[

A
ij

11(φ)δ(ω − vF k)

nimp

∣∣	1
I (k)

∣∣2ρdI (ω)
+ A

ij

22(φ)δ(ω + vF k)

nimp

∣∣	2
I (k)

∣∣2ρdI (ω)

]
,

(21)

where ρdI (ω) is the spectral density for impurity type I .
For I = T ,R these integrals are always well behaved, but

for I = V the integrand has a singularity at each symmetry
point [see Fig. 2(a)]. Most strikingly, for I = H the integrand
is singular at the symmetry points as well as at the line nodes
shown in Figs. 2(c) and 2(d). These singularities lead to a
diverging integral Eq. (21).

This is one of the main results of this paper: Due to the
C3v and inversion symmetries of their couplings, VAC and
HS impurities are “invisible” to specific graphene momenta,
which remain available for coherent transport and result in
a zero impurity contribution to the system resistivity. As we
will see below, a finite resistivity contribution due to impurity
scattering is recovered away from charge neutrality for VAC
impurities. This is not the case, however, for HS impurities,
whose symmetry properties under inversion guarantee that
states will be available for coherent transport at all energies.

We emphasize that Eq. (21) represents the impurity contri-
bution to the graphene resistivity, and its vanishing for VAC
and HS impurities does not entail perfect conduction through
the sample [37]. That said, our formalism could be paired
with existing techniques that consider full-counting statistics,
to determine the system transport under those conditions
[9,40,41]. In addition, we remind the reader that these results
are not valid for a high impurity concentration, where a
determinant of whether the graphene symmetries are preserved
is the symmetry of the impurity distribution itself [8,11].
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From an experimental point of view, when adsorbates
are evaporated onto the graphene sheet, both TOP and HS
adatoms will be present in the sample [32]. A similar argument
can be made for vacancies, where both VAC and REC
sites will be created by, e.g., sputtering from an incident
electron beam [42]. With this in mind, our approach is to
evaluate the average contribution to the longitudinal resistivity
ρ̄ ≡ {([ρ−1]11 + [ρ−1]22)/2}−1 of a graphene sample with two
kinds of adatoms (TOP and HS), or two kinds of vacancies
(REC and VAC).

Given their unique symmetry properties, we will focus
especially on VAC and HS impurities. We define n (0 � n � 1)

as the fraction of the total impurity density nimp comprised of
VAC in the case of vacancies, or HS in the case of adatoms, with
(1 − n) the corresponding complementary fraction of REC or
TOP impurities. The impurity mixture can be introduced into
the transport formalism by writing the self-energy as, e.g.,
�(ω±) = n�H (ω±) + (1 − n)�T (ω±), for a mixture of TOP
and HS impurities. This is a good approximation in the dilute
limit. We will study the four possible cases of single impurity
species through the limit cases n → 0 and n → 1.

Calculating the coefficients A
μμ

11 (φ) and A
μμ

22 (φ), expanding
the couplings about the symmetry points, and evaluating the
momentum integrals, we obtain

ρ̄R-V(T ,μ) =
(

2S

hnimp

e2

h

∫ D

−D

dε

[
−∂nF (ε,T ,μ)

∂ε

] |ε|[
V 2

2 + V 2

6t2 ε2
]
(1 − n)ρdR(ε) + V 2

t2 ε2nρdV (ε)

)−1

, (22a)

ρ̄T-H(T ,μ) =
⎛
⎝ 2S

hnimp

e2

h

∫ D

−D

dε

[
−∂nF (ε,T ,μ)

∂ε

] |ε|√
V 2

2 (1 − n)ρdT (ε)
√

V 2

2 (1 − n)ρdT (ε) + 2(V/t)2ε2nρdH (ε)

⎞
⎠

−1

, (22b)

where the Planck constant has been reintroduced. To work
exclusively in the Dirac regime while also preserving the
total number of states in the Brillouin zone, we have defined
the Debye half-bandwidth [43] D = 3−3/4(8π )1/2a−1

�vF ∼
10 eV. The problem is now reduced to calculating the single-
impurity spectral densities ρdI (ε).

IV. RESISTIVITY CALCULATIONS

A. The impurity spectral density

As stated in Eq. (5), we treat the impurities as single
noninteracting orbitals of energy εd . The impurity spectral
density (Fig. 3) can be obtained by solving the equation of
motion of the retarded Green’s function:

ρdI (ε) = − 1

π
Im Gd (ε+) = 1

π

�I (ε)

[ε − εd − �I (ε)]2 + �2
I (ε)

.

(23)
The hybridization function for impurity type I is defined as

�I (ε) = π

4∑
μ=1

∑
k

∣∣	μ

I

∣∣2δ[ε − εμ(k)], (24)

with ε1(k) = ε4(k) = −ε2(k) = −ε3(k) = �vF k, and it can be
shown that the level shifts �I (ε) vanish. We have

�T (ε) = 2πV 2

D2
|ε| ≡ �0

∣∣∣ ε

D

∣∣∣, (25a)

�R(ε) = �0

[∣∣∣∣ ε

D

∣∣∣∣+ 6π
√

3

∣∣∣∣ ε

D

∣∣∣∣
3
]
, (25b)

�H (ε) = �V (ε) = 4π
√

3�0

∣∣∣ ε

D

∣∣∣3. (25c)

The dependence on the third power of the energy in the
last expression led the authors of Ref. [20] to predict super-
ohmic transport through vacancies, hollow-site impurities, and
substitutional atoms. However, our analysis of Sec. III and the

results that we present in the following section demonstrate
that this is not reflected in the transport properties of the
graphene sample itself.

FIG. 3. The spectral densities of TOP, REC, VAC, and HS
impurities for different local energies εd , using �0/D = 0.05. The
amplitude at ε = 0 vanishes as a power law for the C3v impurities
VAC and HS, in stark contrast to the non-C3v impurities REC and
TOP, whose spectral densities are singular at zero energy.
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FIG. 4. Resistivity as a function of temperature for TOP and REC
(n = 0), and VAC and HS impurities (n = 0.95). Results are shown in
charge neutrality (μ = 0) for impurity local energies (a) εd = −5�0,
(b) εd = 0, and (c) εd = 5�0, with �0 = 0.05 D ∼ 0.5 eV.

B. Results and discussion

The resistivity of a graphene sample in charge neutrality as
a function of temperature is shown in Fig. 4 for all impurity
types. The curves for VAC and HS impurities were obtained
using n = 0.95 in Eqs. (22a) and (22b), respectively. The
corresponding value used for TOP and REC was n = 0.

In general, the low-temperature resistivity contributions
of TOP and REC impurities can be understood in terms of
impurity scattering for all values of εd . In all cases shown in
Fig. 4, the curves for TOP and REC merge at temperatures
below |εd |, as one would anticipate given that the spectral
densities of both impurity types are identical at low energies
[Figs. 3(a)–3(d)]. For impurities off-resonance with the Dirac
point (εd �= 0) the resistivity reaches a saturation value
of (2π εd/�0)−2, producing a plateau at low temperatures
[Figs. 4(a) and 4(c)]. This is a clear signature of impurity
scattering dominating the electronic transport.

A substantial difference can be seen for TOP and REC
impurities in resonance with the Dirac point (εd = 0). In this
case, the impurity introduces a bound state at zero energy
[44,45] that dictates the low-energy behavior of the system.
For TOP impurities, the resistivity is given by

ρ̄T (T ,εd = μ = 0) =
[

2Se2

nimph2

4π4

3

D2 + �2
0

�2
0

]−1
D2

T 2
, (26)

throughout the full range of temperatures [Fig. 4(b)]. This
function diverges as T −2 for T → 0–an insulating behavior
reflecting the suppression of thermally activated transport
as the temperature is lowered. Although REC impurities
display the same behavior for T < |εd |, the cubic energy
term in Eq. (25b) dominates at high temperatures, producing
a departure from the T −2 scaling.

The curves for VAC and HS in Fig. 4 confirm that these im-
purities do not contribute to the resistivity of a graphene sample
in charge neutrality, as discussed in Sec. III. For εd �= 0 the
low-temperature resistivity is given by (1 − n)(2π εd/�0)−2

[Figs. 4(a) and 4(c)], indicating that the resistivity originates
from low-energy scattering with the small fraction (0.05) of
either REC or TOP impurities present in the sample. Similarly,
for εd = 0 both curves follow a T −2 trend at low temperatures,
described by Eq. (26) with a prefactor (1 − n).

Next, we examine the resistivity as a function of the chem-
ical potential. Figure 5 shows isotherms at T = 10−4 D ∼
10 K for all four impurity types. The figure shows curves
for VAC and HS impurities using different values of n. In
general terms, the resistivity of a sample with only TOP
impurities [Figs. 5(a)–5(c)] has a maximum amplitude when
μ = εd and impurity scattering is enhanced. For εd = 0 the
resistivity peak [Fig. 5(b)] follows our previous discussion
for charge neutrality, and increases as the temperature is
lowered, following Eq. (26). The peak amplitude increase with
decreasing temperature shown in Fig. 5(b) is reminiscent of
early resistivity measurements in graphene [46]. For εd �= 0, on
the other hand, the resistivity maximum has a low-temperature
saturation value of (2π εd/D)−2 [Figs. 5(a) and 5(c)]. The
behavior is qualitatively the same for REC impurities, with
a slightly shifted maximum and the appearance of a local
minimum due to the cubic term in Eq. (25b), as can be seen in
Figs. 5(a) through 5(c).

As before, the resistivity profiles for VAC and HS impurities
are similar to those of REC and TOP impurities, respectively.
Nonetheless, two important differences arise when varying the
impurity fraction n: First, as the TOP or REC fraction goes to
zero (n → 1) the resistivity in charge neutrality vanishes for
samples with only HS or VAC impurities, respectively. This
behavior is independent of εd [Figs. 5(d)–5(i)]. Second, an
important distinction appears between VAC and HS impurities
away from charge neutrality for all values of εd . While for
hollow-site adatoms the resistivity goes to zero with (1 − n)
for all values of the chemical potential [Figs. 5(g)–5(i)],
symmetric vacancies show a finite resistivity away from charge
neutrality, even as n goes to one. This is especially clear in the
maxima indicated with arrows in Figs. 5(d) and 5(f), which
have a fixed finite value independent of n.

Figure 6(a) shows the behavior of the resistivity maxima of
Figs. 5(d) and 5(g) as a function of the VAC and HS impurity
fraction n. As described above, for symmetric vacancies
the peak amplitude remains unchanged for all values of n,
including the case of pure VAC impurities (inset). For adatoms,
on the other hand, the corresponding amplitude goes to zero as
(1 − n)1/2 for low HS fractions. In the case of charge neutrality,
however, the behaviors of VAC and HS impurities with n are
identical, as shown in Fig. 6(b). Their corresponding resistivity
curves overlap and go to zero as (1 − n). Notice that away from
charge neutrality [Fig. 6(a)] the resistivity for both VAC and HS
impurities is quite independent of temperature, in agreement
with experiments [47,48].

The restoration of a finite resistivity contribution for VAC
impurities is achieved by avoiding the graphene states at
the Dirac points, which are impervious to the presence of
symmetric vacancies. At a finite chemical potential, only states
within an energy window ∼T about the Fermi level will
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FIG. 5. Low-temperature resistivity as a function of chemical potential. (a), (b), and (c) Correspond to a graphene sample with only
(non-C3v-symmetric) TOP and REC impurities. (d) through (i) Correspond to a mixture with a fraction n of C3v-symmetric and 1 − n of non-
C3v-symmetric impurities. Results are shown for impurity local energies εd = −5�0, 0, 5�0 (left to right) at a temperature T = 10−4D ∼ 10 K.
We have used �0 = 0.05 D, which gives an impurity-graphene coupling V ≈ 800 meV.

partake in transport processes. Therefore, coherent transport
can be avoided for VAC impurities by shifting the chemical

FIG. 6. Resistivity of adatoms and vacancies as a function of
the fraction n of C3v impurities (HS and VAC) for fixed chemical
potential μ = −5 �0. (a) For vacancies, the case of μ = εd = −5 �0

corresponds to the resistivity maximum of Fig. 5(d), which is
independent of n. For adatoms this is also the maximum peak, but
its amplitude goes to zero as (1 − n)1/2 as n goes to one. (b) In the
case of a resonant impurity (εd = 0) the resistivity for adatoms also
vanishes as (1 − n)1/2, whereas for vacancies it remains finite (away
from charge neutrality) up to n = 1.

potential away from the charge neutrality point. However, this
is not the case for HS impurities, which have momentum states
available for coherent transport at all energies, and cannot be
avoided by changing the carrier density.

As discussed in Sec. II, this fundamental difference between
the two highly symmetric impurity types can be traced back to
their distinct behaviors under inversion. While VAC impurities
break it locally, HS impurities fully preserve the graphene
inversion symmetry. Thus, while the C3v symmetry protects
the vanishing of the coupling only at the symmetry points,
inversion symmetry guarantees the appearance of nodes in the
coupling function 	H (k) throughout the Brillouin zone.

The appearance of these nodes due to inversion symmetry
can be seen as follows: A generic inversion-invariant hollow-
site impurity couples to the graphene states as (Appendix D)

|	±
H (k)|2 = |Vk|2(1 ± Re [ei{arg �(k)+2 arg Vk}]), (27)

where Vk =∑3
j=1 V ∗

j eiak·ûj , and Vj is the real-space coupling
to the sublattice-B site at aûj . Both terms between parentheses
are of norm unity, such that the coupling will vanish for all
momenta k in subband α = ± that fulfill

arg �(k) + 2 arg Vk = [2n + (1 ± 1)/2]π, (28)

with n some integer. For simplicity, let us assume that Vj are
real, as in the particular case of Eq. (11). Then, after a few
manipulations, Eq. (28) becomes

3∑
j=1

3∑
l=1

VjVl{sin(ak · [ûj + ûl])Re �(k)

+ cos(ak · [ûj + ûl])Im �(k)} = 0. (29)

The appearance of the real and imaginary parts of �(k)
guarantees that the symmetry points, where �(k) vanishes,
are always solutions to this equation.
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In fact, a numerical study of 	H (k) for different Vj

demonstrates that each symmetry point will be the termination
of at least one node, and that for most cases of interest this node
will be a straight line, as in the cases of Figs. 2(c) and 2(d).

V. CONCLUSIONS

In this article we have studied the linear electronic transport
properties of mesoscopic graphene with a low concentration
of adatoms or vacancies. Our results for different impurities
demonstrate distinct transport behaviors that can be traced
to the point symmetry of their couplings to the graphene
sublattices, and to whether they locally break or preserve the
inversion symmetry of the honeycomb lattice.

Top adatoms and reconstructed vacancies, which break
inversion symmetry locally, and whose symmetries differ
from the sublattice C3v point group, show similar behaviors.
For a charge-neutral graphene sample, the usual impurity
scattering contribution to the resistivity is present when the
impurity is off-resonance with the Dirac point. For a resonant
(zero-energy) impurity, transport is strongly suppressed at low
temperatures. In this case, the presence of a bound state at
zero energy leads to a power-law divergence of the impurity
resistivity in the zero-temperature limit. Away from charge
neutrality, transport is again dominated by impurity scattering,
which is maximized when the chemical potential is tuned to
match the impurity level energy.

More interesting is the behavior of hollow-site (s-level)
adatoms and C3v-symmetric vacancies. Their contributions to
the resistivity of a charge-neutral graphene sample vanish due
to the presence of electronic states that are fully decoupled
from the impurities, and thus impervious to their presence.

In the case of symmetric vacancies, which locally break
inversion symmetry, the decoupled states correspond exactly
to those located at the K and K ′ symmetry points. The
contribution by these states to the transport can be prevented by
changing the chemical potential through, e.g., the application
of a gate voltage, and thus a finite resistivity is recovered.

This is not the case for hollow-site adatoms, which decouple
from full line nodes of momentum states all throughout the
Brillouin zone. The specific momenta forming these nodes
depend on the particular rotational symmetry of the impurity,
but their existence is protected by the local conservation of
inversion symmetry.

We believe it should be possible to verify our predictions
through standard transport measurements on gated graphene
samples. For an estimated nearest-neighbor hopping t =
2.7 eV, the results presented in Figs. 5 and 6 correspond to
temperatures of order 10 K or higher, and a realistic [49,50]
impurity coupling V ≈ 800 meV.

Our results can be readily generalized for interacting
impurities and vacancies in graphene. The formation of
local magnetic moments may be introduced by considering
a local Coulomb interaction term in Eq. (5). Such magnetic
impurities—predicted for transition-metal [32] and hydrogen
[51] adatoms, and both symmetric and reconstructed vacancies
[52–55]—would introduce strong correlations that can be
handled by the numerical renormalization group (NRG). This
nonperturbative method can correctly evaluate the interacting

impurity spectral density entering Eq. (22), and thus the
resulting resistivity contribution.

For charge-neutral graphene, in particular, the interacting
impurity problem can be described by the so-called pseudogap
Anderson model [56,57]. In this case, the interacting-impurity
spectral density vanishes at the Fermi level with the same
power law as the density of states [58], similar to the results
presented in Fig. 3. To put it differently, the local density
of states for interacting impurities in graphene will vanish
at the Fermi energy as ρ(ω) ∼ |ω| for symmetry-breaking
impurities, and as ρ(ω) ∼ |ω|3 for symmetry-preserving ones,
just like in the noninteracting case. However, in the presence
of long-range disorder [19] or a finite chemical potential,
we expect the low-temperature behavior of the system to
be dominated by Kondo correlations. Although the latter
case has been discussed by some authors [31,59,60], the
momentum dependence of the impurity-graphene coupling
due to symmetry has yet to be addressed.

Note added. After the completion of this work, we became
aware of a manuscript [61] which has studied the impurity
scattering properties for the cases of top-site and hollow-site
adatoms. Their conclusions are in accordance to our results,
namely that impurity scattering is strongly suppressed in the
case of hollow-site impurities.
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APPENDIX A: REAL-SPACE IMPURITY-GRAPHENE
COUPLINGS

Here we present the expressions for the impurity-graphene
couplings HI-G in real space for the different impurity types of
impurities (I = T ,H ,V,R). Without loss of generality we set
the origin of our coordinate system at the impurity site. When
the impurity sits at or on top of a lattice site, as is the case for
TOP, VAC, and REC, we call the corresponding sublattice A.

TOP impurities couple to a single site as

HT-G = V
∑

s

{d†
s as(0) + a†

s (0)ds}. (A1)

A VAC impurity will couple identically to all three surrounding
sublattice B sites located at aûj as

HV-G = V
∑

s

3∑
j=1

{d†
s bs(aûj ) + H.c.}. (A2)

For the case of an asymmetric REC impurity, we consider that
the sp2 orbital of the B-sublattice carbon atom at aûl will
couple to the π orbitals of the two B-sublattice carbons at aûj
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(l �= j ) as

HR-G(l) = V
∑

s

3∑
j=1

(1 − δj,l){d†
s bs(aûj − aûl) + H.c.}.

(A3)
Finally, HS impurities couple identically to both sublattices:

HH-G = V
∑

s

3∑
j=1

{d†
s [as(aûj ) + bs(−aûj )] + H.c.}. (A4)

In Fourier space we have

HT-G = V
∑
k,s

{d†
s aks + H.c.}, (A5a)

HV-G = V
∑
k,s

{�(k)d†
s bks + H.c.}, (A5b)

HR-G(l) = V
∑
k,s

⎧⎨
⎩e−ik·ûl

⎡
⎣∑

j �=l

eiak·ûj

⎤
⎦d†

s bks + H.c.

⎫⎬
⎭,

(A5c)

HH-G = V
∑

s

{d†
s [�(k)aks + �∗(k)bks] + H.c.}. (A5d)

Applying the transformation (4) we obtain Eqs. (7), (8),
(10), and (11).

APPENDIX B: KUBO FORMULA FOR THE ZERO-BIAS
CONDUCTIVITY

In the linear response regime, the electric conductivity
tensor is obtained through the Kubo formula

σ ij = lim
ω→0

1

iω
Im �ij (ω+) , (B1)

where �ij (ω+) is the retarded response function, and ω is
the (angular) frequency of the driving electric field. Following
common practice, we work in the imaginary time and fre-
quency domain to simplify the calculations. The Matsubara
response function is given by

�ij (iωn) =
∫ 1/T

0
dτ eiωnτ 〈j i(τ )j j (0)〉, (B2)

where ωn = 2nπT is a bosonic Matsubara frequency, j i(τ )
is the ith component of the imaginary-time Heisenberg
representation of the zero-momentum current operator

j(τ ) ≡ eHτ j(q = 0)e−Hτ , (B3)

and T is the temperature (in units of energy). We can relate this
quantity to the retarded response function through the formula

�ij (ω+) = −T −1 �ij (iωn → ω + i0+). (B4)

The two–point current correlation function can be evaluated
in the graphene basis using Eq. (15):

�ij (iωn) = (evF )2
∑
k,k′

∫ 1/T

0
dτ eiωnτ γ i

αβ(k)γ j
μν(k′)

× 〈cα
k
†(τ )cβ

k (τ )cμ

k′
†cν

k′
〉
, (B5)

Γ

μ,k

β,kα,k

ν,k μ,k

β,kα,k

ν,k

+

FIG. 7. The current-current correlation function is represented by
a polarization diagram and an interaction vertex �. Lines represent
full graphene Green’s functions in the presence of the impurities, and
point vertices at the top and bottom represent the current operators.

where a sum is implied over all repeated Greek indices. Using
Wick’s theorem [62] to expand the correlation function, and
performing a partial summation of the resulting diagrams, the
response function is represented by the two diagrams of Fig. 7.
In the “ladder” approximation [63], the vertex � contributes
an overall factor of order one to the full propagator result.
Since no qualitative changes are introduced, we retain only
the “bubble” diagram representing the expression

�ij (iωn) = −(evF )2
∑

k

∫ 1/T

0
dτeiωnτ γ i

αβ(k)γ j
μν(k)

×Gνα
kk (−τ )Gβμ

kk (τ ). (B6)

At this point we introduce the Fourier representation of the
imaginary-time Green’s functions

Gβμ

kk′ (τ ) = T
∑
ikm

e−i kmτGβμ

kk′ (ikm), (B7)

with km = (2m + 1)πT a fermionic Matsubara frequency. The
imaginary-time integral is now easily evaluated to obtain

�ij (iωn) = − (evF )2T
∑
k, ikm

γ i
αβ(k)γ j

μν(k)

× Gνα
kk (i[km + ωn])Gβμ

kk (ikm). (B8)

The Matsubara sum can be evaluated by standard techniques,
and retaining only the dominant term [37] we obtain

Im �ij (ω+) = − (evF )2
∑

k

∫ ∞

−∞

dω′

2π
γ i

αβ(k)γ j
μν(k)

× Gνα
kk(ω′+ + ω)Gβμ

kk (ω′−)

× [nF (ω′ + ω,T ) − nF (ω′,T )], (B9)

where nF (ω,T ) is the Fermi-Dirac distribution and Gkk(ω±)
is the retarded (advanced) Green’s function. Finally, the
conductivity is obtained by substituting (B9) into (B1) [64]:

σ ij (T ) = (evF )2

2π

∑
k

∫ ∞

−∞
dω

[
−∂nF (ω,T )

∂ω

]

× γ i
αβ(k)γ j

μν(k) Gνα
kk(ω+)Gβμ

kk (ω−)

= (evF )2

2π

∑
k

∫ ∞

−∞
dω

[
−∂nF (ω,T )

∂ω

]

× Tr{γ i(k)Gkk(ω−)γ j (k)Gkk(ω+)}. (B10)
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This formula is used in Sec. IV B to evaluate the resistivity
tensor as [ρ−1(T )]ij = σ ij (T ).

APPENDIX C: THE FULL GREEN’S FUNCTION AND
THE EFFECTIVE SELF-ENERGIES

In this Appendix we present the expressions for the Green’s
functions entering Eq. (18) in the dilute impurity limit. The
self-energy is defined by the identity

[Gkk(ω±)]−1 = [gk(ω±)]−1 − �(k, ω±), (C1)

with gk(ω±) the bare graphene Green’s function, given by

gk(ω±) =

⎛
⎜⎜⎜⎝

1
ω±−vF k

0 0 0

0 1
ω±+vF k

0 0

0 0 1
ω±+vF k

0

0 0 0 1
ω±−vF k

⎞
⎟⎟⎟⎠. (C2)

Substituting Eqs. (19) and (20) into (C1) and inverting the
resulting matrix, we obtain an analytic expression for the
full graphene Green’s function in terms of the impurity local
Green’s function.

The 11 and 22 components are given to first order in nimp by

G11
kk(ω±) = ω + vF k − |	1(k)|2nimpGd (ω±)

ω2 − (vF k)2 − 2ω|	1(k)|2nimpGd (ω±)
, (C3a)

G22
kk(ω±) = ω − vF k − |	2(k)|2nimpGd (ω±)

ω2 − (vF k)2 − 2ω|	2(k)|2nimpGd (ω±)
. (C3b)

For ω2 �= (vF k)2 and nimp � 1 the denominator can be
expanded in a geometric series, and each of the above Green’s
functions can be written (no sum over μ implied)

G
μμ

kk (ω±) = g
μ

k (ω±) + g
μ

k (ω±)T μμ

eff (ω±)gμ

k (ω±), (C4)

where the effective T matrices are given by T 11
eff (ω±) =

nimp|	1
I (k)|2Gd (ω±) and T 22

eff (ω±) = nimp|	2
I (k)|2Gd (ω±).

Using Eq. (19) we can define the effective self-energies

�
μμ

eff (ω±) = nimp

∣∣	μ

I (k)
∣∣2Gd (ω±). (C5)

The resistivity can be evaluated in terms of �
μμ

eff (ω±). At
first glance, Eq. (18) requires all terms G

μμ

kk (ω−)Gνν
kk(ω−)

and G
μν

kk (ω−)Gνμ

kk (ω−). Upon further inspection, however, the
products G

μμ

kk (ω−)Gνν
kk(ω+) for μ �= ν vanish identically. To

show this, let us compute

G11
kk(ω−)G22

kk(ω+) = 1

ω − vF k − Re �11
eff(ω

+) + iIm �11
eff(ω

+)

1

ω + vF k − Re �22
eff(ω

+) − iIm �22
eff(ω

+)

= ω − vF k − Re �11
eff(ω

+) − iIm �11
eff(ω

+)[
ω − vF k − Re �11

eff(ω
+)
]2 + [Im �11

eff(ω
+)
]2 ω + vF k − Re �22

eff(ω
+) + iIm �22

eff(ω
+)[

ω + vF k − Re �22
eff(ω

+)
]2 + [Im �22

eff(ω
+)
]2

= πρ11
kk(ω)

nimp

∣∣	1
I (k)

∣∣2Im �11
eff(ω

−)

πρ22
kk(ω)

nimp

∣∣	2
I (k)

∣∣2Im �22
eff(ω

−)

× [ω − vF k − Re �11
eff(ω

+) − iIm �11
eff(ω

+)
][

ω + vF k − Re �22
eff(ω

+) + iIm �22
eff(ω

+)
]
, (C6)

where ρ
μμ

kk (ω) = δ(ω − εμ(k)) + O(nimp) are graphene spec-
tral densities. In the limit nimp → 0, the above expression is
proportional to δ(ω − vF k)δ(ω + vF k) and vanishes identi-
cally.

Next, notice that when nimp → 0 the Green’s functions
G

μν

kk (ω±) with μ �= ν, containing the interband and intervalley
processes, vanish. In other words, these Green’s functions must
be at least of order nimp, and the product of the advanced
and retarded functions must be at least O(n2

imp). The terms
G

μμ

kk (ω−)Gμμ

kk (ω+), on the other hand, are given by

G11
kk(ω−)G11

kk(ω+) = δ(ω − vF k)

nimp

∣∣	1
I (k)

∣∣ρd (ω)
, (C7a)

G22
kk(ω−)G22

kk(ω+) = δ(ω + vF k)

nimp

∣∣	2
I (k)

∣∣ρd (ω)
, (C7b)

where ρd (ω) = −π−1Im Gd (ω+) is the impurity spectral den-
sity. These expressions, representing intraband and intravalley
processes, are O{n−1

imp}, and dominate in the dilute limit.

APPENDIX D: AN EFFECTIVE HAMILTONIAN FOR
GRAPHENE WITH A LOW IMPURITY DENSITY

Most discussions in the literature about impurities in
graphene consider the Dirac approximation, where the
graphene Hamiltonian is HD = �vF τ 3σ · k. The impurities
are then introduced through terms of the form Himp =∑

i,j Aij τ
iσ j . This picture is particularly useful for discussing

whether the graphene symmetries are preserved or broken by
the impurities. For example, inversion symmetry is broken
within a valley by terms proportional to σ 3.

To make a connection with this picture, we define an
effective Hamiltonian Heff for the graphene sample with a
dilute impurity distribution through

�−1
kk (ω+) = ω+ − Heff(k,ω+), (D1)

where �kk(ω+) = UkGkk(ω+)U−1
k is the propagator in the

(2 × 2) ψ basis. The resulting model has the form

Heff = λσ 0 + χσ 3 − t̃ [Re �(k) σ 1 − Im �(k) σ 2], (D2)
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with

t̃(k,ω+) = −
3atk + nimpGd (ω+)

{
g1

k(ω+)
[
g2

k(ω+)
]−1|	+

I (k)|2 + g2
k(ω+)

[
g1

k(ω+)
]−1|	−

I (k)|2 + 2iIm 	+
I (k)	−

I
∗(k)

}
3ak

2 + 3ak nimpGd (ω+)
[
g1

k(ω+)|	+
I (k)|2 + g2

k(ω+)|	−
I (k)|2] ,

(D3a)

λ(k,ω+) = ω+ −
[
g1

k(ω+)
]−1 + [g2

k(ω+)
]−1 + nimpGd (ω+)

{
g1

k(ω+)
[
g2

k(ω+)
]−1|	+

I (k)|2 + g2
k(ω+)

[
g1

k(ω+)
]−1|	−

I (k)|2
}

2 + 2nimpGd (ω+)
[
g1

k(ω+)|	+
I (k)|2 + g2

k(ω+)|	−
I (k)|2] ,

(D3b)

χ (k,ω+) = −1

2

Re 	+
I (k)	−

I
∗(k) nimpGd (ω+)

1 + nimpGd (ω+)
[
g1

k(ω+)|	+
I (k)|2 + g2

k(ω+)|	−
I (k)|2] . (D3c)

The second term in Eq. (D2) breaks inversion symmetry
proportionally to the impurity density, unless χ (k,ω+) van-
ishes for all momenta. In other words, the condition for the
impurity to preserve inversion symmetry is

Re [	+
I (k)	−

I
∗(k)] = 0. (D4)

Consider a generic HS impurity (I = H ) that couples to the A

sublattice carbon atoms at aûj and to the B sublattice atoms at
−aûj about the impurity sites through complex couplings V A

j

and V B
j , respectively (j = 1, 2, 3). For this case the condition

(D4) translates to

Re

⎧⎨
⎩

3∑
j=1

3∑
l=1

(
V B

j V B∗
l − V A

l V A∗
j

)
eiak·(ûl−ûj )

⎫⎬
⎭ = 0. (D5)

A sufficient condition for this is that V A
j = V B∗

j , which is
broader than the notion of inversion symmetry discussed
throughout this article, where we have focused on the case
of real V A

j and V B
j .

Indeed, inversion symmetry can be preserved by more
general impurity models. A simple example is the case of an
in-plane f -level hollow-site impurity discussed in Ref. [20],
which couples to its surrounding carbon atoms with equal
strength but alternating sign. This type of model corresponds
to V A

j = V B∗
j = iV , resulting in a coupling function 	±

f (k) =
iV [�∗(k) ∓ �2(k)/|�(k)|]/√2. Comparing to Eq. (11) we
can conclude that both impurity types display the same
transport behavior.

For an impurity satisfying V A
j = V B∗

j , the squared coupling
strength |	±

H (k)|2 is given by

|	±
H (k)|2 = |Vk|2 ± Re

{
�(k)

|�(k)|V
2

k

}
, (D6)

where Vk =∑3
j=1 V B∗

j eiak·ûj . Given that �(k)/|�(k)| =
ei arg �(k) has modulus unity, the inversion symmetry condition
makes it possible for |	±

H (k)|2 to vanish. The functions

|	±
H (k)|2 = |Vk|2(1 ± Re [ei{arg �(k)+2 arg Vk}] ) (D7)

have zeros for momenta k such that

arg �(k) + 2 arg Vk = [2n + (1 ± 1)/2]π, (D8)

with n an integer. These momenta are determined by the
spatial symmetry of the coupling, but notice that no particular
symmetry requirements are placed on Vk for (D8) to hold. In
other words, the presence of zeros in the coupling function is
protected by inversion symmetry. In the particular case of real
V B

j = V we obtain the nodes shown in Figs. 2(c) and 2(d).
A specific case in which the condition for inversion

symmetry is not met is V A
j = 0, V B

j = V ∈ R. In that case we
obtain the coupling model for symmetric vacancies Eq. (7),
such that

|	±
V (k)|2 = V 2

√
2
|�(k)|2, (D9)

has zeros only at the K and K ′ points, protected only by C3v

symmetry.
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