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Electron-phonon vertex and its influence on the superconductivity of two-dimensional metals
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We investigate the interaction between the electrons of a two-dimensional metal and the acoustic phonons of
an underlying piezoelectric substrate. Fundamental inequalities can be obtained from general energy arguments.
As a result, phonon mediated attraction can be proven to never overcome electron Coulomb repulsion, at least
for long phonon wavelengths. We study the influence of these phonons on the possible pairing instabilities of a
two-dimensional electron gas such as graphene.
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I. INTRODUCTION

Surface acoustic waves (SAWs) [1] have been used for
decades as a valuable scientific and technological tool. In the
context of electronics, they are often excited in piezoelectric
materials [2–7], where the mechanical and electrical fields are
coupled. In particular, they have been applied as experimental
probes of the quantum Hall effects in two-dimensional electron
gases (2DEG) [8].

On the other hand, there is an increased interest in 2DEG
since the isolation of graphene in 2004 and the production of
other two-dimensional (2D) materials which followed it. Due
to their unusual character, the properties of graphene electrons
have been intensively studied during the last decade [9].
Although graphene on a substrate has received considerable
attention, relatively few studies have been devoted to the
case of graphene in contact with a piezoelectric material.
These include the propagation of surface acoustic waves on
graphene [10], some acoustoelectric effects [11,12], and the
relaxation induced by the surface acoustic wave quanta on
graphene electrons [13], among others. Recently, it has been
proposed that surface acoustic waves (SAW) can provide a
diffraction grating for the conversion of light into graphene
plasmons [14].

The coupling of the piezoelectric SAW to the electrons in
a 2DEG or in graphene has been computed, within certain
simplifying assumptions and for definite substrate crystal
structures, in Refs. [15,16]. The derivation of the electron-
surface phonon interaction for a piezoelectric material has
been performed only within a purely elastic Rayleigh wave
approximation [16] or for definite propagating directions [15].
But these methods fail in stronger piezoelectric materials
and for other crystal symmetries. For instance, the isotropic
Rayleigh wave approximation in the case of lithium niobate
leads to surface acoustic wave velocities about 15% too low
and lacking the correct angular dependence [3,17], and this
material is not the one with the largest electromechanical
couplings at all. Moreover, the obtained vertex are expressed in
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terms of a matching constant whose physical interpretation is
rather obscure, allowing for just order of magnitude estimates.

In the present paper we calculate a general electron-phonon
interaction [see Eq. (7)], which is expressed solely in terms of
physical quantities characterizing the response of the substrate
surface. We emphasize that all the quantities appearing in
the vertex are both computable from linear piezoelasticity
theory and experimentally measurable. One of them, the
electromechanical coupling coefficient KR , will turn out to be
central to all computations, serving as a natural dimensionless
parameter which provides the scale for the effect of the
substrate piezoelectricity on the 2D electron system. Moreover,
from very general considerations explained in Appendix, we
are able to provide bounds on its size: 0 � KR < 1 [see
Eq. (16)]. It is important to note that the vertex written here is
derived within the framework of linear piezoelastic theory,
which means that its validity should be restricted to low-
amplitude, low-frequency, and long-wavelength phenomena.
Bulk modes are also left aside in this paper. On the other hand,
our study is not restricted to any approximation based on the
symmetry or the piezoelectric softness of the substrate.

Equipped with the effective electron-electron interaction
which results from taking into account the exchange of these
acoustic phonons between the electrons in graphene (or other
2D materials), the question can be raised of whether these
interactions might be attractive and, depending on some
material parameters and the tunable electronic density of
graphene, perhaps strong enough to generate electron Cooper
pairing and superconductivity [18]. We can further ask whether
such a superconductivity could be observed at temperatures
attainable in a laboratory without the recurring to huge
non-gate-achievable doping levels, as predicted for intrinsic
graphene phonons [19] or for Kohn-Luttinger or electronic
superconductivity in other graphene heterostructures with
repulsive interactions [20]. From the interaction vertex derived
in this paper, it can be shown that the relative size of the static
phonon-mediated electron-electron interaction with respect to
the original Coulomb repulsion turns out to be exactly K2

R < 1,
because of the aforementioned general inequality. However, by
applying the Eliashberg formalism to graphene [19], we are
able to assess, in terms of KR , the influence that these low-
frequency and long-wavelength phonons have on possible BCS
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FIG. 1. A flat piezoelectric substrate with an interface to air or
vacuum, with b = [cos(θ ), sin(θ )] the propagation direction of the
piezoelectric SAW.

type instabilities. The conclusion is that present piezoelectric
materials are not able to either induce s-wave pairing by
themselves or affect in a significant way any pairing instability
which could be already present in graphene. We note, however,
that this conclusion could be substantially changed in case new
hard piezoelectric materials would be found.

II. ELECTRON-PHONON INTERACTION

The system to be considered is depicted in Fig. 1. The
z = 0 interfacial surface is supposed to be free of tension
and, when acting as a substrate to a deposited graphene sheet
(or any other 2D charged system), free of electrodes as well.
However, by introducing a surface charge, one can express the
2D response of the piezoelectric substrate, the piezoelectric
surface permittivity, as the ratio of an electric displacement to
an electric field. To be precise, let us allow for a surface charge
with a harmonic dependence along q = q[cos θ, sin θ ] [here
R = (x,y)]

σ (R,t) = σ (q,ω)ei(q·R−ωt), (1)

and, from linearity, all quantities evaluated at the surface
have the same 2D space-time dependence. We use SI units
throughout this paper. Because the medium at z > 0 has
a dielectric constant εvac, then, from Poisson’s equation it
follows that

εvac = D+
3 (q,ω)

qϕ(q,ω)
, (2)

where D+
3 is the normal to the surface Fourier component of

the electric displacement field over the surface (on the z → 0+
side) and ϕ is the electric potential, which is continuous
because we do not allow for anything more singular than
surface charges. The same ratio taken below the surface
(z → 0−) allows us to introduce the (relative) piezoelectric
surface permittivity,

ε̃(q,ω) := − 1

εvac

D−
3 (q,ω)

qϕ(q,ω)
, (3)

which can also be straightforwardly expressed in terms of the
surface impedance tensor [21]. From Poisson’s equation and
Eqs. (1)–(3) it follows

σ (q,ω) = D+
3 (q,ω) − D−

3 (q,ω) = qϕ(q,ω)[1 + ε̃(q,ω)]εvac.

(4)

Further analysis summarized in Appendix shows that
ε̃(q,ω) has a dependence of the form ε̃(q,ω) = ε̃(q/ω).
An immediate conclusion from Eq. (4) is that a purely
piezoelectric wave [i.e., without sources, σ (q,ω) = 0], can
propagate without damping if and only if ε̃(q/ω) + 1 = 0.
Thus, if the phase velocity is vs(θ ), then ε̃(b/vs(θ )) + 1 = 0
and the dispersion relation of the obtained, called piezoelectric
Rayleigh waves (here referred to as SAW), is ω = vs(θ )q.

For the high-frequency limit we introduce ε̃HF(θ ) :=
ε̃(q/ω),ω → ∞. This should be the anisotropic dielectric
function valid all the way up to the optical region and should
take into account all screening processes in the substrate except
for the slow piezoelectric ones, which are estimated below for
the substrate of the 2D electronic material.

A central quantity in the evaluation of devices which use
piezoelectric Rayleigh waves is the SAW electromechanical
coupling coefficient KR(θ ), introduced through the relation at
1 + ε̃(b/vs(θ )) = 0:

K2
R(θ )/2

ε̃HF(θ ) + 1
=

[
vs(θ )

∂ε̃(b/v)

∂v

∣∣∣
v=vs (θ)

]−1

. (5)

In Appendix we show that very general considerations require

0 � KR(θ ) < 1 , (6)

which is one of the central results of this paper. The
inequality (6) is crucial because, as we will show, it implies that
at small frequencies piezoelectric phonons cannot provide the
sufficient screening to overcome the bare Coulomb repulsion.

In Ref. [5] it is shown that there is a relation between the
amplitude of electric potential at the surface, ϕ0 = ϕ(q,ω),
and the total energy Hharm, see Eq. (A17). Hence, standard
quantization procedure (see the Appendix, subsection A 2)
shows that the interaction between the 2D electronic material
sheet and the spontaneous piezoelectric Rayleigh waves can
be written as

H PA
e-ph = 1√

A

∑
k,q,σ

γ PA
q a

†
k+q,σ ak,σ bq + H.c.,

γ PA
q = KR(θ )

2

√
�e2vs(θ )

εHF(θ )εvac
= KR(θ )

√
παfs�

2vF vs(θ )

εHF(θ )
,

(7)

where A is the area of the sample, ak,σ ,a
†
k,σ the electron op-

erators with σ = ± the electron spin, bk,b
†
k are the piezoelec-

tric phonon operators, αfs := e2/4πεvac�vF , and εHF(θ ) :=
(ε̃HF(θ ) + 1)/2. The validity of the shown interaction Hamilto-
nian Eq. (7) requires two further assumptions: First, the 2DEG
or multilayered graphene sample should be thin enough so that
in Eq. (A8), kd � 1, where z ≡ d is the width of the sample
and k is the maximum allowed phonon momentum. Second,
this maximum allowed momentum should be sufficiently
small for the classical piezoelasticity theory, as shown in
Eqs. (A2)–(A4), to remain valid. We assume that a maximum
momentum on the order of kF ∼ 106 − 107 cm−1 does not
violate this last restriction.
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The resulting total Hamiltonian for the combined system of
2D electron gas and piezoelectric Rayleigh phonon is

H =
∑
k,σ

Eka
†
k,σ ak,σ + �

∑
q

ωq b†qbq

+H PA
e-ph + 1

2A

∑
q

v(0)
q ρ(q)ρ(−q), (8)

where Ek is the electron energy for a 2D wave vector
k, ωq = vs(θ )q is the dispersion relation for the acoustic
piezoelectric SAW phonon of 2D wave vector q and vs(θ )
is the SAW propagation velocity, and ρ(q) = ∑

k,σ a
†
k+q,σ ak,σ

is the Fourier transform of the electron density.
We use the bare Coulomb electron-electron interaction as

v(0)
q = e2

2εHF(θ )εvacq
, (9)

which contains all high-frequency screening processes except
for piezoelectric ones. The bare electron-electron interaction
mediated by phonons is [18,22]

V PA
ph (q,ω) = ∣∣γ PA

q

∣∣2
GPA

0 (q,ω) , (10)

where

GPA
0 (q,ω) = 2ωq

�
(
ω2 − ω2

q + iη
) (11)

is the bare piezoelectric acoustic phonon propagator
(η → 0+). The resulting RPA-type approximation to the
dielectric function and effective interaction are:

Veff(q,ω) = e2

2ε(q,ω)εvacq

= v
(0)
q + V PA

ph (q,ω)

1 − [
v

(0)
q + V PA

ph (q,ω)
]
0(q,ω)

(12)

which can also be written as

Veff(q,ω) = v
(0)
q

εRPA(q,ω)
+

∣∣∣∣∣ γ PA
q

εRPA(q,ω)

∣∣∣∣∣
2

G̃PA(q,ω), (13)

where εRPA(q,ω) ≡ 1 − v
(0)
q 0, with 0 the irreducible polar-

ization function,

G̃PA(q,ω) = GPA
0 (q,ω)

1 − |γ PA
q |2GPA

0 (q,ω)0(q,ω)
εRPA(q,ω)

. (14)

In the low-frequency limit, 0(q,ω � 0) � −D(EF ) =
−2kF /π�vF , for monolayer graphene [23], or 0(q,ω �
0) � −D(EF ) = −m/2π�

2 for a 2DEG with effective mass
m [24]. These two last static limits are exact for q < 2kF . In
Eq. (13), the total interaction has been rewritten as the sum
of a purely electronically screened Coulomb repulsion and a
phonon-induced effective part in which the vertex and phonon
propagator are also screened by just the conducting electrons
of the 2DEG or graphene [18,25]. For frequencies small in
the scale of the acoustic phonons (or the Bloch-Grüneisen
temperature kBTBG := 2�vskF ), the bare electron-phonon-
electron interaction contributes to the long-range part of the

total interaction with a q dependence similar to that of the
Coulomb repulsion:

V PA
ph (q,ω � 0) = ∣∣γ PA

q

∣∣2
GPA

0 (q,ω � 0) = −2
∣∣γ PA

q

∣∣2

�vsq
. (15)

Note that it is the acoustic phonon propagator GPA
0 (q,ω � 0)

that introduces the coulombic long-range dependence in q via
the dispersion of the modes. In the next subsection we shall
see that a similar final q dependence has a different origin.

In the limit of low frequencies, ω � 0, there can be no
effective attraction for electrons close to the Fermi surface
because, as shown in Eq. (A34), the following inequality is
satisfied:

−V PA
ph (q,ω � 0)

v
(0)
q

= K2
R(θ ) < 1, (16)

which is, in conjunction with the interaction vertex given by
Eq. (7), a central result of this paper.

A. Comparison with optical phonons

For simplicity, we focus a single branch of the longitudinal
optical (LO) for which we assume a constant frequency ω0.
The total Hamiltonian reads as in Eq. (8) except for the
replacements:

ωq → ω0 (17)

v(0)
q → v(∞)

q := e2

2ε∞εvacq
(18)

ε∞ := ε∞ + 1

2
(19)

γ PA
q → γ OP

q :=
√

g
e2�ω0

2εvacq
(20)

g :=
(

1

ε∞ + 1
− 1

ε0 + 1

)
> 0 , (21)

where standard notation for dielectrics is used: ε∞ the
dielectric constant coming from very high-frequency interband
electronic transitions and ε0 would be static dielectric constant
in the absence of the piezoelectric phonons at frequencies
much smaller than ω0.

Again, as shown in the discussion around Eq. (15), for small
frequencies (ω � ω0), the bare phonon-mediated electron-
electron interaction contributes to the long-range part of the
total interaction like the Coulomb repulsion:

V OP
ph (q,ω � 0) = ∣∣γ OP

q

∣∣2
GOP

0 (q,ω � 0) = −g
e2

εvacq
. (22)

However, in contrast to the piezoelectric case, here it is the
vertex that introduces the coulombic dependence in q.

At small frequencies, ω � ω0, a single optical phonon is
not enough to provide overscreening, because

−V OP
ph (q,ω � 0)

v
(∞)
q

= ε0 − ε∞
ε0 + 1

< 1. (23)
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III. EFFECT OF PIEZOELECTRIC PHONONS ON
SUPERCONDUCTING INSTABILITIES

From (16) and (12), we see that, in the static limit (ω � 0),
and for q < 2kF , Veff can be written in the form

Veff(q,0) =
[
1 − K2

R(θ )
]
v

(0)
q

1 + [
1 − K2

R(θ )
]
v

(0)
q D(EF )

, (24)

where we note that we have not assumed q � kF , as discussed
in the paragraph following (7). From the inequality in (16),
we are led to conclude that overscreening of the Coulomb
repulsion by the phonon-mediated attraction is not possible.
Moreover, and following standard textbook reasoning (see for
example Ref. [26]), we conclude that BCS-type instabilities
must also be ruled out. A similar result holds for a single
branch of optical phonons, as can be seen from Eq. (23) (see
however Ref. [27] for the effect of multiple optical phonon
branches from the substrate on superconducting instabilities).

Moreover, in case such overscreening occurred, the static
dielectric constant from Eq. (12) would predict unphysical
features such as unstable phononic modes with ω̃(qc) = 0
for some qc 	= 0 and even imaginary frequencies for q < qc.
No matter how small the absolute difference |1 − K2

R(θ )|
happened to be, there would always exist a pole for the
static (12) at small enough q (what cannot occur in standard
BCS metals), signaling a different type of instability, possibly
a charge density wave. On the other hand, the result (16)
for the vertex could still lead to higher angular momentum
pairing instabilities (as in the Kohn-Luttinger mechanism [28])
provided that K2

R(θ ) is sufficiently large and anisotropic, a case
not considered by us.

A. Eliashberg formalism [19]

The previous reasoning about the absence of superconduct-
ing instabilities is incomplete and somewhat oversimplified.
Three reasons support this claim: (i) Long-wave piezoelectric
phonon excitations (as considered in the present paper)
can never be the only source of effective electron-electron
interactions; in particular, we have not taken into account the
short-range electric fluctuations of the substrate. (ii) There is
definitely some dynamic overscreening at high frequencies
[see Eq. (10)]. (iii) Coulomb interaction has to be properly
renormalized by taking into account collisions with high
momentum transfer, which diminishes the Coulomb repul-
sion and thus comparatively strengthens the other attraction
mechanisms.

Leaving aside the first objection momentarily, we can use
the Eliashberg formalism, as applied to graphene in Ref. [19],
to deal with the other two objections. The effective interaction
could cause superconducting instabilities if a dimensionless
electron-phonon coupling λPA happened to be greater than an
also dimensionless Coulomb pseudopotential μ∗ coming from
high-energy renormalizations [19,29]. The coupling constant
λPA in the Eliashberg formalism is the same appearing in (the
real part of the) self-energy calculations to renormalize the

Fermi velocity [30] and is given by:

α2
PAF (ω) = |γ PA|2

2π2�2vsvF

√
1 − (

ω/vs

2kF

)2

(
1 + kTF

ω/vs

)2 ,

λPA = 2
∫ ∞

0

α2
PAF (ω)

ω
dω = rs

π
K2

R F (2rs),

(25)

F (x) =
∫ 1

0

t
√

1 − t2 dt

(t + x)2

= −2 + xπ + (1 − 2x2) acosh(x−1)√
1 − x2

,

where rs(θ ) := αfs/ε(θ ), and the symbols rs,vs,γ
PA,K2

R stand
for the Fermi surface angle-averaged quantities of the same
name. The constant μ∗ equals

μ∗ =
1
4D(EF )V

1 + 1
4D(EF )V log

(
EF

�ωc

) , (26)

where ωc is some energy cutoff which should satisfy ωDebye �
ωc � EF /� [19] and V comes from the Fermi surface aver-
age of the Thomas-Fermi renormalized Coulomb repulsion
v

(0)
q /(1 + kTF

q
). We have

1

4
D(EF )V = rs

π
G(2rs),

G(x) =
∫ 1

0

√
1 − t2 dt

t + x
(27)

= −1 + πx

2
+

√
1 − x2 acosh(x−1),

and therefore, provided that one takes �ωc � kBTBG, so that
log ( EF

�ωc
) � log( vF

2vs
) � 5. Thus, an estimate of the effective

pseudopotential is

μ∗ �
rs

π
G(2rs)

1 + 5rs

π
G(2rs)

. (28)

There could be intravalley [31] superconducting instabilities
provided that

1 <
λPA

μ∗ = K2
R

F (2rs)

G(2rs)

[
1 + 5rs

π
G(2rs)

]
, (29)

which imposes a constraint on the value of K2
R from the

piezoelectric substrate with respect to quantities depending
on rs . The coupling KR should be very large and actually
greater than 1 for this choice of ωc, although there could
exist superconductivity in this idealized case of a system
consisting just of the graphene electrons and long-wavelength
piezoelectric phonons, provided that EF /ωc is larger and K2

R

close to 1.
In order to amend the first objection, we have to consider

proper phonons of the electronic system (here we go on
considering graphene), in conjunction with the short range
of the piezoelectric ones. Then, pairing instabilities due to
intervalley scattering have to be considered as well, because
intravalley scattering terms contribute also to the intervalley
pairing gap. With the notation in Ref. [19], an estimate on the
critical temperature for the intravalley pairing is [19] T intra

c =
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FIG. 2. Critical temperature and variation from the “bare” one in
Ref. [19] for graphene on a piezoelectric substrate, as a function of
the conduction band density. Three pairs of plots are given for three
different values of KR and the two values of the constant C = 3.5
and 5 in Eq. (5.1) for λ in Ref. [19].

1.13ωDebye exp (− 1+λ
λ11−μ∗

11
), and a very similar one is obtained

for the intervalley transition T inter
c = 1.13ωDebye exp (− 1+λ

λ−μ∗
12

),

with λ = λ11 + λ12 and the previously computed λPA included
into the intravalley term λ11 (λ12 denotes the contribution from
all intervalley terms). Here the pseudopotential μ∗

12 is only
slightly larger than μ11, and both are given by similar formulas
as in Eq. (26), but with ωc → ωDebye.

The upshot of this discussion is that the long-wavelength
piezoelectric phonons work in favor of pairing instabilities,
as shown in Fig. 2. We emphasize, however, that we are
not claiming that a piezoelectric substrate per se necessarily
increases the critical temperature, since it could be the case that
other piezoelectric fluctuations not considered in the present
study (e.g., shorter wavelength modes) could work against
pairing instabilities.

IV. CONCLUSIONS

In conclusion, we have derived a general expression for
the two-dimensional electron-phonon piezoelectric interaction
valid for any piezoelectric substrate covered by a two-
dimensional electron system, as in the classical 2D Fröhlich
Hamiltonian for the optical phonons, and characterized the
magnitude of the interaction. Our results show that electron
overscreening cannot be achieved just with the strongest
piezoelectric phonons within our assumptions because K2

R < 1
is always satisfied. Nevertheless, these phonons could help
further in other contexts where the 2D superconductivity is

known to exist, for example in bulk few-layer MoS2 with most
of the carriers confined to the first layer [32,33], or postulated
to exist but not yet observed due to experimental difficulties
(e.g., very heavily doped graphene [19]). Another example
is the recent high-temperature superconductor system of 2D
FeSe on top of the ferroelectric SrTiO3, whose optical phonons
have been analyzed arriving at conclusions similar to ours [27],
and where the strong piezoelectric phonons could play a role
as well.
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APPENDIX: PIEZO-SAW PHONON-ELECTRON
INTERACTION VERTEX

The situation is depicted in Fig. 1. The z = 0 interfacial
surface is supposed to be free of tension and, when acting
as a substrate to a deposited 2D electronic material sheet,
free of electrodes as well. However, in the present section,
we will allow for flat electrodes (at z = 0+) which supply no
mechanical stresses. The purpose of this section is to show that
the interaction between the propagating piezoelectric SAWs
and the electrons of the 2D electronic sheet can be described
with a Hamiltonian of the form Eq. (8) with (we use SI units
throughout the present section, as is typical for piezoelectrics):

ωq = vs(θ )|q|,

γ PA
q = KR(θ )√

2

[
vs(θ )�e2

(ε̃HF(θ ) + 1)εvac

]1/2

, (A1)

where we have written q := q[cos(θ ), sin(θ )] and εvac is the
air or vacuum electric permittivity. The piezoelectric specific
parameters are vs(θ ), the piezoelectric SAW velocity, 0 �
KR(θ )2 < 1, the SAW electromechanical coupling coefficient,
and ε̃HF(θ ) := ε̃(q/ω),ω → ∞ (in the acoustic frequency
scale), the high-frequency (HF) limit of the piezoelectric
surface permittivity (see Refs. [5,6]). They all depend on the
propagation direction of the SAW, as the notation suggests.

1. Piezoelectric surface acoustic waves

For a general introduction to piezoelectric SAWs see
Refs. [3,5,6,17]. The point displacement, ui(r,t), where
i = 1,2,3 for the x,y,z directions, respectively, in the piezo-
electric substrate, obeys the elastic equation of motion (in the
present Appendix, implicit sums on repeated indexes are used):

∂2ui

∂t2
= ∂Tij

∂xj

, (A2)

where Tij (r,t) is the symmetrical stress tensor. Poisson’s
equation for the electric displacement Di(r,t) (no charges
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inside the material) is:

∂Di

∂xi

= 0. (A3)

The coupled constitutive (linear) equations relate the stress
tensor and electric displacement with the strain tensor and
electric field (here written as the gradient of the electric
potential Ei = −∂ϕ/∂xi)

Tij = cijkl∂uk/∂xl + ekij ∂ϕ/∂xk

Di = −εjkεvac∂ϕ/∂xj + eijk∂uj/∂xk, (A4)

where we have introduced the elastic constant tensor cijkl ≡
cE
ijkl measured at constant electric field, the electric (relative)

permittivity tensor εij ≡ εS
ij measured at constant strain, and

the piezoelectric tensor eijk .
The SAWs are solutions to (A2)–(A4) in the form of plane

waves propagating along the surface z = 0 in the direction
specified by b = [cos θ, sin θ ]

uj = αj exp[ik(bixi − vt)]
(A5)

ϕ = α4 exp[ik(bixi − vt)],

and we have extended here to 3D the definition of b :=
[cos(θ ), sin(θ ),b3] so that b3 is now a variable to be determined
by the requirements of boundedness or causality of normal
modes (see below). In what follows, we assume always v > 0
and k > 0.

The resulting linear equations for the amplitudes αa (here
a,b = 1,2,3,4 and i,j,k,l = 1,2,3) are:

0 = (�ab − δ′
abρv2)αa

�jk = biblcijkl

(A6)
�j4 = bibkeijk

�44 = −bibkεikεvac,

with δ′
ij = δij ,δ

′
4a = δ′

a4 = 0, and ρ the constant density of the
piezoelectric solid.

Note that k disappears, which means that there is no
dispersion for a given propagating direction. Hence, given the
propagation direction θ and the velocity v, the solutions for
det (�ab − δ′

abρv2) = 0 as a function of b3 is a set of no more
than eight complex values, in which, because of the reality
of the coefficients, each complex root comes together with its
conjugate, and among these we have to choose the ones with
Im b3 < 0, so that the modes are not exponentially growing
deep into the solid. In the case of purely real solutions, usual
arguments on causality demand that we have to take only
those modes with radiation (outgoing from the surface z = 0)
boundary conditions db3(v)/dv < 0 (see Ref. [34]). Hence,
the total number of allowed modes is four, and the general
solution we write as (we use now u4 := ϕ and write somehow
loosely r = (R,z), with the 2D R = (x,y)):

ua(r,t) = Cnα
(n)
a eikb

(n)
3 z exp [ik(b · R − vt)], (A7)

with n = 1...4 indexing the normal modes. Much simpler is
the equation at vacuum/air. The solution is purely electric and

can be written as:

ϕ(R,z,t) = u4(R,0,t)e−kz, (A8)

because of continuity of the potential.
The mechanical boundary condition at the interface

Ti3(R,0,t) = 0 leads to (here b(n) := [cos(θ ), sin(θ ),b(n)
3 ]):

Cnb
(n)
k

(
α

(n)
j c3ijk + α

(n)
4 ek3i

) = 0, (A9)

hence Ci are proportional to C4. The normal component of the
electric displacement is, at the interface:

D3(R,0−,t) = ik exp [ik(b · R − vt)]

×Cnb
(n)
k

(
α

(n)
j e3jk − α

(n)
4 ε3kεvac

)
, (A10)

and this allows us to introduce the piezoelectric surface
permittivity as the ratio:

ε̃(k/ω) := − D3(R,0−,t)

kϕ(R,0−,t) εvac

= −i
Cnb

(n)
k

(
α

(n)
j e3jk − α

(n)
4 ε3k

)
Cmα

(m)
4 εvac

, (A11)

which only depends on v and θ , through the relations k := kb
and ω := kv.

Similarly, on the other side of the interface we have the
obvious relation

1 = D3(R,0+,t)

kϕ(R,0+,t) εvac
. (A12)

Hence, the surface charge at the interface can be expressed as:

σ (0) = D3(0+) − D3(0−) = kϕ(0)[1 + ε̃(k/ω)]εvac, (A13)

where the dependence exp [ik(b · r − vt)] is implicitly as-
sumed and the electrodes should be placed perpendicular to
the propagation direction.

From Eq. (A13), a source free propagating wave only exists
if

1 + ε̃(k/ω) = 0, (A14)

i.e., the phase velocity vs(θ ) of the wave is given by
1 + ε̃(b/vs(θ )) = 0. This is the piezoelectric Rayleigh waves
condition.

In Ref. [35] it is shown that the energetic stability of
the piezoelectric guarantees that Im ε̃(b/vs(θ )) = 0 up to a
vL(θ ) > v0(θ ), with ε̃(b/v0(θ )) = 0. In that range, the four
modes in Eq. (A7) are purely decaying on the substrate side.
vL(θ ) marks the starting point at which the piezoelectric
surface permittivity has an imaginary part, which reflects the
influence of bulk modes.

2. Hamiltonian and interaction vertex

The linear equations of piezoelectricity, Eqs. (A2)–(A4),
can be derived from a Lagrangian (see Ref. [36])

L[uj ,ϕ] = 1

2

∫
d3r[ρu̇i u̇i − cijklui,j uk,l

−2eijkϕ,iuj,k + εij εvacϕ,iϕ,i], (A15)

where we have written ,j := ∂/∂xj and u̇i := ∂ui/∂t . The
canonical momentum to ϕ is zero, so that the system is
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constrained. The Hamiltonian is then

H [uj ,ϕ] = 1

2

∫
d3r(ρu̇i u̇i + cijklui,j uk,l + εij εvacϕ,iϕ,i).

(A16)

For a given harmonic propagating (no surface charges)
piezoelectric SAW, i.e., a wave with the form of Re ua(r,z,t)
from Eqs. (A7)–(A8) fulfilling the equations of motion
Eqs. (A2)–(A4) and boundary conditions Eqs. (A9)–(A13)
with σ (0) = 0, it is straightforward to show that the kinetic
energy [first term in Eq. (A16), coming exclusively from
elastic vibrations in the substrate] is the same as the potential
energy [last two terms in Eq. (A16), contains contributions
from elastic deformation and electrostatic stored energy both
in the substrate and in free space]. On the other hand [5], for
the interval 0 < vs(θ ) < vL(θ ), positivity of the kinetic and
potential energies give ∂ε̃(k/ω)/∂ω > 0. For these kinds of
waves we have that [5] (when 1 + ε̃(k/ω) = 0)

Hharm = 1

4
Akω

∂ε̃(k/ω)εvac

∂ω
|ϕ0|2

= 1

2
Ak|ϕ0|2 (ε̃HF(θ ) + 1)εvac

K2
R(θ )

, (A17)

where A is the area of the sample, ϕ0 := Cnα
(n)
4 is the ampli-

tude of the electric potential at the interface [see Eq. (A7)],
and we have introduced the high-frequency limit ε̃HF(θ ) :=
ε̃(k/ω),ω → ∞ and the SAW electromechanical coupling
coefficient, KR(θ ) through the relation at 1 + ε̃(k/ω) = 0:

K2
R(θ )/2

ε̃HF(θ ) + 1
=

[
ω

∂ε̃(k/ω)

∂ω

]−1

. (A18)

The electrons of the graphene sheet (or any other charged
two-dimensional structure deposited at the piezoelectric sub-
strate) feel the electric potential of the piezoelectric SAW. The
interaction is then the total potential at the position of the
electron

VPA(R) = −e ϕ(R,0,t = 0). (A19)

On the other hand, the one-phonon normalization means that
ϕ0 from Eq. (A17) should be chosen so that Hharm = �ω =
�vs(θ )k, and thus we finally get the Hamiltonian Eq. (7).

3. Response functions

We now consider a 1D situation, in which flat electrodes
parallel to the y axis operate on top of the piezoelectric
substrate shown in Fig. 1. Therefore, we chose θ = 0 and there
is no y dependence. We omit to write θ in this subsection.

The charge-potential relation (A13) for the amplitudes is
written so that we define the complex admittance χ (k,ω) as:

ϕ(k,ω) = γ (k,ω)σ (k,ω)

γ (k,ω) := 1

|k|
1

(ε̃(k,ω) + 1)εvac
, (A20)

where we have to allow now for the possibility of negative k,
because we are omitting the θ dependence. From Eq. (A6),
ε̃(k,ω) = f ((ω/k)2) = f (v2), and its analytical extensions
can be guessed from the requirements of causality, which for

ω > 0 means that the poles and zeros of γ (k,ω) are placed in
the lower complex ω half-plane.

We define the instantaneous part

γ∞(k) := 1

|k|
1

(ε̃HF + 1)εvac
=

∫
dx e−ikxγ∞(x), (A21)

and the retarded and static contributions

γret(k,ω) := γ (k,ω) − γ∞(k) =
∫

dx

∫ ∞

0
ei(ωt−kx)φ(x,t),

(A22)

γ0(k) := γ (k,0) = 1

|k|
1

(ε̃LF + 1)εvac
=

∫
dxe−ikxγ0(x)

γ0(x) = γ∞(x) +
∫ ∞

0
dsφ(x,s)e−ηs, (A23)

where ε̃LF := ε̃(k/ω),ω → 0 and η is to be understood as
η → 0+.

All this amounts to writing the general linear causal
relation [37]

ϕ(x,t) =
∫

dx ′
[
γ∞(x − x ′)σ (x ′,t)

+
∫ t

−∞
dt ′ φ(x − x ′,t − t ′)σ (x ′,t ′)

]
. (A24)

The power delivered to the electrodes to maintain a given
ϕ(x,t),σ (x,t) (in this subsection we assume that all fields
which depend on space time are real) is

dU (t)

dt
=

√
A

∫
dx ϕ(x,t)σ̇ (x,t), (A25)

where
√

A is the length along the y direction.
If starting from zero fields and charges, we adiabati-

cally turn on a given surface charge distribution σ (x,t) =
σ (x) exp(ηt), from Eqs. (A24)–(A25), the total energy sup-
plied is:

�Uad√
A

=
∫

dx

∫
dx ′σ (x)

γ0(x − x ′)
2

σ (x ′)

= 1

2(ε̃LF + 1)εvac

∫
dk

2π

|σ (k)|2
|k| . (A26)

Analogously, an instantaneous charging to the same fi-
nal charge distribution σ (x,t) = θε(t)σ (x), with θε(t) a
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differentiable approximation to the Heaviside θ function such
that θτ (t) → θ (t),τ → 0+, requires an amount of work given
by:

�Uinst√
A

=
∫

dx

∫
dx ′ σ (x)

γ∞(x − x ′)
2

σ (x ′)

= 1

2(ε̃HF + 1)εvac

∫
dk

2π

|σ (k)|2
|k| . (A27)

The second process being nonadiabatic, it absorbs more
energy from the source that exerts work on the system. This
extra energy is employed in inducing surface and bulk wave
excitations. As a result, �Uinst > �Uad, which implies

ε̃HF < ε̃LF. (A28)

After the sudden charge, i.e., at t > 0, the time evolution and
relaxation of the potential are, due to Eqs. (A23) and (A24):

ϕ(x,t) =
∫

dx ′σ (x ′)
[
γ∞(x−x ′)+

∫ t

0
dt ′φ(x−x ′,t−t ′)

]
t→∞−−−→

∫
dx ′σ (x ′)γ0(x − x ′), (A29)

this relaxed field being the same as that obtained after the
adiabatic process to the same charge distribution. The space
Fourier, time Fourier-Laplace transform of this potential is:

ϕ(k,ω) :=
∫

dx

∫ ∞

0
dt ei(ωt−kx)ϕ(x,t) = iσ (k)

ω + iη
γ (k,ω),

(A30)

where the change ω → ω + iη (η ≡ 0+) is made to ensure
convergence.

As γ (k,ω) has poles at the Rayleigh waves condition (A14),
we can isolate their contribution, ϕRW(x,t) to ϕ(x,t),

ϕRW(k,ω) : = iσ (k)

|k|
K2

R/2

(ε̃HF + 1)εvac

×
(

1

ω − ωk + iη
+ 1

ω + ωk + iη

)
, (A31)

where ωk = vk and the two terms come from the two identical
SAWs propagating to the right and left. A small 0+ has been
added to ensure that the poles of the admittance are in the
lower complex ω half-plane. Inverting to get the space-time
behavior, we obtain two dispersionless propagating SAWs:

ϕRW(x,t) = K2
R

2
[ϕ(x − vt,0+) + ϕ(x + vt,0+)], (A32)

where ϕ(x ± vt,0+) = ∫
(dk/2π ) eik(x±vt)γ∞(k)σ (k) [see

Eq. (A29)]. The energy carried by these two pulses is, using
Eq. (A47):

�URW =
√

A
K2

R/2

(ε̃HF + 1)εvac

∫
dk

2π

|σ (k)|2
|k| , (A33)

which is the energy stored in each traveling SAW, i.e., �URW =
K2

R �Uinst from Eq. (A27). Since we have at our disposal
no more than �Uinst − �Uad > 0, the condition �URW <

�Uinst − �Uad must be fulfilled. From Eqs.(A26)–(A28) we
conclude that:

K2
R � ε̃LF − ε̃HF

ε̃LF + 1
< 1. (A34)

4. High frequency limit of ε̃(k/ω)

In this section we want to show that, if we take the
propagating direction along the x axis, then:

ε̃HF = εp :=
√

ε11ε33 − (ε13)2. (A35)

In fact, we write the modes equation (A6) as

M̂

(�u
ϕ

)
≡

(
� − ρv21 �γ

�γ  −εεvac

)(�u
ϕ

)
= 0, (A36)

where the form of the 3 × 3 matrix �, 3 × 1 vector �γ , and
constant ε as a function of b (where b = (1,0,b)) can be read
from Eq. (A6).

There are two possibilities for the variation of b as
v → ∞, either (a) b → bsm < ∞, (“sm” means small) or
(b) b ∼ bbg → ∞ (“bg” is for big). In case (a), � − ρv21
will never be singular, so using the determinant formula
from Schur’s complement det(M̂) = det(� − ρv21) det(−ε −
�γ · (� − ρv21)−1 · �γ ), it is immediate to realize that ε =
0 + O(v−2), which leads to the decaying root bsm = −(ε31 +
iεp)/ε33. From the modes equation (A36), we find that:(�usm

ϕsm

)
�

(
O(v−2)

1

)
, (A37)

where here and in the rest of this subsection, we normalize the
modes amplitudes so that ϕsm,bg = 1.

For the other case (b), from the modes equation (A36) we
find that bbg = O(v), hence, expanding M̂ from:

�ij � b2
bgc3ij3, γi � e33ib

2
bg, ε � ε33b

2
bg, (A38)

but now the general form of these modes is(�ubg

ϕbg

)
�

(
α

(i)
j

1

)
, (A39)

where we have used the notation in Eq. (A7) and chosen α(1,2,3)
a

for the three (�ubg,ϕbg) modes and α(4)
a for the (�usm,ϕsm) mode.

Choosing the constant C4 = 1, the mechanical boundary
condition (A9) leads to:

0 � Ckb
(k)

(
α

(k)
j c3ij3 + e33i

) + (
e13i + b(4)e33i

)
, (A40)

and Ck = O(v−1), so the denominator in Eq. (A11) can be
approximated as Cmα

(m)
4 � 1.

On the other hand, the “big” (bg) contribution to the
displacement field is, to order O(v0):

D3(0−)|bg � ikcib
(i)(α(i)

j e33j − ε33εvac
) � 0; (A41)

the last approximate equality comes from the second Eq. (A36)
together with Eq. (A38). Collecting all these results together
with the “small” (sm) contribution to D3(0+) into Eq. (A11),
we finally get [38]:

ε̃HF = −ib4
k(ε3k) = εp. (A42)

5. Energy carried by the piezoelectric SAW pulse

For piezoelectric phenomena, the Poynting vector is (see
Ref. [5]):

Pj = −Tij u̇i + ϕḊj , (A43)
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which, after use of Eq. (A4) can be seen to be a bilinear
expression in the vectors (ua,ua,i) and (u̇b,u̇b,j ) (here i,j =
1,2,3 and a,b = 1,2,3,4; where u4 = ϕ). For a given pulse
propagating in the x direction, ua(x,y,z,t) = fa(x − vt,z), we
are interested in the total energy which crosses x (is obviously
independent of x)

�Upulse =
∞∫∫∫

−∞
dt dy dz P1(x,y,z,t)

=
√

A

∞∫∫
−∞

dt dz gr (x − vt,z)Prsgs(x − vt,z),

(A44)

where gr/s are taken from the components ua,ua,i ,u̇a,u̇a,i

with r,s = 1,2,...,16, and Prs is a constant matrix with

elements of the tensors ê,ĉ,ε̂. Fourier analyzing gr (x −
vt,z) = ∫

(dk/2π ) eik(x−vt)gr (k,z), where because of reality
gr (k,z)∗ = gr (−k,z), we obtain:

�Upulse =
√

A
1

v

∫
dk

2π

∫
dz gr (k,z)Prsgs(k,z)∗, (A45)

but then [3,5]

1

2

∫
dz gr (k,z)Prsgs(k,z)∗ = v|k|

4
ω

∂ε̃(k,ω)

∂ω
|ϕ(k,0)|2

(A46)

is the time-average power per unit length crossing a yz section
by a harmonic piezoelectric SAW, whose electric potential
amplitude is ϕ(k,0) at the interface. The result is

�Upulse =
√

A
(ε̃HF + 1)εvac

K2
R

∫
dk

2π
|k||ϕ(k,0)|2. (A47)
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