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We perform ab initio calculations of the coupling between electrons and small-momentum polar-optical
phonons in monolayer transition-metal dichalcogenides of the 2H type: MoS2, MoSe2, MoTe2, WS2, and WSe2.
The polar-optical coupling with longitudinal optical phonons, or Fröhlich interaction, is fundamentally affected
by the dimensionality of the system. In a plane-wave framework with periodic boundary conditions, the Fröhlich
interaction is affected by the spurious interaction between the two-dimensional (2D) material and its periodic
images. To overcome this difficulty, we perform density functional perturbation theory calculations with a
truncated Coulomb interaction in the direction perpendicular to the plane of the 2D material. We show that the
two-dimensional Fröhlich interaction is much stronger than assumed in previous ab initio studies. We provide
analytical models depending on the effective charges and dielectric properties of the materials to interpret our
ab initio calculations. Screening is shown to play a fundamental role in the phonon-momentum dependency of
the polar-optical coupling, with a crossover between two regimes depending on the dielectric properties of the
material relative to its environment. The Fröhlich interaction is screened by the dielectric environment in the limit
of small phonon momenta and sharply decreases due to stronger screening by the monolayer at finite momenta.
The small-momentum regime of the ab initio Fröhlich interaction is reproduced by a simple analytical model,
for which we provide the necessary parameters. At larger momenta, however, direct ab initio calculations of
electron-phonon interactions are necessary to capture band-specific effects. We compute and compare the carrier
relaxation times associated with the scattering by both LO and A1 phonon modes. While both modes are capable
of relaxing carriers on time scales under the picosecond at room temperature, their absolute importance and
relative importance vary strongly depending on the material, the band, and the substrate.
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I. INTRODUCTION

Among the rapidly expanding family of two-dimensional
(2D) materials, monolayer transition-metal dichalcogenides
(TMDs) offer particularly interesting features for electronic
and optoelectronic applications [1–5]. Thanks to high carrier
mobility and a direct band gap in the visible range, they can
be included in 2D van der Waals heterostructures to fulfill
various functionalities associated with light-matter interaction
and electron transport. In this context, it is essential to reach a
good understanding of carrier scattering [6–8], including the
intrinsic contribution from the electron-phonon interaction. In
TMDs and other polar materials, a peculiar coupling emerges
between electrons and longitudinal optical (LO) phonons.
Such polar phonons interact with electrons by inducing a
polarization density. At small phonon momenta, this polar-
optical coupling, or Fröhlich interaction, can become quite
large compared to standard electron-phonon coupling (EPC).
Dimensionality has an interestingly drastic effect on this
interaction. Indeed, in the limit of zero phonon momentum,
the Fröhlich interaction diverges in a material with three-
dimensional (3D) periodicity, while it tends to a finite value in
2D materials. This effect can be traced back to the behavior of
the long-range Coulomb interaction.

*Corresponding author: thibault.sohier@epfl.ch

Density functional perturbation theory [9] (DFPT) is a pow-
erful tool to simulate electron-phonon interactions. Associated
with analytical models [10–12], this method can be used to
establish quantitative models [13] of the Fröhlich interaction
in bulk materials. Such a comprehensive and quantitative study
of the Fröhlich interaction is still missing in the case of 2D
materials. This is mainly due to the limitations of DFPT
in the 2D framework. Indeed, DFPT relies on 3D periodic
boundary conditions, implying the presence of periodic images
when simulating low-dimensional systems. Since long-range
Coulomb interactions between periodic images arise when
low-dimensional systems are perturbed at small momenta [14],
DFPT fails to account for the peculiarities of the Fröhlich in-
teraction in 2D. In addition to those computational limitations,
deriving analytical models of the Fröhlich interaction is not
straightforward. In particular, the screening of the Coulomb
interaction in 2D materials is a complex mechanism [15–19]
requiring careful modeling.

In a previous ab initio study [20] of EPC in MoS2, the
small-momentum behavior of the 2D Fröhlich interaction
was estimated by fitting a 2D analytical model on ab initio
calculations. However, the calculations were performed at
momenta too large to capture the effects of dimensionality
and the analytical model only partially accounted for the
complex screening occurring in 2D materials. The 2D
Fröhlich interaction was found to participate only moderately
to the coupling with optical phonons in MoS2, with a small-
momentum limit three times smaller than the value reported
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here. Consequently, it was often ignored in the following
ab initio studies of EPC in TMDs [21,22]. As far as
modeling of the interaction is concerned, a more sophisticated
model [15–19] of screening in 2D materials was used to
estimate the strength of the Fröhlich interaction in a recent
work [23]. This was done in the case of an isotropic dielectric
tensor for the monolayer and without the support of direct
ab initio computation of electron-phonon interactions.

We recently implemented [24] the truncation of the
Coulomb interaction between periodic images of 2D materials
in the density functional theory (DFT) and DFPT package
QUANTUM ESPRESSO [25] (QE). This technique enables us to
isolate each slab and simulate electron-phonon interactions
in a 2D framework. In this work we use this approach to
compute the 2D Fröhlich interaction from first principles. We
focus on the 2H polytypes of MoS2, MoSe2, MoTe2, WS2,
and WSe2. We propose developments on the analytical model
of the Fröhlich interaction in 2D, especially concerning its
screening in the case of a monolayer with anisotropic dielectric
properties and for different dielectric environment on each side
of the monolayer. We use ab initio calculations to estimate the
parameters of this analytical model. The analytical model is
used to interpret and support our calculations of the coupling
to LO phonons, and a simple effective model is proposed to
reproduce its small-momentum limit. The analytical model
is also used to estimate the effect of the presence of a
substrate on the Fröhlich interaction. Finally, we compute the
inverse relaxation times associated with intraband scattering of
carriers by LO and A1 phonons. Large variations are observed
from material to material. The relative importance of the LO
and A1 contributions strongly depends on the band in which
we consider such scattering. In any case, optical phonons (LO
and/or A1) are shown to be capable of relaxing carriers on a
time scale inferior to the picosecond at room temperature.

II. AB INITIO SIMULATIONS OF
ELECTRON-PHONON COUPLING

We perform DFPT calculations of EPC in monolayer TMDs
(2H type), using our recently developed 2D Coulomb cutoff
approach [24] within the [25] QE distribution. This approach
consists in truncating the Coulomb interaction between the
periodic images of the 2D material. This was implemented
for the computation of total energy, forces, phonons, and
electron-phonon coupling. The technique requires the periodic
images to be separated by at least twice the thickness of the
electronic density of the simulated layer. We use a separation
of ≈17 Å, largely fulfilling that requirement. Within a slab
of thickness ≈12 Å, everything happens as if the monolayer
was isolated. Further details about the implementation of
the 2D Coulomb cutoff in the DFT and DFPT packages of
the QE distribution method will be exposed in a separate
publication. We use pseudopotentials from the Standard Solid-
State Pseudopotentials (SSSP) library [26] (accuracy version)
with Perdew-Burke-Ernzerhof functionals and kinetic energy
cutoff as indicated in the library. Spin-orbit coupling is
neglected. Starting from experimental lattice parameters [27],
structures are relaxed to minimize the total energy in our
DFT framework. The resulting in-plane lattice parameters a0,
subsequently used in our calculations, are given in Table IV.
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FIG. 1. Dispersion of the optical phonons in monolayer MoS2 at
small momenta. For the modes in dashed lines, EPC matrix elements
are negligible. The A1 and LO modes, in plain lines, couple to
electrons. We follow the notation of Ref. [29] for the symmetry
representations of the modes at �. The E′ mode separates into LO
and TO modes.

The electronic-momentum grid is set to 16×16×1. Those
choices are sufficient to obtain optical phonon energies within
a few cm−1 of experimental values (when available).

In this section, MoS2 is used as an example. We perform
calculations in bulk MoS2 as well to highlight the impact of
dimensionality on the Fröhlich interaction. For bulk MoS2, we
use the standard QE distribution and the experimental [27] out-
of-plane lattice parameter of c = 12.29 Å. The corresponding
unit-cell includes two layers such that the interlayer distance
in the bulk is ≈6.15 Å. Note that a rigorous study of the bulk
requires the inclusion of dispersion corrections [28] to account
for van der Waals interactions between layers. Since we only
seek a comparison of the small-momentum behavior of the
Fröhlich interaction, however, we ignore this aspect.

We note eqpν and �ωqpν as the eigenvector and energy,
respectively, associated with a phonon in branch ν with
in-plane momentum qp. The dispersions of small-momentum
optical phonons in MoS2 are shown in Fig. 1. Among
those, only the A1 and LO modes (solid lines in Fig. 1)
couple to electrons. In the small-momentum limit, the A1

mode corresponds to out-of-plane displacements of the sulfur
atoms in phase opposition, while the molybdenum atoms are
static. The LO mode corresponds to in-plane longitudinal
displacements with the molybdenum atom moving in phase
opposition to both sulfur atoms. A more extensive ab initio
study of phonons in MoS2 and WS2 can be found in Ref. [29].
Optical phonon modes at small momenta are qualitatively
similar for all the TMDs studied in this work.

We consider phonon-scattering of an electron from state
|k〉 to |k + q〉 within a given band. The associated EPC matrix
element is defined as

gν(qp) =
∑
a,i

√
�

2Maωq,ν
ea,i

qp,ν〈k + q|�a,i
qp
VKS(r)|k〉, (1)
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FIG. 2. EPC matrix elements involving LO and A1 phonon modes
in bulk and monolayer MoS2. We consider intraband scattering of
electrons or holes in the conduction band near K (“K cond”) and in
the valence band near K and � (“K val” and “� val,” respectively).
Momenta qp are in the � → M direction. The coupling to the LO
phonons includes the Fröhlich interaction. The models for three-
dimensional and two-dimensional Fröhlich interactions in bulk and
monolayer MoS2 are represented in solid lines and described in the
text. Dashed lines and symbols are DFPT calculations. The standard
QE package was used for the bulk, while we used our implementation
of the Coulomb cutoff in for the monolayer.

where Ma is the mass of atom a and �a,i
qp
VKS(r) is the lattice

periodic part of the derivative of the self-consistent Kohn-
Sham potential with respect to a phonon displacement of atom
a in direction i.

We consider neutral TMDs to avoid the metallic nature of
the electronic screening that would occur in doped layers. Our
primary goal is the study of the long-range Fröhlich interaction,
involving LO phonons at small momenta (|qp| < 15% of
|� − K|) and an excited electron or hole. Considering the
small-momenta restriction and the energy of LO phonons,
we can focus on intraband scattering. We further narrow

the study to the highest part of the valence band around
the high-symmetry points K and �, and the lowest part of
the conduction band around K. More precisely, we compute
the EPC matrix elements gLO(qp) for the following pairs of
electronic states: (i) k = K − qp/2 and k + qp = K + qp/2
in the conduction band, noted “K cond”; (ii) k = K − qp/2
and k + qp = K + qp/2 in the valence band, noted “K val”;
(iii) k = � − qp/2 and k + qp = � + qp/2 in the valence
band, noted “� val.” Momentum qp is in the � → M direction
to minimize LO/TO mixing.

The results of the calculations for MoS2 are presented in
Fig. 2. For comparison, we add the coupling gA1 (qp) associated
with the other significant contribution of the A1 mode. We
recover the characteristic behaviors of the 2D and 3D Fröhlich
interactions. In the 3D case, the interaction diverges as qp → �.
In the 2D framework provided by our approach, however,
the Fröhlich interaction tends to a constant at �. Note that a
divergence will occur when using the standard QE code, even
if the interlayer distance is increased. The fact that we recover
the finite limit of the coupling at � thus confirms that the
truncation of the Coulomb interaction in QE is equivalent to
simulating an isolated monolayer. The coupling to LO phonons
at large momenta depends on the bands via the details of the
electronic wave functions. Indeed, in that case, the variations
of the polarization potential on the length scale of the width
of the electronic states become relevant. Similar calculations
were performed for monolayers of MoSe2, MoTe2, WS2, and
WSe2; see Fig. 8 in Appendix B.

In Figs. 2 and 8, the solid lines represent analytical models
discussed in the following sections. In those models, we focus
on the more general small-momentum behavior of the Fröhlich
interaction, which depends solely on the Born effective charges
and dielectric properties of the material. From a modeling point
of view, the existence of finite limit at � for the 2D interaction
is easily established by considering the 1/|qp| dependence of
the 2D Coulomb interaction in reciprocal space. The sharp
decreasing of the coupling at finite-q, however, is a more
subtle screening effect that remains to be studied in detail. Our
numerical DFPT method provides us with a support to treat
this issue in a systematic manner and establish a quantitatively
accurate analytical model.

III. ANALYTICAL MODELS OF
THE FRÖHLICH INTERACTION

We now present analytical models to explain our DFPT
calculations and gain better understanding of the effect of
dimensionality on the small-momentum limit of the Fröhlich
interaction. The tensors of Born effective charges are noted
Zb

a and Zm
a for bulk and monolayer, respectively. The index

a runs over the atoms of the unit cell. The relative dielectric
permittivity tensors (simply called dielectric tensors hereafter)
for bulk and monolayer are noted Eb and Em, respectively.
By symmetry, the tensors are isotropic in the plane, but we
allow for different properties in the out-of-plane direction.
The tensors thus have the following generic forms:

E =
⎛
⎝εp 0 0

0 εp 0
0 0 εz

⎞
⎠ Za =

⎛
⎝Za,p 0 0

0 Za,p 0
0 0 Za,z

⎞
⎠. (2)
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In-plane and out-of-plane variables are separated according to
the notation r → (rp,z) and q → (qp,qz). We use Gaussian
centimeter-gram-second (CGS) units.

A. Three-dimensional bulk

We quickly recall the well-known results of the 3D case.
The small-momentum behavior of the Fröhlich interaction is
well described by the leading order in Vogl’s model [10]

∣∣g3D
Fr (qp)

∣∣ = 4πe2

V |qp|εb
p

∑
a

eqp
· Zb

a · ea
qpLO√

2MaωqpLO
, (3)

where e is the elementary charge, V is the unit cell’s volume, εb
p

is the in-plane dielectric constant of the bulk (15.37 in MoS2),
and eqp

= qp/|qp|. The prefactor of 1/|qp| is essentially
constant in the range of momenta considered in this work. A
small dependency on norm and direction of qp appears as the
phonon modes deviate from the strictly longitudinal modes.
This model is sufficient to reproduce the small-momentum
limit of the Fröhlich interaction, as shown in Fig. 2, where the
plain line is the above model.

B. Two-dimensional monolayer

Our objective is to derive the Fröhlich interaction in the
system of Fig. 3. We consider LO phonons in a 2D material
of thickness t . Its dielectric tensor Em has the form of
Eq. (2), with in-plane and out-of-plane dielectric constants εm

p

and εm
z , respectively. Above and below are two semi-infinite

spaces with isotropic dielectric properties represented by the
dielectric constants ε2 and ε1, respectively.

The origin of the polar-optical coupling is the polarization
density P(rp,z) generated by the atomic displacement pattern
associated with a LO phonon of in-plane momentum qp,

P(rp,z) = e2

A

∑
a

Zm
a · ea

qpLO√
2MaωqpLO

f (z)eiqp ·rp , (4)

FIG. 3. Model of the Fröhlich interaction in a polar 2D material
of thickness t . LO phonons generate a periodic polarization density
P(rp,z) = P(qp,z)eiqp ·rp inside the 2D material. The dielectric
properties of the 2D material are represented by the dielectric tensor
Em with in-plane and out-of-plane dielectric constants εm

p and εm
z ,

respectively. Above and below are two half spaces in which the
polarization is zero and the dielectric constants are ε2 and ε1,
respectively. The symbol I denotes the identity matrix. The two thick
horizontal black lines represent surface charges at the interfaces of the
2D material due to the abrupt variations in the polarization density.
We write the Poisson equation defining the Fröhlich potential VFr in
each region.

where A is the area of the unit cell and f (z) is the out-
of-plane profile of the polarization (normalized to unity).
Such a polarization density induces a potential VFr(rp,z) =
VFr(qp,z)eiqp ·rp with the same periodicity. The associated EPC
can then be written as

g2D
Fr (qp) =

∫
VFr(qp,z)nel(z)dz, (5)

where nel(z) is the plane-averaged electronic density. By
using this expression, we neglect the details of the wave
functions and the associated band dependency. In the out-
of-plane direction, we consider the electronic density and the
polarization to be uniform over the thickness t of the material

f (z) = nel(z) = θ (t/2 − |z|)
t

, (6)

where θ is the Heaviside function. This approximation should
be satisfactory in the long-wavelength limit, since VFr(qp,z)
varies mildly in the out-of-plane direction.

The potential VFr must fulfill the Poisson equation

∇ · [E(z)∇VFr(r)] = 4π∇ · P(r), (7)

where E(z) is a position-dependent dielectric tensor. The cen-
tral objects of the problem are the phonon-induced polarization
density and the dielectric tensor. As one travels along the
out-of-plane direction, both those quantities change. Inside
the 2D material, E(z) = Em and the polarization density is
finite and oscillating in the plane. Outside the 2D material,
E(z) = ε1I or ε2I (where I is the identity matrix) and
the polarization density is zero. Other requirements on the
potential are that that the associated in-plane electric field
E‖(r) and out-of-plane electric displacement D⊥(r) should be
continuous.

The detailed derivation of the solution to this model can be
found in Appendix A. To allow for a more direct interpretation
of the final solution in Eq. (A22), we seek a more transparent
form. By Taylor expansion of the denominator at the linear
order in |qp|, the full expression of Eq. (A22) can be recast in
the form

∣∣g2D
Fr (qp)

∣∣ = CZ
εeff(|qp|) ,

εeff(|qp|) ≈ ε0
eff + reff|qp|, (8)

where the expressions of the parameters are given in Table I.
The above form is found to reproduce Eq. (A22) very accu-
rately. Only when εm

z ≈ ε1 or ε2 should one retain Eq. (A22)
rather than use Eq. (8). More quantitative results, depending
on the nature of the monolayer, will be given in Sec. V. For
now, let us make some qualitative remarks valid as long as the
material is a stronger dielectric as the environment, which is the
case of the monolayer TMDs discussed in this work, in vacuum
or on SiO2. The bare magnitude of the polar-optical coupling
is given by CZ . The origin of the sharp decrease at finite qp is
a screening effect specific to 2D materials. It can be associated
with the formation of surface charges due to the change in
dielectric properties at the interfaces between the 2D material
and its environment. The screening is characterized by the
parameter reff which depends on the dielectric properties of the
material as well as its thickness. Homogeneous to a distance,
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TABLE I. Full expressions of the parameters involved in the
model of the 2D Fröhlich interaction, Eq. (8). See Fig. 3 and Eq. (2)
for the definitions of the various parameters in the model. Note that
for the isolated TMDs considered in our ab initio calculations, we
have ε1 = ε2 = ε12 = 1, εm

z 
 1, and εm
p 
 1, which leads to F ≈ 1,

ε0
eff ≈ 1, and reff ≈ εm

p t

2 .

CZ = 2πe2

A

∑
a

eqp
· Zm

a · ea
qpLO√

2MaωqpLO

ε0
eff = ε12

εm
z ε̄

εm
z ε̄ + ε12(εm

z − ε̄)

reff = (ε0
eff )

2

ε12
(

ε12

3εm
z

+ εm
p

2ε12
F ) × t

F = 1 + ε1ε2

ε̄2
+ ε12

ε̄
− ε2

12

ε̄εm
z

− ε2
12

ε̄2
− ε12

εm
z

ε12 = ε1 + ε2

2
, ε̄ = √

εm
z εm

p

it can be interpreted as an effective thickness marking the
crossover between two screening regimes. For |qp| � r−1

eff ε0
eff ,

the coupling is screened by ε0
eff , which depends mainly on the

dielectric properties of the environment. For |qp| 
 r−1
eff ε0

eff ,
the field lines are confined to the material, and the coupling
is screened by the material. Materials with large dielectric
constants (with respect to the environment) will tend to focus
the field lines more strongly, which results in a larger effective
thickness reff and a sharper decrease in the Fröhlich interaction
at finite momenta (note that the slope of the coupling at � is
proportional to −reff).

We have derived the general expression for an anisotropic
slab and different dielectric media above and below. It can be
applied to any polar material. To be quantitatively predictive,
we need to evaluate the parameters involved. We now detail
how to evaluate those parameters with ab initio calculations.

IV. AB INITIO PARAMETERS

Here again, MoS2 will be used as an example to illustrate
the method. The final parameters of interest will then be
given for the other TMDs. The parameters of the model are
the Born effective charges, dielectric tensors, and phonon
eigenvectors. The dynamical matrix and the corresponding
phonon eigenvectors are available from the electron-phonon
calculations. The QE code computes clamped-ion dielectric
tensors and Born effective charges by means of linear response
calculations with respect to an electric field perturbation [9].
The Born effective charges are related to the derivative of
the forces on the atoms with respect to the applied electric
field. Since our implementation of the 2D Coulomb cutoff
includes the computation of forces, the Born effective charges
can be computed in the 2D framework for the monolayers.
Note, however, that equivalent results can be obtained with
the standard code. Indeed, Born effective charges converge
relatively fast towards their 2D values with respect to the
distance between periodic images. The dielectric constant, on
the other hand, is computed as a macroscopic quantity defined
over a three-dimensional supercell. As such, the computation

TABLE II. Dielectric constants and effective charges of bulk and
monolayer MoS2 as obtained in DFT. In the case of the monolayer,
we report the dielectric constant in the case of an isotropic model.
The full range of possible values for the in-plane and out-of-plane
dielectric constants is given in Fig. 5.

Bulk Monolayer

Symbol Value Symbol Value

εb
p 15.37 εm

p = εm
iso 15.5

εb
z 6.57 εm

z = εm
iso 15.5

Zb
Mo,p −0.9413 Zm

Mo,p −1.0051

Zb
Mo,z −0.5918 Zm

Mo,z −0.0919

Zb
S,p 0.4668 Zm

S,p 0.4525

Zb
S,z 0.2921 Zm

S,z 0.0411

of the dielectric tensor of the bulk Eb is straightforward
and reported in Table II for MoS2. The computation of an
equivalent quantity relevant for 2D materials, however, raises
issues beyond periodic images interactions [30,31]. As of yet,
we did not implement the modifications necessary to compute
dielectric tensors in a 2D framework. In the following, the
dielectric tensors of the monolayers will be evaluated using
the standard QE code, with an effort to extract relevant 2D
quantities from 3D calculations.

The constant CZ corresponds to the magnitude of the bare
Fröhlich interaction. It depends on the Born effective charges
and the phonon displacements. The components of the tensors
Zm

a (computed with 2D Coulomb cutoff) and Zb
a (computed

without cutoff) for MoS2 are given in Table II. The components
of Zm

a for other monolayer TMDs are reported in Table III.
The bare coupling CZ varies with the direction and modulus of
qp via the phonon eigenvectors. It reaches a maximum in the
qp → � limit, where the LO eigenvectors correspond to purely
longitudinal modes. It moderately decreases with increasing
momenta (≈−10% at |qp| ≈ 15% of |� − K|). Since the
momentum behavior of the Fröhlich interaction is largely
dominated by the screening factor 1

εeff (qp) , we can neglect the
variations associated with the phonon eigenvectors and use the
qp → � value of the bare coupling. Those values are reported
in Table IV, in the column labeled “CZ (ab initio).”

We now evaluate the dielectric properties of the monolayer
using the standard (3D) QE code. We simulate a system made
of repeated monolayers separated by a varying distance c, with
vacuum in between. The clamped-ion dielectric tensor of this

TABLE III. Effective charges of monolayer TMDs, as computed
in QE via the response to an external electric field. M ≡ Mo, W;
X ≡ S, Se, Te.

Monolayer Zm
M,p Zm

M,z Zm
X,p Zm

X,z

MoS2 −1.00 −0.09 0.45 0.04
MoSe2 −1.78 −0.13 0.73 0.04
MoTe2 −3.14 −0.15 1.36 0.04
WS2 −0.49 −0.07 0.20 0.02
WSe2 −1.17 −0.12 0.43 0.03
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TABLE IV. Comparison of relevant quantities involved in the Fröhlich interaction for the monolayer TMDs MoS2, MoSe2, MoTe2, WS2,
and WSe2. a0 is the lattice parameter. We report here the dielectric constants associated with the simplest isotropic model, that is, εm

iso = εm
p = εm

z

and t = tiso. Note that we use the fact that reff ≈ εm
isotiso/2. For the bare Fröhlich interaction CZ , we report both the fitted value (from fit) used

in the plots to reproduce the DFPT data and the value found by computing effective charges and phonons eigenvectors (ab initio).

Monolayer a0(Å) tiso (Å) εm
iso reff (Å) CZ (eV) (from fit) CZ (eV) (ab initio) ωLO (cm−1) ωA1 (cm−1)

MoS2 3.18 6.00 15.5 46.5 0.355 0.334 373.7 396.9
MoSe2 3.32 5.94 17.9 53.2 0.521 0.502 277.5 235.4
MoTe2 3.56 6.65 20.9 69.5 0.819 0.819 223.6 162.9
WS2 3.18 5.52 15.2 42.0 0.165 0.140 345.9 407.4
WSe2 3.31 5.97 16.3 48.7 0.323 0.276 239.4 242.1

system, as computed within QE, is written as

EQE =
⎛
⎝εQE

p 0 0
0 εQE

p 0
0 0 εQE

z

⎞
⎠. (9)

In this picture, the dielectric tensor of the bulk simply corre-
sponds to EQE with a fixed interlayer distance c (neglecting
the small effects of an alternating stacking). To relate EQE to
the dielectric tensor of the monolayer Em, we use effective
medium theory and introduce the thickness of the monolayer
as a parameter. We then have the following relations [32]:

εQE
p = 1 + (

εm
p − 1

)
t/c,

1

ε
QE
z

= 1 −
(
εm
z − 1

)
εm
z

t/c. (10)

Note that in the limit of infinite interlayer distance, this
dielectric tensor does not tend toward Em. Instead, it tends
towards the dielectric tensor of vacuum.

In Fig. 4, we plot the εQE
p and 1/εQE

z as functions

of 1/c. Fitting this data, we find slopes s1 = 87.2 Å and
s2 = 5.62 Å, respectively. We then write εm

p and εm
z as functions

of t according to

εm
p = 1 + s1

t
,

εm
z = t

t − s2
. (11)

0

0.4

0.8

1/
ε z

0 0.05 0.1 0.15
1/c (Å-1)

0

5

10

15

ε p

Repeated monolayer
Bulk
fit

Q
E Q

E

FIG. 4. The QE quantities εQE
p and 1/εQE

z as functions of the
inverse interlayer distance 1/c, in MoS2. In each plot, we add the
data point corresponding to the bulk.

In principle, every set of values {εm
p ,εm

z ,t} that satisfies the
above equations can fit our DFT results. We can assume
that t > s2, as we would have εm

z < 0 otherwise. We can
also assume that t < cbulk ≈ 6.15 Å, the distance between two
monolayers in the bulk. In Fig. 5, we plot εm

p ,εm
z as functions of

t in this reasonable range of values for the thickness. Figure 5
should thus be understood as a set of possible values for
εm
p ,εm

z and the corresponding thickness. Note that t ≈ 6 Å is
consistent with the width of the equilibrium electronic density
found in DFT. One can see that while εm

p is almost constant
in Fig. 5, the variation of εm

z is more pronounced. Similar
results are obtained for MoSe2, MoTe2, WS2, and WSe2. As
far as the above ab initio study is concerned, we are thus left
with a free parameter to model the dielectric properties of the
2D materials, that is, a choice to make for the set of values
{εm

p ,εm
z ,t}. For all TMDs, there is a reasonable value of t = tiso

leading to an isotropic model with εm
iso = εm

p = εm
z . As shown

in the next section, this isotropic model is a choice that leads
to simple yet accurate results for the Fröhlich interaction.

V. EFFECTIVE ISOTROPIC MODEL

We now establish a simple effective model to reproduce
the small-momentum limit of our direct DFPT calculations
of the coupling to LO phonons. We first discuss the effects of
selecting different set of values for εm

p , εm
z , and t . This depends

on the dielectric environment, namely on the average dielectric
constant ε12 = ε1+ε2

2 . Our DFPT calculations are performed
in vacuum, with ε12 = 1. Whatever thickness we choose in

5. 68
t (Å)

0

10

20

30

40

ε

εz

εp

m

m

tiso, εiso
m

m

FIG. 5. Values of εm
p and εm

z that would be consistent with direct
ab initio computation of the supercell’s dielectric constants εQE

p and
εQE
z , as functions of the corresponding thickness of the monolayer.

We indicate the point corresponding to an isotropic system.

085415-6
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qp/|Γ−K|

0

0.1

0.2

0.3

0.4

|g
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  |
 (e

V
)

Isotropic model, ab initio CZ
anisotropic model
Isotropic model, fitted CZ

0 0.01
0.2

0.25

0.3

0.35

in vacuum

2D

on SiO2

FIG. 6. Dashed lines are obtained by using the isotropic model
(εm

iso = εm
p = εm

z , t = tiso) and CZ from ab initio Born effective
charges. The errors bars show the deviation from the isotropic model
obtained by using an anisotropic model with values of εm

p , εm
z , and t in

the range of Fig. 5. The solid line corresponds to the isotropic model
(for MoS2 in vacuum) with fitted CZ . This coincides with the direct
DFPT calculations of EPC, at least at small momenta (see Figs. 2
and 8). The inset is a magnification on the small momenta limit of the
models. It shows that a fitted CZ is necessary, as an anisotropic model
would not be enough to fit the direct DFPT calculations of EPC. The
SiO2 substrate increases the screening of the Fröhlich interaction
strongly at small momenta.

Fig. 5, we have εm
p 
 ε12 and εm

z 
 ε12. In that case, the
anisotropic model is very close to the isotropic one. This is
shown numerically in Fig. 6. The isotropic model, for which
we use εm

iso = εm
p = εm

z and t = tiso, is shown as dashed lines.
The error bars represent the deviation of the full anisotropic
model when using other values of εm

p , εm
z , and t within those

represented in Fig. 5.
For most monolayers, using the bare Fröhlich interaction

CZ calculated via the ab initio effective charges leads to a
slight mismatch with respect the direct DFPT calculations of
EPC. The effect of anisotropy in vacuum is too small to explain
this mismatch, as seen in Fig. 6. To reach better agreement,
the parameter CZ must be adjusted. The fitted values of CZ
for all monolayers are reported in Table IV. Note that ab initio
and fitted values stay relatively close, meaning that a simple
calculation of the effective charges can still lead to a good
approximation of the bare Fröhlich interaction. However, the
mismatch is clear enough to point to some possible issues in
the computation of the effective charges. This imprecision on
the computation of CZ also implies that we cannot resolve the
very small effect of anisotropy.

Overall, an isotropic model with dielectric constant εm
iso =

εm
p = εm

z and a fitted CZ (solid lines in Figs. 2 and 8 of
Appendix B) is the best choice to reproduce our DFPT results.
Within the assumption that εm

iso 
 ε12, further simplification
and greater clarity can be achieved in the model. Indeed, the

parameters of Table I can be approximated by

ε0
eff ≈ ε12 = ε1 + ε2

2
, (12)

reff ≈ εm
iso

2
tiso. (13)

This simple form allows us to gain physical insight on the
screening. In the limit reff|qp| 
 ε12, that is, |qp| 
 2ε12

εm
isotiso

,

we have g2D
Fr (|qp|) ≈ g3D

Fr (|qp|). Indeed, the factor 1/2 in reff

makes it possible to recover the prefactor of the 3D Coulomb
interaction (2πe2 → 4πe2), while At ≈ V , and εm

iso = εm
p ≈

εb
p. In that case, the wavelength of the perturbation associated

with the LO phonon is small and the associated field lines stay
inside the monolayer. The interaction is then screened by the
monolayer. In the reff|qp| � ε12 limit, that is, |qp| � 2ε12

εm
isotiso

,

we have g2D
Fr (|qp|) ≈ CZ

ε12
, which corresponds to the interaction

being screened solely by the environment. In vacuum, the
crossover between those two regimes happens for |qp| around

2
εm

isotiso
≈ 0.02 Å

−1 ≈ 0.015|� − K|, that is, very close to the
� point. This is due to the large dielectric constant of the
monolayer compared to the environment.

An important benefit of the model is the possibility to
evaluate the effects of the dielectric environment [33]. In Fig. 6,
we present results for the more experimentally relevant case of
MoS2 ion SiO2, for which ε12 = 1+3.9

2 = 2.45. The coupling
is shown to be strongly decreased overall. The validity of the
approximations εm

p 
 ε12 and εm
z 
 ε12 is less clear, and the

deviation from the isotropic model in Fig. 5 is more discernible.
However, for the purpose of estimating the effect of a SiO2

substrate, and, given the simplicity of the above parameters, it
is still convenient to use the effective isotropic model.

The relevant parameters, including the thickness tiso and
isotropic dielectric constant εm

iso, are reported in Table IV for
all monolayers. In the case of MoS2, we find that the value of
the coupling at � in vacuum, i.e., the bare interaction CZ , is
three times larger than the one predicted in a previous ab initio
study [20]. The bare interaction CZ and effective screening
length reff increase with the atomic number of the chalcogen
while they decrease with the atomic number of the transition
metal.

VI. TRANSPORT

To provide a more practical sense of the implications of this
work, we compute the following inverse relaxation times for
an excited electron or hole scattered by LO or A1 phonons

1

τν(εk)
= 2π

�

∑
qp

|gν(qp)|2

× δ
(
εk+qp

− εk ∓ �ωqp,ν

){ Nν,qp

Nν,qp
+ 1

}
, (14)

where ν ≡ LO or A1, Nν,qp
is the Bose-Einstein distribution

for phonon occupation at room temperature, and εk is the
eigenvalue energy of electronic state |k〉, measured from the
bottom (top) of the conduction (valence) band. The “−”
(respectively “+”) sign in the Dirac δ function δ is associated
with Nν,qp

(Nν,qp
+ 1) and corresponds to phonon absorption

(emission). The two contributions are then summed. In Fig. 7,
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FIG. 7. Inverse relaxation times associated with the scattering by LO mode, A1 mode, and the Fröhlich models for monolayer MoS2,
MoSe2, MoTe2, WS2, and WSe2. Calculations were performed at room temperature. In the case of the valence band around the � point of
MoTe2, the effective mass is so large that the norm of the phonon wave vectors |qp| involved in the scattering processes go beyond the scope
of this work. In any case, this band is far below the valence band at K, such that it would not be involved in transport.
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TABLE V. Effective masses are estimated using the results of
Ref. [34].

Monolayer m∗/m0 K cond m∗/m0 K val m∗/m0 � val

MoS2 0.45 0.57 2.52
MoSe2 0.54 0.65 3.70
MoTe2 0.56 0.72 20.0
WS2 0.31 0.42 2.17
WSe2 0.34 0.45 2.79

we plot the inverse relaxation times for each of the three
bands (K cond, K val, and � val) and for each of the MoS2,
MoSe2, MoTe2, WS2, and WSe2 monolayers. To compute
those quantities, we need EPC matrix elements on a fine grid
of momenta qp. We use the analytical model when possible
and linearly extrapolate the DFPT couplings otherwise. More
precisely, in the limit of small momenta, the coupling to
LO phonons follows our analytical model of the Fröhlich
interaction and does not depend on the angle of momentum
qp or the band. We then use the analytical model |g2D

Fr (qp)|. At
larger momenta, the coupling depends on the band via the wave
functions. We then extrapolate the ab initio coupling |gLO(qp)|.
A few other ab initio calculations were performed for momenta
up to |qmax

p | ≈ 0.3|� − K|. A mild angular dependency is
possible for the ab initio matrix elements |gLO(qp)| and
|gA1 (qp)|. We neglect this angular dependency. The integral
of Eq. (14) depends on the coupling and the effective masses
of the corresponding band. We use effective masses from
Ref. [34], reported in Table V. We probe electronic states
with electronic momenta |k| < |qmax

p |/2. This implies that the
range of carrier energies we consider depends on the effective
masses. Note that only for MoS2 is it clear that the valence band
at � should be considered. For the others, this band is lower
in energy. For more information about the band structures of
these materials; see Ref. [28].

Figure 7 shows that optical phonons are capable of relaxing
excited carriers on a time scale inferior to the picosecond at
room temperature. The strength of the Fröhlich interaction
depends on the material considered, mainly via the variations
of Born effective charges. However, this is far from being
the only aspect to account for when studying relaxation times.
Figure 7 shows a great disparity of the results depending on the
phonon mode, the band, and the material. The analytical model
of the Fröhlich interaction is a good estimate of the DFPT
calculations only for the valence band at K. The relaxation
times depend strongly on the band-specific, large-momentum
values of the coupling with LO phonons. This is due to the
fact that at the minimum carrier energy (εk = �ωLO), the
integral of Eq. (14) already involves relatively large phonon
momenta |qp|. The strength of the coupling with A1 phonons
and thus the relative importance of the scattering by LO and
A1 phonons also depends strongly on the bands. Very few
comments apply globally. LO phonons seem to dominate
optical-phonon scattering around K, for all monolayers except
WS2. A1 phonons seem to dominate in the valence band
around � for all monolayers except MoSe2. Although the
analytical model with ab initio parameters is useful for
suspended samples in the small-momentum limit to interpret
the phenomenon, interpolate the coupling or to estimate the

effect of the dielectric environment, direct DFPT calculations
of EPC for each band is essential. The great disparity in the
relaxation times and the number of phenomenon affecting
it highlight the need for direct ab initio simulations of
electron-phonon interactions in a two-dimensional framework.
Furthermore, some additional effects should be included for
a quantitative comparison with experiment. This work is a
study of the coupling with optical phonons at small momenta
and should provide useful guidelines to interpret experimental
transport data. However, in a full quantitative study of transport
properties, one need to account for spin-orbit coupling, doping
effects, the scattering of electrons in the Q band, the scattering
between different bands. Those issues can be treated in the
framework of QE with 2D Coulomb cutoff.

VII. CONCLUSION

We have implemented the truncation of the Coulomb
interaction in the plane-wave and phonon codes of the
QUANTUM ESPRESSO package. This method enables us to
simulate the small-momentum limit of the Fröhlich interaction
in a 2D framework, for monolayer TMDs MoS2, MoSe2,
MoTe2, WS2, and WSe2. We show that this limit is three
times larger than previously assumed in the case of MoS2

in vacuum. We develop analytical models for the Fröhlich
interaction in 2D materials, along with ab initio methods to
evaluate the parameters involved. A simple isotropic model is
found to reproduce the small-momentum limit of our DFPT
calculations. We provide the parameters of this model for the
various TMDs studied. We show that screening is paramount to
evaluate the strength of the Fröhlich interaction. In particular,
the dielectric environment of the 2D material has a strong
influence on the small-momentum limit of the interaction.
Namely, the interaction is reduced by a factor ε1+ε2

2 with respect
to vacuum, where ε1 and ε2 are the dielectric constant of the en-
vironment on each side the monolayer. We consider intraband
scattering within the valence and conduction bands around K
and within the valence band around �. Above a certain value of
the momentum (≈10% of |� − K|), the band-dependent form
of the electronic wave functions plays a role in the Fröhlich
interaction and DFPT calculations are necessary to evaluate
deviations from the analytical model. Finally, we evaluate
the inverse relaxation times associated with the scattering
of photoexcited carriers by LO and A1 phonons. Those
modes are shown to be capable of relaxing carriers on time
scales smaller than the picosecond. The efficiency of carrier
relaxation by optical phonons in TMDs is found to depend on
many parameters. In addition to the strength of the Fröhlich
interaction depending on the monolayer, the large momentum,
band-specific coupling affects the relaxation times. Depending
on the material and the band, the relaxation time associated
with the A1 mode can also be quite large. It is not correct
to neglect scattering by either LO or A1 phonons globally.
Overall, the complexity and disparity highlighted in this work
points to the necessity of relying on direct ab initio calculations
of electron-phonon interactions in a 2D framework.
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APPENDIX A: ANALYTICAL MODEL
OF THE 2D FRÖHLICH INTERACTION

We solve here the model described in the main text,
Sec. III B. The dielectric properties of the system are

E(z) =
⎧⎨
⎩

ε1I if z < −t/2,

Em if z < |t/2|,
ε2I if z > t/2.

(A1)

The potential VFr must solve the Poisson equation:

∇ · [Em∇VFr(rp,z)] = 4π∇ · P(rp,z) if |z| < t/2,

∇2VFr(rp,z) = 0 if |z| > t/2. (A2)

The associated parallel electric field and orthogonal electric
displacement,

E‖(rp,z) = −∂VFr(rp,z)

∂rp

, (A3)

D⊥(rp,z) =

⎧⎪⎪⎨
⎪⎪⎩

−ε1
∂VFr(rp,z)

∂z
if z < −t/2,

−εm
z

∂VFr(rp,z)
∂z

if |z| < t/2,

−ε2
∂VFr(rp,z)

∂z
if z > t/2,

(A4)

must be continuous.
The general solution to the differential equation of Eq. (A2)

is the sum of the solution to the homogeneous equation and a
particular solution:

VFr(qp,z) = Vh(qp,z) + Vp(qp,z). (A5)

The homogeneous equation is

∇ · [Em∇Vh(rp,z)] = 0 if |z| < t/2,

∇2Vh(rp,z) = 0 if |z| > t/2, (A6)

and the particular solution solves Eq. (A2). To find a particular
solution, we first solve Eq. (A2) inside the anisotropic material,

∇ · [Em∇Vp(r)] = 4πe2 i|qp|
A

(A7)

×
∑

a

eqp
· Zm

a · ea
qpLO√

2MaωqpLO
f (z)eiqp ·rp , (A8)

Vp(qp,qz) = −2iCZ |qp|
εm
p |qp|2 + εm

z q2
z

f (qz), (A9)

Vp(qp,z) = −iCZ√
εm
p εm

z

∫ +∞

−∞
e−q̃p |z′−z|f (z′)dz′, (A10)

with q̃p =
√

εm
p

εm
z

q, and CZ is defined in Table I. Using f (z′) =
θ(t/2−|z′ |)

t
, we get for z ∈ [−t/2; t/2]

Vp(qp,z) = −iCZ√
εm
p εm

z

2
|q̃p |t [1 − e−|q̃p |t/2cosh(|q̃p|z)], (A11)

where cosh is the hyperbolic cosine function. We need to
extend this particular solution outside the material. We do not
require the particular solution to carry any physical meaning
outside the material. It only needs to fulfill

∇2Vp(rp,z) = 0 if |z| > t/2. (A12)

We simply choose the solution of the above equation such that
the corresponding out-of-plane electric field is continuous at
the interfaces. This solution exists, and since we only need its
values at the interfaces, it is not necessary to specify it further.

Let us proceed to the homogeneous solution. Knowing that
Vh(r) = Vh(qp,z)eiqp ·rp , the homogeneous equation Eq. (A6)
reduces to

∂2Vh(qp,z)

∂z2
= εm

p

εm
z

|qp|2Vh(qp,z) if |z| < t/2,

(A13)
∂2Vh(qp,z)

∂z2
= |qp|2Vh(qp,z) if |z| > t/2.

Adding the condition that the potential must vanish for |z| →
∞, the solution to the homogeneous equation, Eq. (A6), has
the form

Vh(qp,z) =

⎧⎪⎨
⎪⎩

c3e
−|qp |z if z > t/2,

c1e
|q̃p |z + c2e

−|q̃p |z if |z| < t/2,

c4e
|qp |z if z < −t/2,

(A14)

with q̃p =
√

εm
p

εm
z

q. Note that the homogeneous solution has the
form of a potential generated by two surface charges at the
interfaces of the monolayer. The continuity of the potential
gives

c3e
−|qp |t/2 = c1e

|q̃p |t/2 + c2e
−|q̃p |t/2, (A15)

c4e
−|qp |t/2 = c1e

−|q̃p |t/2 + c2e
|q̃p |t/2. (A16)

The continuity of the parallel electric field is fulfilled by
construction. We use the continuity of the out-of-plane electric
displacement Eq. (A4) to obtain

CZ√
εm
p εm

z

(
εm
z − ε1

)1 − e−|q̃p |t

|qp|t = (
ε1 +

√
εm
p εm

z

)
c1e

|q̃p |t/2

+(
ε1 −

√
εm
p εm

z

)
c2e

−|q̃p |t/2,

CZ√
εm
p εm

z

(
εm
z − ε2

)1 − e−|q̃p |t

|qp|t = (
ε2 −

√
εm
p εm

z

)
c1e

−|q̃p |t/2

+(
ε2 +

√
εm
p εm

z

)
c2e

|q̃p |t/2.

(A17)
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FIG. 8. EPC matrix elements involving LO and A1 phonon modes in monolayer MoS2, MoSe2, MoTe2, WS2, and WSe2. We consider
intraband scattering of electrons or holes in the conduction band near K (“K cond”) and in the valence band near K and � (“K val” and “�
val,” respectively). Momenta qp are in the � → M direction. The analytical model of the Fröhlich interaction in its simplest isotropic form and
using the parameters indicated in Table IV is shown in black solid lines. Dashed lines and symbols are DFPT calculations.
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By defining the dielectric mismatches

α1 = εm
z − ε1√

εm
p εm

z + ε1
, ᾱ2 =

√
εm
p εm

z − ε2√
εm
p εm

z + ε2
,

α2 = εm
z − ε2√

εm
p εm

z + ε2
, ᾱ1 =

√
εm
p εm

z − ε1√
εm
p εm

z + ε1
, (A18)

we finally have

c1 = CZ√
εm
p εm

z

1 − e−|q̃p |t

|qp|t
α1 + ᾱ1α2e

−|q̃p |t

1 − ᾱ1ᾱ2e
−2|q̃p |t e−|q̃p |t/2, (A19)

c2 = CZ√
εm
p εm

z

1 − e−|q̃p |t

|qp|t
α2 + ᾱ2α1e

−|q̃p |t

1 − ᾱ1ᾱ2e
−2|q̃p |t e−|q̃p |t/2. (A20)

The Fröhlich interaction is thus

g2D
Fr (qp) = 1

t

∫ t/2

−t/2
[Vp(qp,z) + Vh(qp,z)]dz (A21)

g2D
Fr (qp) = CZ√

εm
p εm

z

[
2

|q̃p|t
(

1 + e−|q̃p |t − 1

|q̃p|t
)

+ (1 − e−|q̃p |t )2

|qp|t |q̃p|t
α1 + α2 + (ᾱ1α2 + ᾱ2α1)e−|q̃p |t

1 − ᾱ1ᾱ2e
−2|q̃p |t

]
. (A22)

The isotropic solution is (εm
p = εm

z = εm
iso)

g2D
Fr (qp) = CZ

εm
iso

[
2

|qp|t
(

1 + e−|qp |t − 1

|qp|t
)

+ (1 − e−|qp |t )2

(|qp|t)2

α1 + α2 + 2α1α2e
−|qp |t

1 − α1α2e
−2|qp |t

]
. (A23)

APPENDIX B: COUPLING WITH OPTICAL
PHONONS IN TMDs

In Fig. 8 we plot the small-momentum coupling to the A1

and LO modes in monolayer TMDs MoS2, MoSe2, MoTe2,
WS2, and WSe2. Note that that WSe2 is similar to MoS2. WS2

shows significantly smaller Fröhlich interaction. MoSe2 and
MoTe2 are similar to each other, with large Fröhlich interaction
and some different trends in the A1 mode. Note also that
the analytical model coincides relatively well with the DFPT
results for the valence band at K in every material.
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TWO-DIMENSIONAL FRÖHLICH INTERACTION IN . . . PHYSICAL REVIEW B 94, 085415 (2016)

[18] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory
of neutral and charged excitons in monolayer transition metal
dichalcogenides, Phys. Rev. B 88, 045318 (2013).

[19] A. Steinhoff, M. Rösner, F. Jahnke, T. O. Wehling, and C.
Gies, Influence of excited carriers on the optical and electronic
properties of MoS2, Nano Lett. 14, 3743 (2014).

[20] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-
limited mobility in n-type single-layer MoS2 from first princi-
ples, Phys. Rev. B 85, 115317 (2012).

[21] X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B.
Nardelli, and K. W. Kim, Intrinsic electrical transport properties
of monolayer silicene and MoS2 from first principles, Phys. Rev.
B 87, 115418 (2013).

[22] Z. Jin, X. Li, J. T. Mullen, and K. W. Kim, Intrinsic transport
properties of electrons and holes in monolayer transition-metal
dichalcogenides, Phys. Rev. B 90, 045422 (2014).

[23] M. Danovich, I. Aleiner, N. D. Drummond, and V. Fal’ko,
Fast relaxation of photo-excited carriers in 2D transition metal
dichalcogenides, arXiv:1510.06288.

[24] T. Sohier, Electrons and phonons in graphene: Electron-phonon
coupling, screening and transport in the field effect setup, Ph.D.
thesis, Universite Pierre et Marie Curie, Paris VI, 2015.

[25] P. Giannozzi et al., QUANTUM ESPRESSO: A modular
and open-source software project for quantum simulations of
materials, J. Phys.: Condens. Matter 21, 395502 (2009).

[26] I. E. Castelli et al., see http://www.materialscloud.org/sssp.

[27] N. V. Podberezskaya, S. A. Magarill, N. V. Pervukhina, and
S. V. Borisov, Crystal chemistry of dichalcogenides MX2,
J. Struc. Chem. 42, 654 (2001).

[28] T. Brumme, M. Calandra, and F. Mauri, First-principles the-
ory of field-effect doping in transition-metal dichalcogenides:
Structural properties, electronic structure, Hall coefficient, and
electrical conductivity, Phys. Rev. B 91, 155436 (2015).

[29] A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and
few-layer MoS2 and WS2, Phys. Rev. B 84, 155413 (2011).
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