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Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons
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Using the tight-binding (TB) approximation with inclusion of the spin-orbit interaction, we predict a topological
phase transition in the electronic band structure of phosphorene in the presence of axial strains. We derive a
low-energy TB Hamiltonian that includes the spin-orbit interaction for bulk phosphorene. Applying a compressive
biaxial in-plane strain and perpendicular tensile strain in ranges where the structure is still stable leads to
a topological phase transition. We also examine the influence of strain on zigzag phosphorene nanoribbons
(zPNRs) and the formation of the corresponding protected edge states when the system is in the topological
phase. For zPNRs up to a width of 100 nm the energy gap is at least three orders of magnitude larger than the
thermal energy at room temperature.
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I. INTRODUCTION

Topological insulators (TIs) with time-reversal symmetry
(TRS) have been of increasing interest in condensed matter
physics and materials science during the last decade. The
emergence of robust edge states in two-dimensional (2D) TIs
that are protected by TRS make them promising candidates
for potential applications in spintronics and quantum comput-
ing [1–6]. TIs can exist intrinsically or be driven by external
factors such as electrical field or by functionalization [7]. Strain
engineering is a well-known strategy for switching from the
normal-insulator (NI) phase to a TI phase [7,8]. Among the
wide list of systems that possess such property, 2D materials
with fascinating electronic, mechanical, and thermal properties
have been in the focus of attention [1,9].

In the past few years, phosphorene, a monolayer of black
phosphorus, has emerged as an encouraging 2D semiconduct-
ing material for widespread applications. Phosphorene-based
field effect transistors (FETs) show a higher ON/OFF ratio in
comparison with graphene [10,11] and have a higher carrier
mobility with respect to 2D transition-metal dichalcogenides
(TMDs), which have recently attracted a lot of attention for
FET applications [10–12]. There exist several works pertinent
to the observation of different phases in bulk and multilayer
black phosphorous by tuning the lowest energy bands [13–17].
Using density functional theory (DFT) it was shown that
few-layer phosphorene experiences a NI to TI and then a
TI to topological metal (TM) phase transition by applying a
perpendicular electric field [16]. In a different DFT study [17]
such phase transitions for various stacked bilayer phosphorene
under in-plane strain have been explored. Owing to the puck-
ered structure of phosphorene, it has a high degree of flexibility.
Therefore, it can sustain strain very well specially in the zigzag
direction up to about 30% [18,19]. This makes phosphorene
promising for possible applications using strain engineering.

In our work, we investigate the effect of strain on the
electronic band structure of phosphorene within the TB
approach. The band gaps of this model [20] are close to
the most reliable DFT and experimental results [21,22] that
predict band gaps of 1 ∼ 2 eV for phosphorene. In this paper,
we propose a model Hamiltonian for the spin-orbit coupling
(SOC) for monolayer phosphorene that can be generalized to

few-layer phosphorene. We show that a model which includes
the next-nearest (n-n) neighbors in the upper or lower chains
is sufficient for capturing the main physics. Then, strain
engineering of this system is investigated through modifying
the hopping parameters of the system. We demonstrate that,
by applying particular types of strain, the system can make
a phase transition to a TI. Finally, we show numerically that
although the topological bulk band gap induced by SOC is
about 5 meV, the highly anisotropic nature of this material
causes the corresponding bulk gaps in large-width zigzag
phosphorene nanoribbons (zPNRs) to be at least three orders
of magnitude larger than room-temperature thermal energy
(∼26 meV) and makes phosphorene nanoribbons excellent
candidates for future applications.

This paper is organized as follows: The effective low-energy
TB model Hamiltonian including the SOC terms is obtained
in Sec. II. The effect of axial strains on the band structure
produced by this model is calculated and our results are
compared with DFT results in Sec. III. Demonstration of
a topological phase transition in the electronic properties of
phosphorene when particular types of strain are applied and
the characteristics of corresponding edge states in zPNRs are
presented in Sec. IV. The paper is summarized in Sec. V.

II. TIGHT-BINDING MODEL HAMILTONIAN
INCLUDING SPIN-ORBIT INTERACTION

A. Structure

The puckered atomic structure of phosphorene and its
geometrical parameters are shown in Fig. 1, where the x and y

axes are the armchair and zigzag directions, respectively, and
the z axis is in the normal direction to the plane of phosphorene.
With this definition of coordinates, one can indicate the
various atom connections ri which correspond to various
hopping parameters ti that are included in the TB model.
The structure parameters have been taken from [23] which is
very close to experimentally measured parameters [24] for its
bulk structure. The components of the geometrical parameters
as shown in Figs. 1(b) and 1(c), for bond lengths r1 =
2.240 Å and r2 = 2.280 Å, are (r1x,r1y,r1z) = (1.503,1.660,0)
and (r2x,r2y,r2z) = (0.786,0,2.140), and r3,r4,r5 are simply
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FIG. 1. The lattice geometry of phosphorene. The two different
colors of the P atoms refer to upper and lower chains. (a) The hopping
parameters t1,t2, . . . ,t5 used in our TB model are indicated in the
figure. Red dotted arrows represent two types of n-n neighbors and
the green dashed rectangle shows the unit cell of phosphorene. (b) A
honeycomb-like ring of phosphorene. The vectors �di , �dj , �di + �dj , and
�F ∝ ( �dj − �di) are used to derive the SOC. (c) Lattice constants and

the components of geometrical parameters describing the structure of
phosphorene.

defined by parameters of r1 and r2. The two in-plane lattice
constants are a = 4.580 Å, b = 3.320 Å and the thickness of
a single layer due to the puckered nature is r2z = 2.140 Å.

B. Tight-binding model

The phosphorene TB Hamiltonian that has been proposed
earlier [20], without the spin degree of freedom, is given by

Ĥ =
∑
i,j

tij c
†
i cj , (1)

where the summation is up to fifth neighbors, and tij are
hopping integrals that show the energy transfer between the
ith and j th sites. The hopping terms are shown in Fig. 1(a).
c
†
i and cj represent the creation and annihilation operators of

electrons in sites i and j , respectively. The numerical values of
these hopping parameters are t1 = −1.220 eV, t2 = 3.665 eV,
t3 = −0.205 eV, t4 = −0.105 eV, and t5 = −0.055 eV [20].
Including the spin degree of freedom and SOC the Hamiltonian
is modified into

Ĥ =
∑
i,j,α

tij c
†
iαcjα + ĤSO, (2)

where in ĤSO = ĤSO1 + ĤSO2, the first term is called the
usual effective SOC and the second one is the intrinsic Rashba
SOC which will be introduced in next subsection. Due to the
puckered structure of phosphorene, the Rashba term is rather
large as compared to the first term and should be included in
our calculations.

C. Spin-orbit coupling in phosphorene

The primary goal of this subsection is to introduce a
spin-orbit model Hamiltonian for phosphorene which can
capture the most important spin-related phenomenon. There
exist several studies which show the anisotropic behavior in the
electronic and optical properties of phosphorene [22,25–27]
which are due to the anisotropic nature of the band dispersion
of phosphorene. This property is reflected in the effective

mass of electrons and holes of phosphorene. As a matter of
fact, the corresponding band dispersion of the zigzag direction
in real space is relatively flat near the Fermi energy while
it has an approximately linear dispersion in the armchair
direction [25,27]. One can define two types of n-n neighbors
in the phosphorene structure. As shown in Fig. 1(a), each P
atom has two intrachain and four interchain n-n neighbors,
respectively. The effective mass of electrons in the intrachain
direction are at least an order of magnitude larger than in
the interchain direction [25]. Therefore, electrons usually
select the interchain path for circular motion, allowing us to
ignore the intrachain neighbors and only consider the four n-n
interchain P atoms in the SOC model.

In general, the SOC term for a 2D system is given by

HSO = − �

4m2
0c

2
( �F × �P ) · �σ , (3)

where �, m0, and c are Planck’s constant, mass of the free
electron, and the velocity of light, respectively. �F is the
effective electrostatic force, �P is the effective momentum, and
�σ denotes the Pauli matrices. As in the cases of graphene and
silicene [28], the nearest-neighbor SOC is zero in phosphorene,
but the SOC terms of the n-n neighbors are nonzero.

As shown in Fig. 1(b), in a honeycomb-like ring of phos-
phorene, we can define �di and �dj as vectors that connect the
nearest P atoms to each other and �di + �dj the connecting vector
of n-n neighbors. Using these vectors, the electrostatic force
and momentum can be written as �F = | �F |( �dj − �di)/| �dj − �di |
and �P = −i� �� ≡ −iα( �di + �dj ), with α being a prefactor.
Rewriting the SOC in terms of the above definitions we obtain

HSO = − �

4m2
0c

2

[
| �F |(−iα)

| �dj − �di |
( �dj − �di) × ( �di + �dj )

]
· �σ . (4)

Based on experimental and DFT data, | �di | and | �dj | are
approximately equal [18,23,24,29]; therefore ( �di + �dj ) and
( �dj − �di) become perpendicular to each other. This leads to

HSO = −i
2�α| �F |

4m2
0c

2| �dj − �di |
( �di × �dj ) · �σ ≡ −iγ ( �di × �dj ) · �σ ,

(5)

where the term 2�α| �F |/4m2
0c

2| �dj − �di | = γ will be adjusted
to obtain the correct value of SOC as obtained by DFT. Notice
that the above approximations reduce the two parameters of the
usual SOC and intrinsic Rashba SOC into a single parameter.
Using �σ = σ�â� + σzâz, where σ� (σz) are the in-plane (out-
of-plane) Pauli matrices (matrix), we rewrite Eq. (5) as

HSO = −iγ | �di × �dj |zνij σz − iγ |( �di × �dj )�|( �di × �dj )0
�
· �σ�,

(6)

where νij ≡ ( �di × �dj )z/| �di × �dj |z = ±1 and ( �di × �dj )0
�

≡
( �di × �dj )�/|( �di × �dj )�| is a dimensionless unit vector. The
spin-orbit terms in second quantization are given by

ĤSO1 + ĤSO2 = −iλso

∑
〈〈ij〉〉αβ

νij c
†
iασ αβ

z cjβ

− iλr

∑
〈〈ij〉〉αβ

c
†
iα( �di × �dj )0 · �σαβ

�
cjβ, (7)

085417-2



STRAIN-INDUCED TOPOLOGICAL PHASE TRANSITION . . . PHYSICAL REVIEW B 94, 085417 (2016)

where λso ≡ γ | �di × �dj |z and λr ≡ γ |( �di × �dj )�| are effective
intrinsic SOC and intrinsic Rashba constants, and the sum-
mation runs over the interchain n-n neighbors. As mentioned
before, these two parameters are related to one parameter γ ,
which can be estimated by adjusting the TB band structure of
phosphorene to the one obtained from DFT. It was shown that
in the absence of SOC the energy gap of few-layer phosphorene
closes under an external electric field or strain [16,17].
However, including the SOC an energy gap of 5 meV [16]
remains in few-layer phosphorene. This results in the value of

γ ≈ 0.006 meV/Å
2

in our TB model.

III. PHOSPHORENE UNDER STRAIN:
ELECTRONIC BAND STRUCTURE

The role of uniaxial and biaxial strain in manipulating the
electronic structure of few-layer phosphorene has been inves-
tigated via DFT [17,19,30–32] and TB approaches [33–35].
Applying tensile or compressive strain in different directions
results in different modifications of the electronic bands. One
can observe a direct-to-indirect gap transition, or a prior
direct band gap closing, depending on the type of applied
strain [17,19,31]. In this work we consider biaxial compressive
strain in the plane of few-layer phosphorene [17,31], and
tensile strain in the normal direction [32]. This modifies the
low-energy bands so that the valance and conduction bands
approach each other. By further increasing strain, the lower
band, coming from px orbitals, shifts upward resulting in a
semimetal phase [31] given that at the band crossing point a
minigap opens due to the SOC. Investigating the local density
of states of p orbitals [17] shows that our one-orbital pz-like
TB model is still valid in the low-energy limit before the
semimetal phase appears.

In the following, we will first study the bulk band of
phosphorene in the presence of axial strains using our TB
approach and demonstrate that a band inversion occurs in
the energy spectrum of phosphorene in the range where the
structure is still stable under strain. It has been shown that
the bond lengths and bond angles of phosphorene both change
under axial strains [31,36]. Therefore, the hopping parameters
will change. According to the Harrison rule [37,38], the
hopping parameters for p orbitals are related to the bond length
as ti ∝ 1/r2

i and the angular dependence can be described by
the hopping integrals along the π and σ bonds. However, our
calculations showed that although the changes in angles are
almost noticeable [31,36], the modification of the hopping
parameters due to them is much smaller than the effect of
changes of bond lengths. Hence, we consider only changes of
the bond lengths in the hopping modulation.

When an axial strain is applied to phosphorene, the
rectangle shape of the unit cell with lattice constants of a0

and b0 remains unchanged. Therefore the initial geometri-
cal parameter r0

i is deformed as (rix,riy,riz) = ((1 + εx)r0
ix,

(1 + εy)r0
iy,(1 + εz)r0

iz), where εj is the strain in the j direction
and ri is a deformed geometrical parameter. In the linear
deformation regime, expanding the norm of ri to first order
of εj gives

ri = (
1 + αi

xεx + αi
yεy + αi

zεz

)
r0
i , (8)

where αi
j = (r0

ij /r0
i )2 are coefficients related to the structure

of phosphorene which are simply calculated via the special
geometrical parameters given in previous section. Using the
Harrison relation, we obtain the strain effect on the hopping
parameters as

ti ≈ (
1 − 2αi

xεx − 2αi
yεy − 2αi

zεz

)
t0
i , (9)

where ti is the modified hopping parameter of deformed
phosphorene with new lattice constants a and b.

Let us now study the energy spectrum of strained phos-
phorene with the modified hopping parameters as given by
Eq. (9). The unit cell of monolayer phosphorene is a rectangle
containing four atoms as shown in Fig. 1(a). The Fourier
transform of the strained Hamiltonian of Eq. (2) gives the
general Hamiltonian in momentum space as

H =
∑

k

ψ
†
kHkψk, (10)

where we have used the basis ψ
†
k = {a†

k,b
†
k,c

†
k,d

†
k} ⊗ {↑ , ↓}

with Hk being

Hk =
(

Hk(↑↑) Hk(↑↓)

Hk(↓↑) Hk(↓↓)

)
, (11)

where

Hk(↑↑) = H
(4)
k + H so

k , Hk(↓↓) = H
(4)
k − H

(so)
k ,

Hk(↑↓) = H
(R)
k , Hk(↓↑) = H

†
k

(R)
(12)

are 4×4 matrices

H
(4)
k =

⎛
⎜⎜⎝

0 Ak Bk Ck

A∗
k 0 Dk Bk

B∗
k D∗

k 0 Ak

C∗
k B∗

k A∗
k 0

⎞
⎟⎟⎠,

H
(so)
k =

⎛
⎜⎜⎝

0 0 Ek 0
0 0 0 −Ek

E∗
k 0 0 0

0 −E∗
k 0 0

⎞
⎟⎟⎠,

H
(R)
k =

⎛
⎜⎜⎝

0 0 Fk 0
0 0 0 Fk

ei(ka−kb)Fk 0 0 0
0 ei(ka−kb)Fk 0 0

⎞
⎟⎟⎠, (13)

whose elements are given by

Ak = t2 + t5e
−ika ,

Bk = 4t4e
−i(ka−kb)/2 cos(ka/2) cos(kb/2),

Ck = 2eikb/2 cos(kb/2)(t1e
−ika + t3),

Dk = 2eikb/2 cos(kb/2)(t1 + t3e
−ika ),

EK = −2λsoe
−i(ka−kb)/2 sin(ka/2) sin(kb/2),

FK = 4λre
(kb−ka )/2( cos(kb/2) cos(ka/2) cos(θ ),

+ i sin(kb) sin(ka) sin(θ )), (14)

with ka = k · a, kb = k · b, and θ = arctan(r1y/r1x).
The energy spectrum of pristine phosphorene in the absence

of strain has been obtained by numerical diagonalization of the
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FIG. 2. (a) The TB bands of phosphorene including the effect of
SOC. The blue dashed rectangle is magnified in (b), (c), and (d) for
various conditions: (b) The magnified valence and conduction bands
of phosphorene. Red curves show the bands without SOC. Black solid
curves show the bands with SOC. (c), (d) The energy spectrum right
before and after band inversion at 11.5% and 12.5% perpendicular
tensile strain, respectively. The inset shows the gap opening due to
the SOC, i.e., ∼5 meV.

TB Hamiltonian Eq. (10) in different symmetry directions as
shown in Fig. 2(a). As we can see in Fig. 2(b), the degeneracies
of bands have been removed (black lines) slightly due to the
SOC in comparison with the case of zero SOC coupling (red
lines) except for the time-reversal-invariant momenta (TRIMs)
which are at least doubly degenerate according to the Kramers
theorem.

As seen in Fig. 2 the gap of phosphorene is located at the
� point which is also a TRIM. At this point, the spin-up and
spin-down valence and conduction bands are degenerate and
the change in the gap due to the SOC is very small as compared
to the bulk gap. Since axial strain does not break TRS, the
bands at this point remain degenerate. Therefore, when the
bulk gap is modified by an external factor such as strain, we can
safely use the spinless Hamiltonian demonstrating the general
trend in changes of the gap. All P atoms in a unit cell have
the same on-site energy, so we can project the position of
upper and lower chains of phosphorene on a horizontal plane
to reduce the spinless 4×4 Hamiltonian H

(4)
k into a two-band

TB model [27,39]. Therefore the new k-space Hamiltonian of
the strained phosphorene in the absence of spin is given by

H
(2)
k =

(
Bke

i(ka−kb)/2 Ak + Cke
i(ka−kb)/2

A∗
k + C∗

ke−i(ka−kb)/2 Bke
i(ka−kb)/2

)
. (15)

Diagonalizing this Hamiltonian at the � point gives the band
gap as

Eg = (
4t0

1 + 2t0
2 + 4t0

3 + 2t0
5

)
−

∑
j

(
8α1

j εj t
0
1 + 4α2

j εj t
0
2 + 8α3

j εj t
0
3 + 4α5

j εj t
0
5

)
, (16)

where j denotes the summation over x, y, z components. The
first bracket is the unstrained band gap, i.e., E0

g = 1.52 eV, and
the second one indicates the structurally dependent values of
change in the band gap due to the axial strains. Inserting the
numerical values of the structural parameters in Eq. (16) we
obtain a compact form for the gap equation

Eg = E0
g −

∑
j

ηj εj , (17)

where ηx = −4.09 eV, ηy = −5.72 eV, and ηz = 12.86 eV.
Equation (17) shows that by applying in-plane compressive
biaxial strain and perpendicular tensile strain, the band
gap decreases, which is consistent with DFT calculations
[17,19,30–32]. It is shown that DFT calculations using the
PBE exchange correlation functional anticipate properly the
general trends of the band structure when applying axial strains
on phosphorene [19,31]. A comparison between the band gaps
as function of axial strains using available DFT data [19,31,32]
and the TB model demonstrates that the modification of
the hopping parameters in the linear regime is valid for
rather large strains and shows that the modified TB model
predicts correctly the variation of the low-energy spectrum.
Figure 3 shows the band gap values evaluated at the � point
in the presence of (a) uniaxial perpendicular tensile strain, (b)
uniaxial compressive strain in the armchair direction, and (c)
biaxial compressive in-plane strain, respectively. In both DFT
and TB approaches the band gaps exhibit linear dependence
with applied strain. The discrepancy between the values of the
band gaps originates from the specific calculation method.

As a particular case we consider the modification of energy
of the spectrum under a perpendicular tensile strain. By
increasing the tensile strain, a band inversion occurs at the
critical value of εc

z = E0
g/ηz = 0.118. This is a signal of a

topological phase transition. Figures 2(c) and 2(d) show the
low-energy bands just before and after band closing at 11.5%
and 12.5% tensile strain, respectively. As shown in the inset
of Fig. 2(d), the SOC opens a small gap of about 5 meV after
band closing preventing the formation of a Dirac-like cone.

Notice from Fig. 2 that the low-energy bands in the armchair
direction become more linear under strain. This makes the
intrachain n-n neighbors less important justifying the use of
the SOC terms of Eq. (7).

IV. TOPOLOGICAL PHASE TRANSITION
OF PHOSPHORENE UNDER STRAIN

The Z2 classification provides a very strong distinction
between two different time-reversal topological and trivial
phases. Pristine phosphorene as a trivial insulator when the
intrinsic SOC effect is included preserves the TRS and can
exhibit a quantum spin Hall (QSH) phase when its electronic
properties are influenced by external factors, e.g., electric
field or strain. In the following, we first briefly describe
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FIG. 3. Band gap evolution of phosphorene in the presence of (a) perpendicular tensile strain, (b) uniaxial compressive strain in armchair
direction, and (c) biaxial compressive in-plane strain.

our approach for calculating the Z2 invariant. This approach,
when working in the frame of the TB model [40], is quite
efficient for 2D materials such as phosphorene. Then, we
will demonstrate numerically a topological phase transition
in strained phosphorene and calculate the phase diagrams
accordingly. Finally we will show the existence of protected
edge states in zPNRs and discuss their fascinating properties.

A. Calculation of Z2 invariant

Fu and Kane [41] showed that an equivalent way to calculate
the Z2 invariant is as an integral over half the Brillouin zone
given by

Z2 = 1

2πi

[∮
∂HBZ

dk · A(k) −
∫

HBZ
d2kF(k)

]
(mod 2), (18)

where HBZ denotes half the Brillouin zone. A(k) =∑
n〈un(k)|∇nun(k)〉 is the Berry gauge potential and the Berry

field strength is written as F = ∇k × A(k) |z where un(k)
is the periodic part of the Bloch state with band index n

and the summation runs over all occupied states. According
to Stokes’ theorem, it is obvious that if A and F have
the same gauge which is smooth over HBZ, the result will
vanish. Therefore, one needs to fix the gauge with some
additional constraints [42]. By choosing a gauge in which the
corresponding states fulfill the TRS constraints in addition to
the periodicity of the k points, which are related by a reciprocal
lattice G, the gauge fixing procedure is complete and the
returned results of Z2 = 0 or Z2 = 1 represent the trivial and
topological phases, respectively. In the case of phosphorene,
where bands cross or degeneracies are present in the energy
spectrum, the Berry potential and Berry field strength must be
extended to non-Abelian gauge field analogies [43] associated
with a ground-state multiplet |ψ(k)〉 = (|u1(k)〉, . . . ,|u2M (k)〉)
in the equation H(k)|un(k)〉 = En(k)|un(k)〉.

Based on the above extension, the discretized Brillouin
zone version [44] of Eq. (18) for numerical computing the Z2

invariant is written as

Z2 = 1

2πi

⎡
⎣ ∑

kl∈∂HBZ

Ax(kl) −
∑

kl∈HBZ

Fxy(kl)

⎤
⎦(mod 2), (19)

where each site in the square lattice of the Brillouin zone of
phosphorene is labeled by kl and l specifies a plaquette with

so-called unimodular link variable

Uμ(kl) = detψ†(kl)ψ(kl + μ̂)

|detψ†(kl)ψ(kl + μ̂)| , (20)

where μ̂ denotes a unit vector in x-y plane. Such a link variable
allows us to define the Berry potential and Berry field as

Ax(kl) = ln Ux(kl), (21)

Fxy(kl) = ln
Ux(kl)Uy(kl + x̂)

Uy(kl)Ux(kl + ŷ)
. (22)

Berry potential and Berry field strength are both defined within
the branch of Ax(kl)/i ∈ (−π,π ) and Fxy(kl)/i ∈ (−π,π ).

Figure 4 shows the results of Z2 corresponding to the
energy bands in Fig. 2. As can be seen, at the critical strain of
11.8%, which is consistent with the condition of εz > E0

g/ηz

for band inversion, the Z2 invariant jumps from 0 to 1. This
demonstrates a topological phase transition in the electronic
properties of phosphorene. According to Eq. (17), another way
to observe a topological phase transition in phosphorene is by
applying in-plane compressive biaxial strain at a fixed value of
tensile strain in the z direction. Figure 5 shows the numerically
computed Z2 phase diagrams as a function of εx and εy at a
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1
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FIG. 4. Calculation of Z2 invariant of phosphorene in the
presence of perpendicular tensile strain. The critical value for the
topological phase transition is 11.8%.
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FIG. 5. Phase diagrams of the Z2 invariant as function of εx and
εy for different values of εc

z . The linear boundaries distinguish the two
topologically different phases according to the gap-closing condition
of ηxεx + ηyεy = E0

g − ηzε
c
z .

fixed value of εz. As can be seen, there is a linear border
between the two distinct topological phases that corresponds
to the regimes before and after the gap closing condition of
ηxεx + ηyεy = E0

g − ηzε
c
z , where εc

z is a fixed value of strain
in the direction of z.

It is worth mentioning that the relatively large bulk band
gap of monolayer phosphorene necessitates a rather large value
of strain in order to observe band inversion. As mentioned
before, according to DFT calculations, this is accompanied by
an upward shift of a new valance band maximum (VBM). After
a critical percentage of strain, a direct band touching occurs,
which is characterized by a TI phase. However, further increase
of strain leads to a metal phase and because the topological
nature does not change, the system may fall into the TM phase.
Our model cannot predict the VBM upward shift; hence, in
spite of demonstrating the change of the topological phase, it
cannot distinguish between the TI and TM phases.

Note that our approach can be simply extended to the case
of few-layer phosphorene in which we expect to observe the
topological phase transition at lower strain values, due to the
fact that the interlayer hoppings result in a smaller gap [45].

B. Electronic properties of phosphorene
nanoribbons under strain

In this subsection, we investigate the evolution of the band
structure of phosphorene nanoribbons in the presence of in-
plane and perpendicular strain. In the following, we refer to
the width of zPNRs as Nz-zPNR with Nz being the number
of zigzag chains across the ribbon width. As we showed in
the previous section, a topological phase transition occurs in
the band spectrum of phosphorene. This should lead to the
formation of topologically protected edge states in the band
structure of the corresponding nanoribbons. We obtain the
eigenvalues and eigenvectors using the matrix

Miα,jβ(k) =
∑
mn

τmiα,njβeik·Rmn , (23)

where eik·Rmn are the 1D Bloch wave functions. m, n denote
supercells; i, j are the basis sites in a supercell, and α, β

denote the spin degree of freedom. k is the wave vector, and
Rmn represents a Bravais lattice vector. τmiα,njβ are the hopping
integrals with usual SOC or intrinsic Rashba coupling that are
conveniently defined between the basis site i with spin α of
supercell m and the basis site j with spin β of unit cell n.

Note that Eq. (23) is related to the energy spectrum of
nanoribbons that are not edge passivated. The experimental
realization of such nanoribbons with pristine edges in low-
dimensional materials as graphene is well known [46] and
may be extended to the case of phosphorene nanoribbons.
However, the stability of such ribbons is important from the
experimental point of view. Formation energy studies [47]
showed that pristine phosphorene nanoribbons are stable
especially for ribbon widths which we have considered in this
paper.

The emergence of quasiflat bands which are detached
completely from the bulk bands due to the special structure
of phosphorene are well known [27,39,48]. As shown in
Fig. 6(a), there are topologically nonprotected edge modes in
the 1D bands of a typical zPNR (the results are for Nz = 100).
These quasiflat bands have been used to propose a field-effect
transistor driven by an in-plane electric field [27,39]. However,
since pristine bulk phosphorene is a trivial insulator, the
existence of topologically nonprotected edge modes in the
corresponding nanoribbons which can be affected by environ-
mental conditions such as disorder or impurities may not be a
good candidate for practical use. As an example, we consider
the zigzag nanoribbon in the presence of perpendicular strain.
The behavior in the presence of other types of strain is similar
to this case. As can be seen in Figs. 6(b) and 6(c), by increasing
strain the bulk gap of the nanoribbon gradually decreases and
after a critical strain, where a band inversion occurs in the bulk
spectrum, the corresponding edge states in the ribbon cross the
gap which demonstrates a topological insulator phase. Owing
to the dependence of the nanoribbon gap on the ribbon width,
the critical strain for driving it to a topological insulator phase
depends on the width as well. If we consider ribbons with
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FIG. 6. 1D energy bands for a typical phosphorene nanoribbon with Nz = 100 (∼23 nm) in case (a) without strain, (b) εz = 10%, and (c)
εz = 14%. (d) The amplitude probability of the topological edge modes living on opposite edges for a definite k point.

very large widths, the critical value approaches the critical
strain value of bulk 11.8% that we have calculated in previous
section.

The anisotropic structure of phosphorene results in a
large bulk gap for zigzag nanoribbons with experimentally
accessible widths. This makes strained zPNRs ideal systems
for observing topological states even at room temperature.
As shown in Fig. 6(c) for a zigzag nanoribbon of width
∼23 nm this gap is about 200 meV which is much larger
than room-temperature thermal energy. We have calculated
numerically these bulk gaps for relatively large ribbons up
to a width of 100 nm and found that the mentioned gaps
are at least three orders of magnitude larger than the thermal
energy at room temperature. It is worth mentioning that such
a typical ribbon width is wide enough to prevent from over-
lapping of edge states living on opposite sides of the ribbon.
The corresponding amplitude probability of the topological
edge modes of Fig. 6(c) which have amplitude on opposite
edges are shown in Fig. 6(d) for a definite k point. The ampli-
tude of the wave functions drop very quickly along the width
of the ribbon demonstrating that the nanoribbon width is wide
enough to prevent quantum tunneling. Such excellent proper-
ties can pave the way for utilizing it in device applications.

V. CONCLUSIONS

In summary, we derived a spin-orbit model Hamiltonian
based on the structural and electronic properties of phospho-
rene that captures the main physical properties of spin-orbit
related subjects. Then we showed in the frame of this TB model
that gap engineering of phosphorene by axial strains can lead
to a topological phase transition in the electronic properties of
phosphorene. In spite of the relatively small gap induced by
SOC in bulk monolayer phosphorene, we predict that due to the
special puckered structure of phosphorene, zigzag nanoribbons
in the regime of TI have topologically protected edge states
with rather large bulk band gaps of about 200 meV for a typical
ribbon of width ∼23 nm. Such gaps are larger that the thermal
energy at room temperature and are therefore sufficiently large
for practical device engineering at room temperature.
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