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Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities
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We investigate the influence of the chemical potential mismatch � (different electron densities) on Coulomb
drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(�) shows a peculiar
anomaly at � = 0 with ρD being finite at � = 0 and vanishing at any nonzero �. The “bodyless” resonance in
ρD(�) at zero � is only broadened by processes of multiparticle scattering. We analyze Coulomb drag for finite
� in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing
on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system.
We describe the dependence of ρD on � for both weak and strong intrawire equilibration due to three-particle
scattering.
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I. INTRODUCTION

When two conductors are placed close to each other, so
that electron density fluctuations in one of them interact with
those in the other, this can change the transport properties of
the system even if the conductors do not exchange electrons.
In particular, sending electric current through one of the
conductors can initiate transport of electrons in the other,
mediated solely by frictional forces. Charge transport induced
by Coulomb interactions between electrons in different con-
ductors, known as Coulomb drag, was predicted about four
decades ago for two-dimensional geometry of two parallel
conducting sheets [1]. First observed in a quantum well in
proximity to essentially a three-dimensional conductor [2]
and in a double quantum well [3], Coulomb drag has been
extensively studied in electron systems of various geometry;
see Ref. [4] for a recent review.

Coulomb drag in two macroscopically homogeneous elec-
tron systems parallel to each other is parametrized by the drag
resistivity ρD defined conventionally as ρD = −E2/j1, where
j1 is the current density in (“active”) conductor 1 and E2 is the
electric field in (“passive”) conductor 2 under the condition
that the current density therein is zero. With this definition,
E2 compensates for the friction force induced in conductor
2 by the flow of electrons in conductor 1. The essence
of this phenomenon is captured within the conventional
theoretical framework [3,5–8] calculating the friction force
at the golden-rule level, perturbatively in the (dynamically
screened) interaction between two electron systems. However,
it has become clear recently [9] that there is a conceptually
important limitation imposed on this approach by the rate of
thermal equilibration within each of the systems. Although
conventional theory for Coulomb drag, providing a Kubo-type
formula [5–8] for ρD (relating ρD to the dynamical correlations
in density fluctuations at equilibrium), may look like having
similar status as the fluctuation-dissipation theorem, it tacitly
implies that thermal equilibration is a faster process compared
to Coulomb drag. In fact, conventional theory hinges on the
assumption that electron density fluctuations in the active
conductor are equilibrium in the frame moving with the drift
velocity.

The inherent relation between thermalization and Coulomb
drag was highlighted in Ref. [9] as the essential ingredient
of the calculation of ρD for two parallel quantum wires
[9–24] (for experiments on Coulomb drag between quantum
wires see Refs. [25–29]). This geometry provides a striking
example of the failure of conventional theory for Coulomb
drag. In one dimension, there are only two possibilities:
either electron-electron scattering due to interwire interaction
changes the chirality of electrons or not. Electron-electron
scattering with small-momentum transfer (much smaller than
the Fermi momentum kF ) is, then, the alternative mechanism
of Coulomb drag if interaction-induced backscattering on the
Fermi surface can be neglected (which is the situation encoun-
tered when the distance between the wires a is sufficiently
large: the backscattering amplitude decreases, with increasing
a, exponentially in the parameter kF a). Within the conven-
tional approach, interwire interactions without changing the
chirality of electrons give a finite contribution [18,22,24] to
ρD. However, as shown in Ref. [9], slow thermal equilibration
in one dimension severely restricts the applicability of the
perturbative approach to Coulomb drag—indeed, to the extent
that ρD exactly vanishes for the case of electron-electron
interactions preserving the chirality.

Here, we study Coulomb drag between quantum wires with
different electron densities. This problem gives another re-
markable example of inadequacy of the conventional approach
to Coulomb drag. In the conventional formalism, which relates
ρD to dynamical cross-correlations (at the lowest order in
interwire interaction) between thermal density fluctuations, the
characteristic scale of the Fermi energy difference � between
the active and passive conductors in the function ρD(�) is
generically given by the temperature. As will be demonstrated
below, Coulomb drag mediated by pair collisions (i.e., at the
lowest order in interwire interaction for the collision integral in
the kinetic-equation formalism) actually vanishes for arbitrary
� �= 0, even though it is finite [9] for identical wires. This
zero-width resonance in the function ρD(�) at � = 0 will
be shown to be a peculiar feature of two-particle scattering.
Taking three-particle scattering into account broadens the
resonance, and if three-particle scattering becomes sufficiently
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strong, leads to a more conventional behavior of ρD(�) with
a characteristic scale of |�| ∼ T . In a wide range of the
parameters of the problem, ρD is then determined by the rate
of intrawire equilibration [9] due to three-particle scattering,
whose dependence on � we also calculate below.

The paper is organized as follows. Section II deals with the
dependence of ρD on � for friction mediated by pair collisions.
In Sec. III, we include three-particle scattering in the collision
integral for arbitrary �. In Sec. IV, we discuss the zero modes
in the problem of Coulomb drag. In Sec. V, we obtain the
matrix structure of the drag resistivity matrix in the dc limit.
In Sec. VI, we write the Fokker-Planck kinetic equation for
arbitrary � in the presence of both two- and three-particle
scattering. In Sec. VII, we solve an exactly solvable model for
the Fokker-Planck formulation of the problem. In Sec. VIII A,
we obtain the general relation between ρD and the regular, in
the dc limit, part of the conductivity matrix. In Sec. VIII B,
we analyze the broadening of the ultranarrow resonance in
ρD(�) at � = 0 by three-particle scattering. In Sec. VIII C, we
describe the dependence of ρD on � for the case when intrawire
equilibration due to three-particle scattering is strong enough
to destroy the anomalously narrow resonance at � = 0. Our
main results are summarized in Sec. IX. Some of the technical
details are moved to the Appendixes.

II. TWO-PARTICLE SCATTERING

Throughout the paper, we assume that the temperature T

and the electron dispersion relation ε = k2/2m in two wires
are the same, so that the difference between the wires is
parametrized by the difference in their chemical potentials
� = εF1 − εF2, where εFσ is the chemical potential in wire
σ = 1,2. It is convenient to introduce the function gσ (k) related
to the distribution function fσ (k) in wire σ by

fσ = fT σ + gσT ∂εfT σ , (1)

where fT σ = [1 + e(ε−εFσ )/T ]−1 is the thermal distribution in
wire σ . For the case of two-particle scattering, the kinetic
equation for gσ reads

−iωgσ − eEσ k/mT = st(2)
σ , (2)

where Eσ is the electric field (e > 0) in wire σ and the
(linearized) two-particle collision integral st(2)

σ (1) at the mo-
mentum k1 [with gσ (1) ≡ gσ (k1), etc.] is given by

st(2)
σ (1) = 1

ζ 2
σ (1)

∑
21′2′

W (2)
σ δ2(. . .)

× [gσ (1′) + gσ̄ (2′) − gσ (1) − gσ̄ (2)] (3)

(notation: σ̄ = 2 for σ = 1 and vice versa). The abbreviation
δ2(. . .) means the delta function δ(ε1 + ε2 − ε1′ − ε2′ ) with
ε1 = k2

1/2m, etc. The pair-collision kernel W (2)
σ is written as

W (2)
σ = 2π |A2|2 1

4 ζσ (1)ζσ̄ (2)ζσ (1′)ζσ̄ (2′), (4)

where the scattering amplitude (at first order in interaction)
A2 = L−1V12(k1′ − k1)δk1+k2,k1′+k2′ , the Kronecker symbol
δk1+k2,k1′+k2′ signifies the total momentum conservation, L is
the system size, and V12(q) is the Fourier component of the
interwire potential at the momentum q. The thermal factors ζσ

are

ζσ (1) = 1/ cosh[(ε1 − εFσ )/2T ], etc. (5)

For two-particle scattering, for which the energy and momen-
tum conservation dictates that k2 = k1′ and k2′ = k1 (particles
exchange momenta), the collision kernel W (2)

σ on the mass
shell does not depend on σ and the collision integrals in two
wires are related to each other by

st(2)
1 (1)ζ 2

1 (1) = −st(2)
2 (1)ζ 2

2 (1) (6)

for an arbitrary driving term and an arbitrary form of the
collision kernel. Written explicitly, Eq. (3) reads

st(2)
σ (k) = m

2

ζσ̄ (k)

ζσ (k)

∫
dk′

2π
ζσ (k′)ζσ̄ (k′)

V 2
12(k′ − k)

|k′ − k|
×[gσ (k′) + gσ̄ (k) − gσ (k) − gσ̄ (k′)]. (7)

As a prelude to the solution of the kinetic equation, let us
demonstrate the significance of the local relation (6), specific
to two-particle scattering, in rather general terms. The current
in real space in wire σ is given by

jσ = e

8πm

∫
dk kζ 2

σ gσ . (8)

Consider a steady-state situation in the dc limit with j1 being
finite (neither infinite nor zero) and j2 = 0. For given j1 and j2,
the functions gσ (k), which produce these currents according to
Eq. (8), satisfy Eq. (2) with the vanishing term −iωgσ (for jσ

held fixed with varying ω, gσ is a regular function of ω in the
dc limit, as explicitly demonstrated below). In view of Eq. (6),
the fields E1 and E2 must, then, obey E1ζ

2
1 (k) = −E2ζ

2
2 (k).

For � �= 0, this relation can only be satisfied by

E1 = E2 = 0, ω = 0, � �= 0. (9)

As a consequence of that, the condition j2 = 0 for j1 �= 0 is
maintained without applying any external electric field to wire
2 [to either wire for that matter; Eq. (9)]. This result (proven
below by explicitly taking the limit ω → 0) is quite remarkable
and means that the dc drag resistivity ρD = −(E2/j1)|j2=0

vanishes for the case of two-particle scattering if � �= 0, as we
already mentioned in Sec. I. That is, two-particle scattering can
only produce a finite ρD if the electron densities in the wires
are the same [9]. At this point, it is worth emphasizing that it
is crucial for the vanishing of ρD that the wires are assumed
to be infinitely long and homogeneous, namely the (external)
wave vector of the perturbation is sent to zero before taking the
dc limit. This order of taking the limits defines the quantities
known as the conductivity and the resistivity.

In turn, Eq. (9) implies, when used in Eq. (2), that st(2)
σ = 0.

A unique property of two-particle scattering is that the collision
integral (7) is nullified [30] for g1(k) = g2(k) [as shown
below, this is the (only) solution to the kinetic equation with
two-particle scattering for given jσ in the dc limit]. That is,
for � �= 0, two-particle scattering necessarily leads to exact
equilibration between the distribution functions g1 and g2

at the same momentum (here and below, we use the term
“distribution function” loosely to denote both gσ and fσ ; note
that equal gσ for � �= 0 means different fσ ). Conversely, it is
this sort of equilibration that is responsible for the cancellation
between the incoming and outgoing terms in the collision
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integral. We conclude from this general discussion that there
is an inherent link between the frictionless motion described
by Eq. (9) and the exact equilibration between g1 and g2, both
peculiar to two-particle scattering.

Let us now turn to the solution of the kinetic equation (2).
As follows from Eq. (6), the kinetic equation has a zero-mode
solution

g+ = 1

2

(
g1

ζ1

ζ2
+ g2

ζ2

ζ1

)
(10)

= ek

2mT

(
E1

ζ1

ζ2
+ E2

ζ2

ζ1

)
1

−iω
, (11)

which is not subject to relaxation (here and below −iω in the
denominator is understood as −iω + 0). The combination of
gσ that relaxes to zero in the absence of the driving force is
given by

g− = 1

2
(g1 − g2). (12)

The closed equation for g− reads

−iωg− − ek

2mT
(E1 − E2) = 1

2

(
ζ1

ζ2
+ ζ2

ζ1

)
st−, (13)

where

st− = m

2

∫
dk′

2π
ζ1(k′)ζ2(k′) V 2

12(k′ − k)

×g−(k′) − g−(k)

|k′ − k| . (14)

For concreteness, let us focus on the Fokker-Planck limit,
in which the characteristic momentum transfer |k′ − k| ∼ 1/a

in Eq. (14) is much smaller than T/vFσ , with vFσ being the
Fermi velocity in wire σ and a the characteristic spatial scale
of the interwire potential. In this limit, the collision integral
(14) is written as

st− = 4D(2) 1

ζ1ζ2
∂k

(
ζ 2

1 ζ 2
2 ∂kg−

)
, (15)

where

D(2) = m

16

∫
dq

2π
|q| V 2

12(q). (16)

For identical wires, the constant D(2) has the meaning of the
diffusion coefficient in momentum space at the Fermi level
[9]. Integrating Eq. (13) at ω = 0 with st− from Eq. (15), we
have

g− = e(E1 − E2)

4mTD(2)

∫ k

0
dk′ 1

ζ 2
1 (k′)ζ 2

2 (k′)

×
∫ ∞

k′
dk′′ k′′ ζ 2

1 (k′′)ζ 2
2 (k′′)

ζ 2
1 (k′′) + ζ 2

2 (k′′)
. (17)

For T � εFσ , two approximations in Eq. (17) are asymptoti-
cally accurate. First, the integral over k′′ can be taken from 0
to ∞: it is then determined by |k′′| 	 [m(εF1 + εF2)]1/2 and
reduces to∫ ∞

0
dk k

ζ 2
1 ζ 2

2

ζ 2
1 + ζ 2

2

	 2mT I
(

�

2T

)
, T � εFσ , (18)

where

I(x) = arctan(tanh x)

sinh x
. (19)

Second, the functions ζ1,2(k′) in the integral over k′ can be
approximated as exponentials around k′ = 0: the integral over
k′ is determined by |k′| ∼ min{|k|,(mT )1/2}. For g− we thus
obtain

g− 	 e(E1 − E2)

64D(2)
(πmT )1/2 �

(
k√
mT

)

× I
(

�

2T

)
exp

(
εF1 + εF2

T

)
, (20)

where �(x) = (2/
√

π )
∫ x

0 dt exp(−t2) is the error function.
Writing gσ in terms of g±, we separate gσ into a singular

(at ω → 0) part, proportional to g+, and a regular part,
proportional to g−:

g1 = 2ζ1ζ2

ζ 2
1 + ζ 2

2

(
g+ + ζ2

ζ1
g−

)
, (21)

g2 = 2ζ1ζ2

ζ 2
1 + ζ 2

2

(
g+ − ζ1

ζ2
g−

)
. (22)

Using g± from Eqs. (11) and (20) in Eqs. (21) and (22), and
substituting the resulting gσ in Eq. (8), the conductivity matrix
is written as

σ̂ = e2

m

1

−iω

(
n1 0
0 n2

)
− σ12

(
1 −1

−1 1

)
, (23)

where

nσ = 1

8πmT

∫
dk k2ζ 2

σ (24)

is the electron density in wire σ . For the off-diagonal term σ12

we have (for T � εFσ )

σ12 	 e2n̄

2m
I
(

�

2T

)(
1

−iω
− 1

γ

)
+ O(ω), (25)

where n̄ = [(n2
1 + n2

2)/2]1/2 and

γ 	 32π1/2n̄D(2)

(mT )3/2

1

I(�/2T )
exp

(
−εF1 + εF2

T

)
. (26)

The singular part of σ12 is exactly given by −e2n/2imω for
n1 = n2 = n. In the case of identical wires, the singular part
of σ12 is thus equal to that of σ11. It is this property of the
conductivity matrix σ̂ that produces the nonzero resistivity
matrix ρ̂ = σ̂−1 in the limit ω → 0 for two-particle scattering,
calculated in Ref. [9]. Indeed, if n1 �= n2, the determinant of
σ̂ is seen to diverge as 1/ω2 at ω → 0:

det σ̂ 	 −
(

e2

m

)2[
n1n2 − n1 + n2

2
n̄ I
(

�

2T

)]
1

ω2

+O(1/ω). (27)

As a result, ρ̂ = 0 for n1 �= n2 and ω = 0: the finite damping
(26), which leads to the relaxation of g−, is not sufficient to
establish nonzero drag, mediated by two-particle scattering,
between nonequivalent wires in the dc limit [31].

For two-particle scattering, the dc drag resistivity ρD =
−ρ12(ω = 0) as a function of the mismatch � is thus a bodyless
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FIG. 1. Schematic dependence of the drag resistivity ρD for two
quantum wires on the chemical potential mismatch � (in units of the
temperature T ) for the case of weak intrawire equilibration. For two-
particle scattering, ρD(�) shows a bodyless resonance peak [Eq. (28)]
with a finite height and the width  = 0. Three-particle scattering
broadens the resonance [Eq. (135)]: the width  of the resulting
Lorentzian scales with the strength of three-particle scattering D(3) as√
D(3).

peak (Fig. 1)—of a finite height (as obtained in Ref. [9]) and
zero width:

ρD =
{ mγ

2e2n
, � = 0,

0, � �= 0
(28)

[for � = 0, γ from Eq. (26) coincides with γ from Ref. [9]].
The derivation of Eq. (28) shows that the vanishing of ρD

for � �= 0 is a generic property of two-particle scattering,
independent of the particular form of the collision integral
[the nonzero, for � �= 0, coefficient in front of 1/ω2 in
Eq. (27) comes from the contribution of g+ to σ̂ ]. This should
be contrasted with the result of Ref. [20], where a finite
resistivity for � �= 0 was obtained for the case of two-particle
backscattering [32]. This should also be contrasted with the
results of Refs. [18] and [22], where Coulomb drag due to
two-particle forward scattering was considered for both zero
and nonzero �, although forward scattering by itself does not
produce nonzero ρD, independently of whether � = 0 or not
(see Ref. [9] for more details).

Note that the significance of the function I(�/2T ) in the
above is twofold. In Eq. (26), it reflects the dependence of the
relaxation rate on � [which is of no importance to the behavior
of ρD as a function of � in Eq. (28)]. In Eq. (27), on the
other hand, it comes from the modification of the singular (not
related to relaxation at all) part of σ12. The fact that the same
function describes these two distinctly different aspects of the
problem is actually specific to the use of the Fokker-Planck
model: in general, the modification of the T dependence of the
regular part of σ12 by finite � need not be described by Eq. (25)
with γ from Eq. (26). By contrast, the function I(�/2T ) in
Eq. (27), and throughout Sec. II below, is universal in the sense
that it is independent of the particular form of the two-particle
collision kernel [31].

It is also worth noting that the strong dependence of the
damping (drag) rate on ω in the case of two-particle scattering,
which was demonstrated for � = 0 in Ref. [9], takes the
extreme form for � �= 0. Expanding the solution of Eq. (13)
to second order in 1/ω, the drag resistivity in the limit of large

ω is obtained as

ρ12(ω → ∞) = − m

32e2n1n2T

∫
dk

2π
ζ1(k)ζ2(k)

×
∫

dk′

2π
ζ1(k′)ζ2(k′)V 2

12(k′ − k)|k′ − k|; (29)

i.e., ρ12(ω → ∞) does not show any singularity at � = 0,
whereas ρ12(ω = 0) vanishes if � �= 0 [Eq. (28)]. If the
damping rate was independent of ω (Drude-like ansatz), the
drag resistivity would show no frequency dispersion.

To further elucidate the physics behind Eq. (28), let us
assume that wires 1 and 2 are the active and passive wire,
respectively, and write j1 and E1 under the condition that
j2 = 0 in terms of E2 (the field in the passive wire necessary
to maintain a currentless state therein):

j1 = e2n̄

m

[
Ab

−iω
+ Ar

γ
+ O(ω)

]
E2, (30)

E1 =
[

1 − 2n2

n̄I(�/2T )

(
1 − iω

γ

)
+ O(ω2)

]
E2, (31)

where the dimensionless constants Ab and Ar depend on n1/n2

and �/T :

Ab = −2n1n2 − (n1 + n2)n̄I(�/2T )

n̄2I(�/2T )
, (32)

Ar = − 2n1n2

n̄2I(�/2T )
. (33)

As seen from Eqs. (30) and (31), if j1 is held fixed with
varying ω, both E1 and E2 vanish as ω is decreased for Ab �= 0,
which is the case for � �= 0. This is because the “relaxational”
component of j1 (proportional to Ar ) is shunted by the ballistic
component (proportional to Ab) in the dc limit. Specifically, to
order O(ω), the fields E1 and E2 for given j1 and j2 = 0 obey

E1 = m

e2n̄

−iω

Ab

[
1 − 2n2

n̄I(�/2T )

]
j1 + O(ω2), (34)

E2 = m

e2n̄

−iω

Ab

j1 + O(ω2) (35)

and do not depend on γ .
Substituting Eqs. (34) and (35) in g+ [Eq. (11)], the

distribution function gσ [Eqs. (21) and (22)] for j2 = 0 in
the dc limit is given by

gσ = 1

en̄T Ab

kF (k) j1, ω = 0, (36)

where

F (k) = ζ 2
1 [1 − 2n2/n̄I(�/2T )] + ζ 2

2

ζ 2
1 + ζ 2

2

. (37)

Most importantly, as already mentioned below Eq. (9), the
distribution functions g1(k) and g2(k) at the same momentum
k equilibrate between themselves and become identical at ω →
0. Accordingly, the collision integral st(2)

σ vanishes in the dc
limit: the nonequilibrium steady state at ω → 0 is such that the
incoming term in the collision integral is exactly canceled by
the outgoing term. Crucially, the exact equilibration between
g1 and g2 assumes that the dc limit is taken before � is sent
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to zero, which is why the case of � = 0 in Eq. (28) is special.
Substituting Eq. (36) in Eq. (8) gives j2 = 0 for a nonzero j1.
For � �= 0, Eq. (36) thus shows exactly how the dc current
j2 = 0 is maintained in wire 2 when one sends the dc current
j1 through wire 1. It is worth emphasizing once more that the
distribution function (36) is universal, i.e., does not depend on
the particular form of the two-particle collision integral.

III. THREE-PARTICLE COLLISION INTEGRAL

As we will show below, in Sec. VIII, the singularity in
the dependence of ρD on � in Eq. (28) is a peculiar property
of two-particle scattering. Specifically, we will demonstrate
that three-particle scattering leads to a broadening of the zero-
width resonance of ρD at � = 0 and, if three-particle scattering
becomes sufficiently strong, to a more conventional type of the
dependence of ρD on � with a characteristic scale of |�| ∼ T .

Let us therefore turn to the kinetic equation in the presence of
three-particle scattering.

For arbitrary �, the three-particle collision integral st(3)
σ ,

which should be added to the right-hand side of Eq. (2), is
given by the sum

st(3)
σ = st(3a)

σ + st(3b)
σ + st(3c)

σ , (38)

where st(3a),(3b),(3c)
σ are the contributions of scattering channels

(a), (b), (c), respectively, defined as follows. For electron 1 in
wire σ , which interacts with electrons 2 and 3, the scattering
channels are defined (similarly to Ref. [9]) depending on which
wires electrons 2 and 3 belong to. Specifically, channel (a): all
three electrons are in wire σ ; channel (b): electrons 2 and 3
are in wire σ̄ ; channel (c): electrons 2 and 3 are in different
wires. The partial collision integrals at the momentum k1 read

st(3a)
σ (1) = ηa

ζ 2
σ (1)

∑
231′2′3′

W (3a)
σ δ3(. . .)[gσ (1′) + gσ (2′) + gσ (3′) − gσ (1) − gσ (2) − gσ (3)], (39)

st(3b)
σ (1) = ηb

ζ 2
σ (1)

∑
231′2′3′

W (3b)
σ δ3(. . .)[gσ (1′) + gσ̄ (2′) + gσ̄ (3′) − gσ (1) − gσ̄ (2) − gσ̄ (3)], (40)

st(3c)
σ (1) = ηc

ζ 2
σ (1)

∑
231′2′3′

W (3c)
σ δ3(. . .)[gσ (1′) + gσ (2′) + gσ̄ (3′) − gσ (1) − gσ (2) − gσ̄ (3)] (41)

with ηa,b,c = 1/12 ,1/4 ,1/2. Similarly to Eq. (3), the coefficients in front of the functions gσ in the collision integrals are ±1,
independently of whether � = 0 or not. The abbreviation δ3(. . .) stands for δ(ε1 + ε2 + ε3 − ε1′ − ε2′ − ε3′ ). The triple-collision
kernels W (3a),(3b),(3c)

σ ∝ δk1+k2+k3,k1′+k2′+k3′ are written as

W (3a)
σ (1′,2′,3′|1,2,3) = 2π

∣∣Airr
3a,σ

∣∣2 1

16
ζσ (1)ζσ (2)ζσ (3)ζσ (1′)ζσ (2′)ζσ (3′), (42)

W (3b)
σ (1′,2′,3′|1,2,3) = 2π

∣∣Airr
3b,σ

∣∣2 1

16
ζσ (1)ζσ̄ (2)ζσ̄ (3)ζσ (1′)ζσ̄ (2′)ζσ̄ (3′), (43)

W (3c)
σ (1′,2′,3′|1,2,3) = 2π

∣∣Airr
3c,σ

∣∣2 1

16
ζσ (1)ζσ (2)ζσ̄ (3)ζσ (1′)ζσ (2′)ζσ̄ (3′), (44)

with the irreducible (with respect to interaction) three-particle
scattering amplitudes Airr

3a,σ , Airr
3b,σ , Airr

3c,σ which are a direct
generalization of those from Ref. [9] to the case of nonequal
intrawire interaction potentials V11(q) and V22(q). If V11(q) =
V22(q), the subscript σ in the amplitudes may be dropped.
The amplitudes in Eqs. (42)–(44) are taken on the Slater
determinants normalized to unity. Note that, generically, no
local (for a given momentum) relation similar to Eq. (6) for
two-particle scattering exists for three-particle scattering.

The coefficients ηa,b,c account for the double counting of
indistinguishable initial and final states in the unrestricted
momentum summations in Eqs. (39)–(41); for more details see
Ref. [9] (note that the factors ηa,b,c are missed in the formalism
of Ref. [33], which was used in a number of consequent
publications). Each of the nonintegrable singularities [9] in the
modulus squared of the three-particle scattering amplitudes
(of the type 1/�2 at zero energy � transferred in a virtual
transition) must be regularized in the momentum summations
in the collision integrals (39)–(41) as the real part of a double
pole or, equivalently, counterterms should be added to Eq. (38)
to avoid a double counting of correlated two-particle collisions;
see Sec. III B in Ref. [9] and Refs. [34,35] for a more detailed
explanation of this point.

IV. ZERO MODES

The collision integrals (3) for two-particle and (39)–(41)
for three-particle scattering, and those for an arbitrary num-
ber N of colliding particles for that matter, are nullified
for

gσ = �0 + �1k + �2k
2, N � 2, (45)

where �0,1,2 are arbitrary σ -independent constants of k.
The three terms in Eq. (45) correspond to the total number
of particles, momentum, and energy conservation. The case
of two-particle scattering is special: the collision integral
(3) is nullified for gσ given by an arbitrary σ -independent
function of k, not only the polynomial (45). Importantly,
the total momentum conservation in the translation-invariant
system driven by the linear-in-k inhomogeneous term in
Eq. (2) does not necessarily imply that the singular at
ω = 0 terms in gσ , namely g

sing
σ ∝ 1/ω, are also linear

in k. This is quite generally the case for � = 0, where
g

sing
σ = ek(E1 + E2)/2mT (−iω) for arbitrary N . However,

for � �= 0, the linearity of g
sing
σ in k does not hold if only

two-particle scattering is present: in that case, as follows from
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Eqs. (21) and (22),

gsing
σ = 2ζ1ζ2

ζ 2
1 + ζ 2

2

g+ = ek

mT

E1ζ
2
1 + E2ζ

2
2

ζ 2
1 + ζ 2

2

1

−iω
,

N = 2, (46)

and the linear combination of g1 and g2 that is time independent
on all time scales is given by g+ from Eq. (10). If three-particle
scattering is added, the degeneracy of the zero mode of the
pair collision integral with respect to the dependence on k is
lifted, so that the odd-in-k zero mode of the total (pair+triple)
collision integral can only be given by Eq. (45) with �0 =
�2 = 0 and �1 = A1/(−iω):

gsing
σ = A1

k

−iω
, N � 3, (47)

where A1 is a k and σ independent constant, i.e., can only be
linear in k, and this is valid for any type of scattering beyond
pair collisions. A nontrivial point to notice is that the residue
of g

sing
σ at ω = 0 experiences a jump from the value given by

Eq. (46) to the value given by Eq. (47) when the strength of
three-particle scattering becomes nonzero [the discontinuity is
only absent at ε = (εF1 + εF2)/2]. This means that the jump
in g

sing
σ is of the form

gsing
σ =

(
e

mT

E1ζ
2
1 + E2ζ

2
2

ζ 2
1 + ζ 2

2

− A1

)

× k

−iω + �3(ω,k)
+ A1

k

−iω
, (48)

where �3(ω,k) vanishes in the absence of three-particle
scattering and has a finite value at ω = 0 in the presence of it.

To find A1 in Eq. (47), write the kinetic equation for gσ

with st(3)
σ �= 0 at ω → 0 as(

A1 − eEσ

mT

)
k = 4

ζ 2
σ

∂kJσ , (49)

where Jσ (k) is the current in momentum space at the point k

in wire σ , related to the total time derivative of the momentum
density Pσ in wire σ by

Ṗσ =
∫ ∞

−∞

dk

2π
Jσ . (50)

Multiplying Eq. (49) by kζ 2
σ and integrating over all k, we have

e(E0 − Eσ )nσ = −Ṗσ , (51)

where the electron densities nσ are exactly given by Eq. (24)
and

eE0 = mT A1. (52)

The drag force Ṗσ , acting on the unit length segment of wire σ ,
is thus compensated in the dc limit by the sum of the external
force −eEσ nσ and the zero-mode contribution to the force
balance eE0nσ that comes from the partial time derivative of
Pσ . The effective electric field E0 is obtained on quite general
grounds solely as a result of the total momentum conservation
Ṗ1 + Ṗ2 = 0 (i.e., Newton’s third law for the drag forces in
two wires):

E0 = E1n1 + E2n2

n1 + n2
. (53)

Similarly to Eq. (48), if only two-particle scattering is present,
the force-balance equations at zero ω and � �= 0 are not of the
form given by Eq. (51); in particular, the effective zero-mode
electric field coupled to the center-of-mass distribution (E0 in
the above) is different in two wires.

V. MATRIX STRUCTURE

The singular (proportional to 1/ω) term j
sing
σ =

(e/8πm)
∫

dk kζ 2
σ g

sing
σ in the current in wire σ [with g

sing
σ from

Eqs. (47), (52), and (53)] gives the singular part σ̂ sing of the
conductivity matrix σ̂ :

σ̂ sing = e2

m

1

−iω

1

n1 + n2

(
n2

1 n1n2

n1n2 n2
2

)
. (54)

The vanishing of the determinant

det σ̂ sing = 0 (55)

ensures that the elements of the resistivity matrix ρ̂ = σ̂−1

are generically nonzero in the dc limit. This is in contrast
to the case of only two-particle scattering at � �= 0, where
the determinant of the singular part of the conductivity matrix
does not vanish [cf. Eq. (27)]. Splitting the conductivity matrix
into the singular and regular parts, σ̂ = σ̂ sing + σ̂ reg, the dc
resistivity matrix for the case of det σ̂ sing = 0 is given by

ρ̂(ω = 0) ≡ lim
ω→0

adj σ̂

det σ̂
= adj σ̂ sing

Tr[(adj σ̂ sing) σ̂ reg]
, (56)

where the matrix structure of ρ̂(ω = 0) (regular at ω = 0) is
identical to that of the adjugate of σ̂ sing (singular at ω = 0),

adj σ̂ sing = e2

m

1

−iω

1

n1 + n2

(
n2

2 −n1n2

−n1n2 n2
1

)
, (57)

with

Tr[(adj σ̂ sing) σ̂ reg] = e2

m

1

−iω

1

n1 + n2

[
n2

2σ
reg
11 + n2

1σ
reg
22

− n1n2
(
σ

reg
12 + σ

reg
21

)]
. (58)

The dc drag resistivity ρD = −ρ12(ω = 0) is thus obtained as

ρD = n1n2

n2
2σ

reg
11 + n2

1σ
reg
22 − n1n2

(
σ

reg
12 + σ

reg
21

) . (59)

Note that the ρ̂(ω = 0) matrix is singular (zero determinant),

det ρ̂(ω = 0) = 0, (60)

and symmetric (with generically different diagonal entries, i.e.,
the structure of the matrix is characterized by two independent
parameters, e.g., n1 and n2). The matrix structure of σ̂ reg will
be derived in Eq. (111) below.

VI. FOKKER-PLANCK EQUATION

The crucial difference between the solutions of the kinetic
equation in the dc limit for � = 0 and � �= 0 is that in the
latter case three-particle scattering cannot be neglected in
the calculation of ρD (even in the limit of an infinitesimally
small but finite strength of three-particle scattering), because
otherwise ρD = 0 [Eq. (28)]. We turn now to the solution
of the kinetic equation in the presence of both two- and

085404-6



ULTRANARROW RESONANCE IN COULOMB DRAG BETWEEN . . . PHYSICAL REVIEW B 94, 085404 (2016)

three-particle scattering. Similarly to Sec. II, we focus on
the Fokker-Planck formulation of the kinetic problem. The
derivation of the Fokker-Planck collision integral in the
presence of three-particle scattering, with a discussion of
important peculiarities of three-particle scattering compared to
two-particle scattering (in regard to the selection of momenta
contributing to the coefficients of the gradient expansion), is
presented in Appendix A. The contribution to the current in
momentum space Jσ in wire σ of three-particle scattering,
J (3)

σ , in the Fokker-Planck limit is written as

J (3)
σ (k) = D(3)

σ (k)∂kgσ (k) − Cσ (k), (61)

where the diffusion coefficient in momentum space D(3)
σ =

D(3a)
σ + D(3b)

σ + D(3c)
σ and the integral term Cσ = C(3a)

σ +
C(3b)

σ + C(3c)
σ are sums of terms coming from channels (a),

(b), and (c):

D(3a),(3b),(3c)
σ (k1)

= 1

8νa,b,c

∑
231′2′3′

d W (3a),(3b),(3c)
σ (1′,2′,3′|1,2,3)δ3(. . .)q2,

(62)

C(3a)
σ (k1)

= − 1

4νa

∑
231′2′3′

d W (3a)
σ (1′,2′,3′|1,2,3)δ3(. . .)qq2 ∂k2gσ (2),

(63)

C(3b)
σ (k1)

= − 1

4νb

∑
231′2′3′

d W (3b)
σ (1′,2′,3′|1,2,3)δ3(. . .)qq2 ∂k2gσ̄ (2),

(64)

C(3c)
σ (k1) = − 1

8νc

∑
231′2′3′

d W (3c)
σ (1′,2′,3′|1,2,3)δ3(. . .)q

× [q2 ∂k2gσ (2) + q3 ∂k3gσ̄ (3)
]

(65)

with νa,b,c = 2,2,1 (for more details on the combinatorial fac-
tors νa,b,c see Appendix A). The sign d in

∑d restricts the sum-
mation to direct scattering (as opposed to exchange processes)
with |k1 − k1′ |,|k2 − k2′ |,|k3 − k3′ | � 1/a. Note that the cases
of two- and three-particle scattering are different in that, in the
latter case, there appears the integral term Cσ in the Fokker-
Planck expression for the current in momentum space [36].

The resulting Fokker-Planck equation in the dc limit reads

e

4mT

nσ̄

nσ + nσ̄

(Eσ̄ − Eσ )k

= 1

ζ 2
σ

∂k

{
ζ 2
σ

[
1

2
D(2)ζ 2

σ̄ ∂k(gσ − gσ̄ )

+D(3)
σ (k)∂kgσ − Cσ (k)

]}
, (66)

where

gσ = gσ − gsing
σ (67)

is the regular part of gσ for ω = 0 and we introduced the
functions D(3)

σ (k) and Cσ (k) by explicitly extracting the factors
ζ 2
σ (k), sharply peaked on the Fermi surface, from D(3)

σ (k) and
Cσ (k), with the partial terms in D(3)

σ (k) and Cσ (k) being related
to those in Eqs. (62)–(65) by

D(3a),(3b),(3c)
σ (k) = D(3a),(3b),(3c)

σ (k)/ζ 2
σ (k), (68)

C(3a),(3b),(3c)
σ (k) = C(3a),(3b),(3c)

σ (k)/ζ 2
σ (k). (69)

Importantly, Eq. (66) for � �= 0 does not have a solution if
D(3)

σ and Cσ are zero. This is because the dc limit in Eq. (66) is
assumed to be taken before the limit D(3)

σ → 0 and Cσ → 0.
Multiplying Eq. (66) by ζ 2

σ and integrating over k, we have

e

2

nσ̄

nσ + nσ̄

(Eσ − Eσ̄ )(1 − tanhσ )

= ζ 2
σ

[
1

2
D(2)ζ 2

σ̄ ∂k(gσ − gσ̄ ) + D(3)
σ (k)∂kgσ − Cσ (k)

]
,

(70)

where

tanhσ = tanh
k2 − k2

Fσ

4mT
(71)

and kFσ is the Fermi momentum in wire σ . Solving the
two-component (σ = 1,2) integro-differential equation (70)
for ∂kgσ in terms of the integrals Cσ (k) gives

∂kgσ = D(2)ζ 2
σ ζ 2

σ̄ (hσ + hσ̄ )/2 + D(3)
σ̄ ζ 2

σ̄ hσ

ζ 2
σ ζ 2

σ̄ D
, (72)

where

hσ = e

2

nσ̄

nσ + nσ̄

(Eσ − Eσ̄ )(1 − tanhσ ) + ζ 2
σCσ (73)

and

D = 1
2D

(2)
[
D(3)

σ ζ 2
σ + D(3)

σ̄ ζ 2
σ̄

]+ D(3)
σ D(3)

σ̄ . (74)

Note that, unless � = 0 (i.e., hσ = −hσ̄ ), ∂kgσ in Eq. (72)
diverges in the limit of vanishing three-particle scattering [see
the comment at the end of the paragraph below Eq. (67)].

Summing up the two components of Eq. (70) [thus
excluding the terms proportional to D(2)] and integrating the
sum over all k, one obtains the total momentum-conservation
law for triple collisions in the form∑

σ

∫
dk ζ 2

σ

[
D(3)

σ (k)∂kgσ − Cσ (k)
] = 0. (75)

For given D(3)
σ (k), any model approximation for Cσ (k) must

obey Eq. (75). Note that, as shown in Appendix B, there are
also “partial” conservation laws [see Eqs. (B1) and (B2)] which
require, additionally, that∫

dk ζ 2
σ

[
D(3a)

σ (k)∂kgσ − C(3a)
σ (k)

] = 0, (76)∫
dk ζ 2

σ

[
D(3b)

σ (k)∂kgσ − C(3b)
σ (k)

]
+
∫

dk ζ 2
σ̄

[
D(3c)

σ̄ (k)∂kgσ̄ − C(3c)
σ̄ (k)

]
= 0. (77)
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While Eq. (76) has exactly the same meaning for a single wire
that Eq. (75) has for two, Eq. (77) links channels (b) and (c)
to each other through the “integral” constraint.

VII. EXACTLY SOLVABLE FOKKER-PLANCK EQUATION

Turning to a very instructive example of the Fokker-Planck
description of three-particle scattering, let us solve an exactly
solvable model withD(3)

σ and Cσ being independent of k. These
should be chosen to satisfy Eq. (75), which gives[

D(3)
σ 〈∂kgσ 〉 − Cσ

]
kT σ = −[D(3)

σ̄ 〈∂kgσ̄ 〉 − Cσ̄

]
kT σ̄ , (78)

where

〈∂kgσ 〉 = 〈∂kgσ 〉σ , (79)

the average 〈. . .〉σ is defined as

〈. . .〉σ = 1

kT σ

∫
dk ζ 2

σ (. . .), (80)

and

kT σ =
∫

dk ζ 2
σ = 8πT (∂n/∂μ)σ 	 8mT/kFσ , (81)

with (∂n/∂μ)σ the thermodynamic density of states (com-
pressibility) in wire σ . If one takes, further, Cσ to be a linear
function of the averages (79),

Cσ = λσ 〈∂kgσ 〉 + μσ 〈∂kgσ̄ 〉 (82)

with arbitrary constants λσ and μσ , then Eq. (78), which should
be satisfied for arbitrary gσ (k) [on the model level: on the space
of gσ (k) that supports the representation (82)], requires that
D(3)

σ and Cσ be related to each other by

D(3)
σ = λσ + μσ̄ kT σ̄ /kT σ . (83)

If three-particle scattering is only present in channel (a), this
can be modeled by putting μσ = 0 [cf. Eq. (76)].

Multiplying Eq. (72) by ζ 2
σ , substituting Eq. (82) for Cσ

in hσ , and integrating over all k, we have a 2 × 2 algebraic
equation for 〈∂kgσ 〉:

aσ 〈∂kgσ 〉 + bσ 〈∂kgσ̄ 〉 = cσ , (84)

where aσ = 〈ãσ 〉σ , bσ = 〈b̃σ 〉σ , cσ = 〈c̃σ 〉σ , and

ãσ = 1 − 1

2D

[
D(2)(λσ ζ 2

σ + μσ̄ ζ 2
σ̄

)+ 2D(3)
σ̄ λσ

]
, (85)

b̃σ = − 1

2D

[
D(2)

(
μσ ζ 2

σ + λσ̄ ζ 2
σ̄

)+ 2D(3)
σ̄ μσ

]
, (86)

c̃σ = e(Eσ − Eσ̄ )

4(nσ + nσ̄ )

1

D

{
D(2)[nσ̄ (1 − tanhσ )

− nσ (1 − tanhσ̄ )] + 2D(3)
σ̄ nσ̄

1 − tanhσ

ζ 2
σ

}
. (87)

Substituting the solution of Eq. (84) for 〈∂kgσ 〉 in Eq. (72)
solves the integral equation (72) for ∂kgσ , within the model
specified in Eq. (82).

This brings us to a subtle but crucially important point
about the constraints, related to momentum conservation, on
Cσ within the model (82). Specifically, the question is how
many independent constants can be chosen to parametrize the

model of three-particle scattering, formulated in terms of six
constants D(3)

σ , λσ , and μσ . The total momentum-conservation
law (75), applied to the model (82) in the form of Eq. (83),
leaves four of them independent [37], e.g., λσ and μσ .
Importantly, however, these are not independent. In fact, the
model (82) has additional constraints and is parametrized by
two independent constants for arbitrary � [for the solution to
Eqs. (72) and (84) in the limit � → 0, which reproduces the
result of Ref. [9], see Appendix C].

The additional [compared to Eq. (83) or, more generally,
Eq. (75)] constraint is also a direct consequence of momentum
conservation. Namely, the collision integral for arbitrary �

must be nullified for

gσ (k) = �1k, (88)

where the (arbitrary) constant �1 is independent of σ [cf.
Eqs. (45) and (47) in Sec. IV]. In the Fokker-Planck formu-
lation, this means that Cσ (k) = �1D(3)

σ (k) for ∂kgσ = ∂kgσ̄ =
�1. For the model from Eq. (82), this condition translates into

D(3)
σ = λσ + μσ . (89)

Combining Eqs. (89) and (83), we obtain the relation between
the coefficients in Eq. (82) for different σ that must be satisfied
as a result of the existence of the zero mode (88):

μσkT σ = μσ̄ kT σ̄ (90)

(with no constraint on λσ ). Substituting Eq. (90) in Eqs. (85)
and (86), we have

aσ = −bσ . (91)

Equation (91) can also be obtained by requiring that the left-
hand side of Eq. (84) vanishes for the homogeneous solution
(88).

The existence of the zero mode (88) associated with mo-
mentum conservation has the consequence that the determinant
of Eq. (84) is zero,

aσ aσ̄ − bσ bσ̄ = 0, (92)

for arbitrary �, not only � = 0 (cf. Appendix C). As a result
of the degeneracy of Eq. (84), we have

〈∂kgσ 〉 − 〈∂kgσ̄ 〉 = −cσ /bσ , (93)

with

cσ /bσ = −cσ̄ /bσ̄ . (94)

Equation (94) thus gives one more, in addition to Eq. (90),
relation between the coefficients in Eq. (82). Altogether, we
have four algebraic constraints on six constants D(3)

σ , λσ ,
and μσ that parametrize three-particle scattering for given
� [Eqs. (83), (90), and (94)]; i.e., one can choose only
two constants arbitrarily (similarly to the case � = 0, where
the model is parametrized by D(3) = λ + μ and λ − μ; see
Appendix C). Note that Eq. (90) fixes the relation between μ1

and μ2 only, thus being related to the partial conservation law
(77). The important point to notice is that Eq. (75), reflecting
the total momentum-conservation law per se (without a
reference to the partial conservation laws), and the vanishing
of the collision integral for the associated zero mode (88) are
not equivalent in the sense of the constraints they require for
the parameters of the model (82).
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Using Eq. (94), one can represent Eq. (72) for the model
(82) in the form

∂kgσ = 〈∂kgσ 〉 + 1

bσ

(bσ c̃σ − b̃σ cσ ). (95)

Together with Eq. (93), this solves Eq. (70) in the model (82)
for the difference gσ − gσ̄ :

∂k(gσ − gσ̄ ) = − cσ

bσ

(1 + b̃σ + b̃σ̄ ) + c̃σ − c̃σ̄ , (96)

with

1 + b̃σ + b̃σ̄ = 1

D
(λσλσ̄ − μσμσ̄ ) (97)

and

c̃σ − c̃σ̄ = e(Eσ − Eσ̄ )

2(nσ + nσ̄ )D

×
[
D(3)

σ nσ

1 − tanhσ̄

ζ 2
σ̄

+ D(3)
σ̄ nσ̄

1 − tanhσ

ζ 2
σ

]
. (98)

For � = 0, Eq. (96) reduces to Eq. (C2) (with b̃σ = b̃σ̄ and
c̃σ = −c̃σ̄ ).

The Fokker-Planck equation in the form of Eq. (66) [or
Eq. (72)] is fully solvable only for the difference ∂k(gσ − gσ̄ )
[Eq. (96)] and is degenerate with respect to a shift of ∂kgσ

by a k and σ independent constant (“homogeneous solution”),
unless a boundary condition lifts the degeneracy (which is not
the case here). That is, the function gσ + gσ̄ , obeying [from
Eqs. (93) and (95)]

∂k(gσ + gσ̄ ) = 〈∂kgσ 〉 + 〈∂kgσ̄ 〉 + c̃σ + c̃σ̄

+ (b̃σ − b̃σ̄ )(〈∂kgσ 〉 − 〈∂kgσ̄ 〉), (99)

is obtainable from Eq. (66) up to the constant

B = 〈∂kgσ 〉 + 〈∂kgσ̄ 〉. (100)

In particular, this means that the inhomogeneous solution of
Eq. (66), which depends on the fields Eσ only through the
combination Eσ − Eσ̄ , namely

gσ (k) ∝ Eσ − Eσ̄ , (101)

can be shifted as

gσ (k) → gσ (k) + ϑσ (Eσ − Eσ̄ )k (102)

with an arbitrary constant ϑ1 = −ϑ2.
Note, however, that the k and σ independent term in ∂kgσ

is of no importance if one is only interested in finding ρD

in Eq. (59). This is because ρD does not change after the
transformation (102). That is, while the conductivity matrix
σ̂ reg depends on ϑσ , being shifted by the ϑσ -dependent term
as

σ̂ reg → σ̂ reg + eT ϑ1

(
n1 −n1

n2 −n2

)
, (103)

the resistivity ρD does not [in fact, ρD is not changed after a
more general transformation of the form gσ → gσ + (ϑσEσ +
ϑσ̄Eσ̄ )k with two arbitrary constants ϑσ ].

The constant B [Eq. (100)] is found by retaining the finite-ω
term −iωgσ [with gσ defined in Eq. (67)] on the left-hand side
of Eq. (49) (which was written for ω → 0) and repeating the

steps that led to Eq. (53). In addition to the condition (53) for
the singular part of gσ , we have now one more condition for
the regular part, namely∫

dk
(
ζ 2
σ gσ + ζ 2

σ̄ gσ̄

)
k = 0, (104)

or, equivalently,∫
dk[(1 − tanhσ )∂kgσ + (1 − tanhσ̄ )∂kgσ̄ ] = 0. (105)

Equation (104) means that the regular part j
reg
σ =

(e/8πm)
∫

dk kζ 2
σ gσ of the current in real space in wire σ

obeys the relation

j reg
σ = −j

reg
σ̄ , (106)

in contrast to the singular part j
sing
σ , which, according to

Eq. (47), obeys

j sing
σ nσ̄ = j

sing
σ̄ nσ . (107)

We thus obtain, from Eqs. (93), (95), and (105),

gσ (k) =
∫ k

0
dk′
[

1

bσ

(
−cσ

2
+ bσ c̃σ − b̃σ cσ

)
+ B

]
(108)

with

B = Bσ + Bσ̄ (109)

and

Bσ = − 1

4π (nσ + nσ̄ )

kT σ

bσ

×
〈

1 − tanhσ

ζ 2
σ

(
−cσ

2
+ bσ c̃σ − b̃σ cσ

)〉
σ

, (110)

which gives a complete solution to the kinetic equation (66).
For � = 0, the constant B = 0. Recall that ρD for arbitrary �

does not depend on B.

VIII. DRAG RESISTIVITY

In Sec. VII, we solved the integro-differential Fokker-
Planck equation within the exactly solvable model introduced
therein. Apart from providing the analytical expression for the
distribution function for an arbitrary relative strength of two-
and three-particle scattering, the exact solution also allows
us to explicitly and accurately describe the (noncommuting)
limits � → 0 and D(3) → 0.

In fact, the model solution in Sec. VII is closely related to the
solution (not obtainable in the analytical form) of the original
Fokker-Planck equation (66) [with the functions D(3)

σ (k) and
Cσ (k) resulting from Eqs. (62)–(65)]. Specifically, the exact
functions D(3)

σ (k) and Cσ (k) can be represented in the form
[39] that shows that these are slow functions of k compared
to the exponentials ζ 2

σ (k). This justifies the approximation of
D(3)

σ (k) and Cσ (k) by constants, albeit different for different
transport regimes, depending on the relative strength of two-
and three-particle scattering. In Appendix D, we also briefly
describe how the shape of the function ∂kgσ (k) changes
with varying strength of intrawire equilibration (mediated by
three-particle scattering) for � = 0, with a particular goal to
justify the approximations that are parametrically accurate for

085404-9



A. P. DMITRIEV, I. V. GORNYI, AND D. G. POLYAKOV PHYSICAL REVIEW B 94, 085404 (2016)

the integral term Cσ (k). As will be seen in Secs. VIII B and
VIII C, the picture of the evolution of the shape of ∂kgσ (k) from
Appendix D remains valid for arbitrary �, with the integral
term being important only in the regime of sufficiently strong
intrawire equilibration (“drift regime” in the terminology of
Ref. [9]), where the representation of Cσ in terms of the
averages 〈∂kgσ 〉 in Eq. (82) is justified parametrically. With
this background in mind, we proceed with the calculation of
ρD within the model of Sec. VII.

A. General formula for ρD

Equation (104) not only fixes the constant B but, in the
form of Eq. (106), together with the relation (101), also fixes
the matrix structure of σ̂ reg:

σ̂ reg = S

(
1 −1

−1 1

)
, (111)

where S within the model of Sec. VII is given, as follows from
Eq. (108), by

S = eT

4π (Eσ − Eσ̄ )

∫
dk (1 − tanhσ )

×
[

1

bσ

(
−cσ

2
+ bσ c̃σ − b̃σ cσ

)
+ B

]
(112)

= eT

Eσ − Eσ̄

(nσBσ̄ − nσ̄Bσ ). (113)

Note the difference in the matrix structure for σ̂ sing [Eq. (54)]
and σ̂ reg [Eq. (111)]. Substituting Eq. (111) in Eq. (59), we
obtain the expression for ρD in terms of S:

ρD = n1n2

(n1 + n2)2

1

S
. (114)

Equation (114) is general for the relation between ρD and S

[for S understood as the coefficient in front of the matrix in
Eq. (111)], irrespectively of the model to calculate S.

B. Ultranarrow resonance at coinciding densities

To calculate how the dependence of ρD on � changes with
increasing D(3) within the model of Sec. III, represent b̃σ and
c̃σ each as a sum of two terms:

b̃σ = �b
σ + �b

σ , c̃σ = e(Eσ − Eσ̄ )

4(nσ + nσ̄ )

(
�c

σ + �c
σ

)
, (115)

where

�b
σ = −D(2)

2D

(
μσζ 2

σ + λσ̄ ζ 2
σ̄

)
, (116)

�b
σ = −D(3)

σ̄ μσ

D
, (117)

�c
σ = D(2)

D
[nσ̄ (1 − tanhσ ) − nσ (1 − tanhσ̄ )], (118)

�c
σ = 2D(3)

σ̄ nσ̄

D

1 − tanhσ

ζ 2
σ

. (119)

The term in c̃σ proportional to �c
σ differs from the remaining

part of c̃σ in that it is singular in D(3) for D(3) → 0. More
specifically, �c

σ is singular as O[�/D(3)] for D(3) → 0 and
� → 0, so that its limiting value depends on the order of taking
the two limits. The term �b

σ differs from �b
σ in that it is finite

forD(3) → 0, whereas �b
σ vanishes in this limit. For � = 0, the

term �c
σ vanishes for anyD(3) �= 0, and S in the limit ofD(3) →

0 is finite (not infinite) and given by the contribution of two-
particle scattering. For � �= 0, the term �c

σ gives a contribution
to S which diverges as 1/D(3) for D(3) → 0. This divergence
means ρ̂(ω = 0) = 0 for � �= 0; i.e., ρD as a function of
� is a peak of zero width if only two-particle scattering is
present.

In terms of �b,c
σ and �b,c

σ , S is rewritten as

S = e2T

16π (nσ + nσ̄ )2

{
nσ̄

∫
dk (1 − tanhσ )

×
[
−(〈�c

σ

〉
σ

+ 〈�c
σ

〉
σ

)1/2 + �b
σ + �b

σ〈
�b

σ

〉
σ

+ 〈�b
σ

〉
σ

+ �c
σ + �c

σ

]

+ (σ ↔ σ̄ )

}
. (120)

For � = 0 (�c
σ = 0), Eq. (120) is identical to 1/4ρD from

Ref. [9], with 1/ρD1 (Eq. (3.66) in Ref. [9]) associated with
the term �c

σ [i.e., with the last term in the square brackets
of Eq. (120), but not with the average 〈�c

σ 〉σ in the round
brackets] and 1/ρD2 (Eq. (3.67) in Ref. [9]) with the rest.

Let us first calculate ρD in the tail of the peak, broadened
by three-particle scattering, in the limit of small D(3) (“weak
intrawire equilibration”). To this end, we retain in S only
the terms �b,c

σ by dropping the terms �b,c
σ ; moreover, in

the denominator of �b,c
σ , we retain only the term in D that

is linear in D(3)
σ , i.e., drop the term D(3)

σ D(3)
σ̄ . In this limit

[D(3) → 0 for � �= 0], S becomes independent of D(2). For
|�| � T [recall that the peak becomes bodyless in the limit
of small D(3)], it suffices to expand S to second order in
�. For |�| � εFσ , one can also neglect the dependence of
D(3)

σ on σ , so that below we express S in terms of λ, μ,
and D(3) = λ + μ, by dropping the index σ and writing �b,c

σ

as

�b
σ 	 Mb

σ = − 1

D(3)

μζ 2
σ + λζ 2

σ̄

ζ 2
σ + ζ 2

σ̄

, (121)

�c
σ 	 2

D(3)
Mc

σ ,

Mc
σ = nσ̄ (1 − tanhσ ) − nσ (1 − tanhσ̄ )

ζ 2
σ + ζ 2

σ̄

. (122)

To find S to order O[�2/D(3)], we need to expand Mb
σ and Mc

σ

to first and second order in �, respectively,

Mb
σ = − 1

2 + wσ + O(�2), (123)

Mc
σ = uσ + vσ + O(�3), (124)
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where

uσ = 1

2
(εF σ̄ − εFσ )

[(
∂n

∂μ

)
σ

1 − tanhσ

ζ 2
σ

− nσ

2T

]
∼ O(�), (125)

vσ = −(εF σ̄ − εFσ )2

(
∂n

∂μ

)
σ

1

4T

(1 − tanhσ ) tanhσ

ζ 2
σ

∼ O(�2), (126)

wσ = −(εF σ̄ − εFσ )
λ − μ

D(3)

1

4T
tanhσ ∼ O(�), (127)

and (∂n/∂μ)σ , the compressibility of the electron gas, is given
by Eq. (81).

To order O[�2/D(3)] for S, we have

S 	 e2T

32πn2

1

D(3)

[
nσ̄

∫
dk (1 − tanhσ )

×(uσ + vσ + 2〈uσ 〉σwσ ) + (σ ↔ σ̄ )

]
, (128)

where n is the density in the wires at � = 0. Since nσ (equal
to kFσ /π at T = 0) is given for arbitrary T by Eq. (24), which
can be rewritten as

nσ = 1

4π

∫
dk(1 − tanhσ ), (129)

the average 〈uσ 〉σ vanishes exactly,

〈uσ 〉σ = 0, (130)

so that the term wσ drops out from Eq. (128). Note that
Eq. (130) results from a cancellation of two integrals, cor-
responding to two terms in the square brackets of Eq. (125),
determined by vastly different momenta: one determined by
all k < kFσ and the other determined by |k| − kFσ ∼ T/vFσ .
Note also that, since �c

σ = −�c
σ̄ is antisymmetric in σ , the

vanishing of 〈uσ 〉σ is required by the relation (94) from which
〈�c

σ 〉σ → 〈�c
σ̄ 〉σ̄ for � → 0 at order O[1/D(3)] for D(3) → 0.

To ensure the cancellation (130), it is important to use the
exact (T dependent) compressibility (∂n/∂μ)σ [Eq. (81)] in
Eq. (125), i.e., not to substitute 1/πvFσ for it. The term vσ

should be retained in Eq. (128), written in terms of both u1 and
u2, at order O(�2); however, from the relation Mc

σ = −Mc
σ̄ ,

Eq. (128) can be rewritten, after the cancellation (130), as

S 	 e2T

32πn2

1

D(3)

×
∫

dk[nσ̄ (1 − tanhσ ) − nσ (1 − tanhσ̄ )]uσ , (131)

with the term vσ in the sum uσ + vσ being in Eq. (131) beyond
the accuracy at order O(�2) for S. Substituting Eq. (125)
in Eq. (131), we obtain, at order O[�2/D(3)] (and arbitrary
T/εF ),

S 	 e2T

64πn2

�2

D(3)

∂n

∂μ
(2πmT )1/2

×
[

∂n

∂μ
eεF /T − n2

(
2π

mT 3

)1/2
]

(132)

(where we dropped the index σ everywhere), which for T �
εF reduces to

S 	 e2

128

(
mT 3

2π

)1/2(
�

εF

)2 1

D(3)
eεF /T . (133)

To obtain the broadening of the peak in ρD as a function
of � in the limit of small D(3), we add to S from Eq. (133),
calculated at order O[�2/D(3)], the contribution S(2) of two-
particle scattering for identical wires, obtainable by putting
λ = μ = 0 in Eqs. (86) and (87) and substituting the result in
Eqs. (110) and (113), at � = 0 (see also Appendix C). For
T � εF , S(2) reads

S(2) 	 e2

64

(
mT 3

π

)1/2
1

D(2)
e2εF /T . (134)

For the dependence of ρD on � we thus obtain a Lorentzian
(Fig. 1):

ρD(�) 	 ρD(0)
1

1 + (�/)2
, (135)

where

ρD(0) = 16D(2)

e2nT

(
2εF

πT

)1/2

e−2εF /T (136)

and

 = εF

[
21/2D(3)

D(2)
eεF /T

]1/2

. (137)

As a function of the density mismatch �n = n1 − n2, given
by 2m�/π2(n1 + n2) for T = 0, with �n = �/πvF in the
limit of small �, the drag resistivity is a Lorentzian ρD(�n) 	
ρD(0)/[1 + (�n/n)2] with

n = n

[ D(3)

21/2D(2)
eεF /T

]1/2

. (138)

The conditions of applicability for the derivation of
Eq. (133) for S at order O[�2/D(3)] were (i) |�| � T ,
(ii)  � |�|, and (iii) D(3) � D(2)e−εF /T . The first condition
was used in the expansion in powers of � in Eqs. (125)–(127).
The second and third ones were used to justify the neglect of
�b,c compared to �b,c and the omitting of the term D(3)

σ D(3)
σ̄ in

D, respectively. For the precise form of the third condition,
it is important that the first term in the square brackets
in Eq. (132) (the main one for T � εF ) is determined by
momenta |k| � (mT )1/2 in the integral (131). For the body of
the peak of ρD(�) to be described by Eqs. (135)–(137), the
condition  � T must be fulfilled, i.e.,

D(3)/D(2) � (T/εF )2e−εF /T , (139)

which means that the condition  � T for T � εF is
more stringent than D(3) � D(2)e−εF /T . We conclude that the
broadening of the peak of ρD as D(3) increases is described
by Eqs. (135)–(137) for D(3) satisfying Eq. (139); i.e., if this
condition is fulfilled, the shape of the peak is different from the
Lorentzian only far in the tails for |�| � T . Note that, while
the peak in Eq. (135) becomes broader with increasing D(3)

for given D(2), its amplitude remains almost constant.
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C. Strong intrawire equilibration

Equilibration processes mediated by triple collisions are
solely responsible for the broadening of the ultranarrow
resonance in Eqs. (135)–(137), with the resonance width
 ∝ [D(3)]1/2 (Fig. 1). When  becomes, with increasing D(3),
of the order of T , the dissipation processes that give a nonzero
ρD at � �= 0 are no longer “bottlenecked” by triple collisions.
Let us now turn to this regime of a strong (in the sense
specified above) equilibration induced by triple collisions.
For D(3)/D(2) � (T/εF )2e−εF /T [the condition opposite to
Eq. (139)], the term �c

σ can be neglected in S. Specifically,
for D(3)/D(2) � eεF /T (T/εF )3/2 (this condition means [9] that
triple collisions are not yet capable of establishing the fully
equilibrated drift regime), the main contribution to S is given
by �c

σ , the last term in the square brackets in Eq. (120). For
|�| � εF , we have

S 	 e2T

64πn

∫
dk
[
(1 − tanhσ )�c

σ + (1 − tanhσ̄ )�c
σ̄

]
. (140)

For D(3)/D(2) � e−εF /T , the term in D quadratic in D(3) can
still be neglected, and �c

σ can be written as

�c
σ 	 4n

D(2)

1 − tanhσ

ζ 2
σ

(
ζ 2
σ + ζ 2

σ̄

) . (141)

More precisely, �c
σ is given by Eq. (141) in the limit of

small D(3) for not too large |k| above kF , namely for |k| <

kF ln1/2[D(2)/D(3)]. Similar to Ref. [9], we assume that the
contribution of |k| � kF to S for D(3) → 0, which is cut off by
higher-order gradient terms in the collision integral that were
neglected in the Fokker-Planck approximation, is smaller than
the contribution of k on and below the Fermi surface. The
integral (140) is then determined by |k| ∼ (mT )1/2, so that
1 − tanhσ can be substituted with 2 in Eqs. (140) and (141),
with

�c
σ + �c

σ̄ 	 8n

D(2)

1

ζ 2
σ ζ 2

σ̄

, (142)

and we obtain

ρD 	 16D(2)

e2

( π

mT 3

)1/2
e−(εF1+εF2)/T . (143)

Note that ρD in Eq. (143) does not depend on D(3), although
the drag regime described by Eq. (143) is only possible for
� �= 0 because of sufficiently strong three-particle scattering.
The activation gap in Eq. (143) is given by the sum of the
Fermi energies, so that ρD can both increase and decrease
with varying asymmetry, depending on precisely in what way
the wires are unbalanced. In particular, if one of the Fermi
energies is increased and the other decreased in such a way
that their sum remains constant, ρD in the limit |�| � εFσ (but
for arbitrary |�|/T ) stays constant as well. If, however, one
of the Fermi energies increases or decreases while the other
remains unchanged, ρD decreases or increases, respectively.

Using Eq. (140) in the plateau regime (see Eq. (3.68) in
Ref. [9]), for e−εF /T � D(3)/D(2) � eεF /T (T/εF )3/2, with

�c
σ 	 2n

D(3)

1 − tanhσ

ζ 2
σ

, (144)

FIG. 2. Schematic dependence of the drag resistivity ρD for two
quantum wires on the chemical potential mismatch � (in units of the
temperature T ) for the case of strong intrawire equilibration [such
that the ultranarrow resonance peak with the width  � T (Fig. 1)
is completely washed out]. The curves differ in the strength of three-
particle scattering (for fixed strength of two-particle scattering) which
increases from bottom to top [with the shape of the curves varying
between those given by Eq. (145) for the lower curve and Eq. (153)
for the upper]. The curves in the main part of the figure are for a
symmetric splitting of the Fermi levels (with εF1 + εF2 held constant).
Those in the inset are for an asymmetric splitting with εF2 kept fixed.
The lower and upper curves in the inset correspond to Eqs. (145) and
(153), respectively.

yields

ρD 	 8D(3)

e2

( π

2mT 3

)1/2 1

eεF1/T + eεF2/T

= 4D(3)

e2

( π

2mT 3

)1/2 e−(εF1+εF2)/2T

cosh(�/2T )
. (145)

The strength of three-particle scattering D(3) “reemerges”
in the expression (145) for ρD [cf. Eqs. (135)–(137) and
(143)]. Similarly to Eq. (143), the integral (140) with �c

σ

from Eq. (144) is determined by |k| ∼ (mT )1/2. In contrast to
Eq. (143), however, ρD changes (decreases) if the Fermi levels
are split in a symmetric way (with εF1 + εF2 being constant);
see Fig. 2. Moreover, the gap in the Arrhenius law in Eq. (145)
is given by max{εF1,εF2}, so that the gap does not change if
one of the Fermi energies decreases (inset in Fig. 2), which is
also in contrast to Eq. (143).

For D(3)/D(2) � eεF /T (T/εF )3/2, the main contribution to
S comes from the term in Eq. (120) proportional to 〈�c

σ 〉σ :

S 	 − e2T

64πn

×
∫

dk

[
(1 − tanhσ )

〈�c
σ 〉σ�σ

〈�σ 〉σ − 1/2
+ (σ ↔ σ̄ )

]
, (146)

where

�σ = 1

2
+ �b

σ + �b
σ = λ − μ

2D(3)

D(2)
(
ζ 2
σ − ζ 2

σ̄

)+ 2D(3)

D(2)
(
ζ 2
σ + ζ 2

σ̄

)+ 2D(3)
(147)
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with ∫
dk (1 − tanhσ )�σ 	 2πn

λ − μ

D(3)
, (148)

〈�σ 〉σ 	 λ − μ

2D(3)

[
1 − D(2)

D(3)

vF

8T

∫
dk ζ 2

σ ζ 2
σ̄

]
, (149)

and〈
�c

σ

〉
σ

= 4nσ

kT σ

∫
dk

1 − tanhσ

D(2)
(
ζ 2
σ + ζ 2

σ̄

)+ 2D(3)
	 2n

D(3)

εF

T
.

(150)
The integral in Eq. (149) is given for T ,|�| � εF by

vF

8T

∫
dk ζ 2

σ ζ 2
σ̄ 	 J

(
�

2T

)
, (151)

where

J (x) = 2

sinh2 x
(x coth x − 1). (152)

Note that the integrals in the numerator of S, namely those in
Eqs. (148) and (150), are determined by all k below the Fermi
surface(s), whereas the integral in the denominator [Eq. (149)]
is determined by k in the vicinity of the Fermi surface(s).

For D(3)/D(2) � eεF /T (T/εF )3/2, we thus obtain from
Eq. (146)

ρD 	 1

e2nεF

[
D(2)J

(
�

2T

)
+ 2μ

]
(153)

[where we also used D(3) = λ + μ � μ; i.e., three-particle
scattering inside each of the wires is assumed to be much
stronger than that between the wires, which is generically
consistent with the condition D(3) � D(2)]. The first and
second terms in Eq. (153) can be viewed as the contributions of
two- and three-particle scattering to ρD, respectively. However,
it is important to emphasize that the contribution of two-
particle scattering has this form, corresponding to the drift
regime, only for sufficiently strong three-particle scattering
[40] (specifically, for sufficiently strong equilibration of
electrons in each of the wires among themselves).

For � = 0, Eq. (153) [with J (0) = 2/3] reproduces the
result of Ref. [9] for the drift regime, with the two-particle term
giving the main contribution to ρD. Splitting of the Fermi levels
is thus seen to strongly suppress drag in Eq. (153) by reducing
(exponentially in |�|/T ) the contribution of two-particle
scattering (Fig. 2), in agreement with the results of Refs. [18]
and [22]. As |�| increases, the exponential suppression of ρD

saturates at the contribution of three-particle scattering,

ρD 	 2μ/e2nεF . (154)

A similar behavior for ρD(�) in the drift regime was
suggested in Refs. [18] and [22] (with a parametrically larger
ρD in the latter; see Ref. [22] for more detail) as a result
of two-particle interactions inside the wires being taken into
account alongside with two-particle interactions between the
wires. More specifically, the saturation of the exponential
falloff of ρD(�) was associated in Refs. [18] and [22] with the
existence of a power-law tail of the dynamic structure factor
for a given wire, produced by intrawire interactions, leading
to a power-law (in �) overlap between the dynamic structure

factors for two wires for sufficiently large |�|. The resulting
contribution to ρD, which avoids the exponential suppression
with increasing |�|/T , is of fourth order in interaction
∼O(V 2

σσV 2
σ σ̄ ) (two powers of the intrawire interaction Vσσ

and two powers of the interwire interaction Vσσ̄ ). As was
pointed out in Ref. [22], a similar contribution to ρD exists
also at order O(V 4

σ σ̄ ). The fourth order in interaction, with
at least two powers of the interwire interaction, is precisely
the order at which three-particle scattering contributes to μ in
Eq. (154) There is, however, an important difference: when
solving the kinetic equation, we obtain ρD of fourth order
in interaction in Eq. (154) as associated with three-particle
scattering, rather than with independent two-particle scatter-
ing events renormalized (“dressed”) by virtual processes in
Refs. [18] and [22].

IX. SUMMARY

We have discussed Coulomb drag between nonidentical
ballistic quantum wires within the kinetic-equation formal-
ism. The conventional theory of Coulomb drag, implicitly
presupposing infinitely fast intrawire equilibration, has proven
to be totally inadequate to describe the behavior of the dc
drag resistivity ρD as a function of the chemical potential
difference between the wires �. One “unexpected” feature of
Coulomb drag in one dimension that we have demonstrated
in this paper is the exact vanishing of ρD at any nonzero �,
for Coulomb drag mediated by two-particle scattering, even
though ρD is finite at � = 0 [Eq. (28)]. Further, we have shown
that the resonance in ρD at � = 0 is broadened by processes
of three-particle scattering [Eq. (135)], which emphasizes the
importance of multiparticle scattering for transport in one
dimension (for a typical experimental situation in the Coulomb
drag problem, the resonance is likely to be washed out by triple
collisions). We have also calculated ρD(�) for the Coulomb
drag regimes in which the resonance at � = 0 is completely
destroyed by three-particle scattering. In a wide range of
the parameters of the problem, ρD shows then an activation
behavior with the gap given by the largest between the Fermi
energies in two wires [Eq. (145)].
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APPENDIX A: FOKKER-PLANCK COLLISION INTEGRAL

The current Jσ [Eq. (49)], corresponding to the collision
integrals (3) and (39)–(41), is a sum of two- [J (2)

σ ] and three-
particle contributions [J (3a),(3b),(3c)

σ ]. In the Fokker-Planck
limit, i.e., for T � vFσ /a, these are given by

J (2)
σ (k) 	 D(2)(k) 1

2∂k[gσ (k) − gσ̄ (k)], (A1)

J (3a),(3b),(3c)
σ (k) 	 D(3a),(3b),(3c)

σ (k) ∂kgσ (k) − C(3a),(3b),(3c)
σ (k),

(A2)
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where D(2)(k) = D(2)ζ 2
σ (k)ζ 2

σ̄ (k) [with D(2) from Eq. (16)],

D(3a),(3b),(3c)
σ (k) = 1

2
ξa,b,c

∫
− dq

2π
q2P (3a),(3b),(3c)

σ (k,k + q), (A3)

C(3a),(3b),(3c)
σ (k) = ξa,b,c

∫
− dq

2π
q P̄ (3a),(3b),(3c)

σ (k,k + q) (A4)

with ξa,b,c = 3 ,1 ,2, and

P (3a),(3b),(3c)
σ (1,1′) = 1

4
ηa,b,c L

∑
232′3′

W (3a),(3b),(3c)
σ (1′,2′,3′|1,2,3)δ3(. . .), (A5)

P̄ (3a)
σ (1,1′) = 1

4
ηa L

∑
232′3′

W (3a)
σ (1′,2′,3′|1,2,3)δ3(. . .)[gσ (2) − gσ (2′)], (A6)

P̄ (3b)
σ (1,1′) = 1

4
ηb L

∑
232′3′

W (3b)
σ (1′,2′,3′|1,2,3)δ3(. . .)[gσ̄ (2) − gσ̄ (2′)], (A7)

P̄ (3c)
σ (1,1′) = 1

4
ηc L

∑
232′3′

W (3c)
σ (1′,2′,3′|1,2,3) δ3(. . .)

1

2
[gσ (2) − gσ (2′) + gσ̄ (3) − gσ̄ (3′)]. (A8)

If � �= 0, the diffusion coefficients D(3a),(3b),(3c)
σ (k) and the

integral terms C(3a),(3b),(3c)
σ (k) in the current induced by three-

particle scattering depend on σ , whereas the diffusion coeffi-
cient D(2)(k) for two-particle scattering does not. The dash in

∫−
in Eqs. (A3) and (A4) means that the integration is understood
as performed only over |q| � 1/a � T/vF1,T /vF2, with the
contribution of exchange processes with |q| � 1/a being
accounted for by the factors ξa,b,c (in Ref. [9], this constraint
was implicitly understood but not marked in the formulas).

As a function of q for given k, P (3a)
σ (k,k + q) shows three

peaks centered at q = 0 and ±kFσ − k. The characteristic
width of the peak at q = 0 is 1/a, whereas that of two other
peaks is T/vFσ � 1/a. In the Fokker-Planck limit, the weight
of all three peaks is the same, hence ξa = 3. In channel (c),
too, there are three peaks in P (3c)

σ (k,k + q), centered at the
same points; however, the weight of each of the peaks around
q = ±kFσ − k is half that of the peak at q = 0, i.e., ξc = 2.
In channel (b), there is a single peak at q = 0, so that ξb = 1.
The separation of the contribution of the sharp peak at q = 0
from that of the broad exchange-induced [in channels (a)
and (c)] “satellite” peaks is parametrically accurate in the
Fokker-Planck limit, independently of k (including the case
of ||k| − kFσ | � T/vFσ , where the peak at q = 0 overlaps
with one of the peaks at q = ±k − kFσ ).

In Eq. (A4), the differences gσ (2) − gσ (2′) in P̄ (3a)
σ , gσ̄ (2) −

gσ̄ (2′) in P̄ (3b)
σ , and gσ (2) − gσ (2′) + gσ̄ (3) − gσ̄ (3′) in P̄ (3c)

σ

should also be understood as expanded to linear order in the
argument (keeping higher-order terms is beyond the accuracy
of the Fokker-Planck approximation):

P̄ (3a)
σ (1,1′) → 1

4
ηaμa L

∑
232′3′

d W (3a)
σ (1′,2′,3′|1,2,3)δ3(. . .)

× (k2 − k2′)∂k2gσ (2), etc., (A9)

where the sign d in
∑d means that the summation goes over

direct processes only, i.e., those with all three transferred mo-
menta |k1 − k1′ |,|k2 − k2′ |,|k3 − k3′ | � 1/a. The contribution
of exchange processes with |k2 − k2′ | � 1/a to P̄ (3a)

σ (1,1′)
in Eq. (A9) and to a similar expression for P̄ (3b)

σ (1,1′) is
accounted for by the factors μa = 2 and μb = 2, respectively.

No additional factor on top of ξc appears in channel (c), i.e.,
μc = 1. Altogether, one can assign four combinatorial factors
η,ξ,μ,ν to each of the channels as follows:

η ξ μ ν

a 1/12 3 2 2
b 1/4 1 2 2
c 1/2 2 1 1

, (A10)

with ηξμν = 1. The factors 1/ηa = 2!3!, 1/ηb = 2!2!, and
1/ηc = 2! give, for a fixed momentum of one electron, the
total number of permutations, allowed by exchange scattering,
over initial states of two other electrons and final states of
all three electrons. The factors ξa,b,c select the contribution
of processes with small momentum transfers |k1 − k1′ | � 1/a

for the diffusing electron (including the exchange processes
with large momentum transfers for two other electrons). The
factors ξaμa , ξbμb, ξcμc select the contribution of processes
with small momentum transfers for all three electrons |k1 −
k1′ |,|k2 − k2′ |,|k3 − k3′ | � 1/a. The exchange processes thus
lead to multiplication of the contribution of the direct processes
by factors of 6, 2, 2 in channels (a), (b), (c), respectively. In
channels (a) and (b), the factors νa = 1/ηaξaμa = 2 and νb =
1/ηbξbμb = 2 come from the summation over identical direct
scattering processes in which only the labeling is changed
as (2,2′) ↔ (3,3′) (with exchange processes accounted for
by the factors ξa,b and μa,b). For D(3a),(3b),(3c)

σ (k1) and for
C(3a),(3b),(3c)

σ (k1) with P̄ (3a),(3b),(3c)
σ (1,1′) from Eq. (A9) we thus

obtain Eqs. (62)–(65).

APPENDIX B: PARTIAL CONSERVATION LAWS

Apart from the momentum conservation law Ṗσ + Ṗσ̄ = 0,
used in the derivation of Eq. (53) for arbitrary Ṗσ , there are
also partial conservation laws for three-particle scattering:

Ṗ (3a)
σ = 0, (B1)

Ṗ (3b)
σ + Ṗ

(3c)
σ̄ = 0, (B2)

where Ṗ (3a),(3b),(3c)
σ are the contributions of processes (3a),

(3b), (3c) to Ṗσ , and the conservation law for two-particle
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scattering, J (2)
σ (k) + J

(2)
σ̄ (k) = 0, which is satisfied “locally.”

Equation (B2) fixes an “integral” constraint on the terms in the
collision integral that describe processes (b) and (c) (a similar
constraint on the relation between the two terms is imposed by
energy conservation). Microscopically, Eq. (B2) relies on the
relation between the collision kernels (43) and (44):

W (3b)
σ (1′,2′,3′|1,2,3) = W

(3c)
σ̄ (3′,2′,1′|3,2,1), (B3)

valid for arbitrary thermal factors ζσ , i.e., for arbitrary �,
which, in turn, relies on the relation between the scattering
amplitudes

Airr
3b,σ (1′,2′,3′|1,2,3) = Airr

3c,σ̄ (3′,2′,1′|3,2,1). (B4)

More specifically, the equation

Ṗ (3b)
σ + Ṗ

(3c)
σ̄ = − 1

4L

∑
1231′2′3′

k1δ3(. . .)
{
ηbW

(3b)
σ (1′,2′,3′|1,2,3)

[
gσ (1′) + gσ̄ (2′) + gσ̄ (3′) − gσ (1) − gσ̄ (2) − gσ̄ (3)

]
+ ηc W

(3c)
σ̄ (1′,2′,3′|1,2,3)[gσ̄ (1′) + gσ̄ (2′) + gσ (3′) − gσ̄ (1) − gσ̄ (2) − gσ (3)]

}
(B5)

is represented, using Eq. (B3) and substituting ηb = 1/4 and ηc = 1/2 [Eq. (A10)], as

Ṗ (3b)
σ + Ṗ

(3c)
σ̄ = − 1

16L

∑
1231′2′3′

(k1 + 2k3)W (3b)
σ (1′,2′,3′|1,2,3)δ3(. . .)[gσ (1′) + gσ̄ (2′) + gσ̄ (3′) − gσ (1) − gσ̄ (2) − gσ̄ (3)], (B6)

and then, using W (3b)
σ (1′,2′,3′|1,2,3) = W (3b)

σ (1′,3′,2′|1,3,2), as

Ṗ (3b)
σ + Ṗ

(3c)
σ̄ = − 1

16L

∑
1231′2′3′

(k1 + k2 + k3)W (3b)
σ (1′,2′,3′|1,2,3)δ3(. . .)[gσ (1′) + gσ̄ (2′) + gσ̄ (3′) − gσ (1) − gσ̄ (2) − gσ̄ (3)],

(B7)

which, in turn, using W (3b)
σ (1′,2′,3′|1,2,3) = W (3b)

σ (1,2,3|1′,2′,3′), leads to the emergence of the total momentum difference
k1 + k2 + k3 − k1′ − k2′ − k3′ = 0 as a factor in the integrand, which proves Eq. (B2). Equation (B1) is proven in a similar way.

In the Fokker-Planck limit, Eqs. (B1) and (B2) are also valid exactly. In particular, Ṗ (3a)
σ is given, in this limit, by

Ṗ (3a)
σ = ξa

∫
dk

2π

∫
− dq

2π
q

[
1

2
q P (3a)

σ (k,k + q)∂kgσ (k) − P̄ (3a)
σ (k,k + q)

]
(B8)

with P̄ (3a)
σ from Eq. (A9), i.e., by

Ṗ (3a)
σ = 1

8νaL

∑
1231′2′3′

d (k1 − k1′)W (3a)
σ (1′,2′,3′|1,2,3)δ3(. . .)

[
(k1 − k1′)∂k1gσ (1) + 2(k2 − k2′)∂k2gσ (2)

]
, (B9)

where ξa = 3 and νa = 2 [Eq. (A10)]. Using W (3a)(1′,2′,3′|1,2,3) = W (3a)(2′,1′,3′|2,1,3), Eq. (B9) is rewritten as

Ṗ (3a)
σ = 1

8νaL

∑
1231′2′3′

d (k1 − k1′)W (3a)
σ (1′,2′,3′|1,2,3)δ3(. . .)[(k1 − k1′ ) + 2(k2 − k2′ )]∂k1gσ (1). (B10)

Using W (3a)(1′,2′,3′|1,2,3) = W (3a)(1′,3′,2′|1,3,2), one of the two terms k2 − k2′ in the square brackets in Eq. (B10) can be
changed to k3 − k3′ ; as a result, the total momentum difference k1 + k2 + k3 − k1′ − k2′ − k3′ = 0 is again obtained as a factor in
the integrand. Note that the integral term (A4) in the Fokker-Planck current in momentum space (A2) is required for momentum
conservation. If it were not for the integral term, Ṗ (3a)

σ would be given by
∫

(dk/2π )D(3a)
σ (k)∂kgσ (k), which is generically nonzero.

In fact, it is the contribution to Ṗ (3a)
σ in Eq. (B10) that comes from the integral term [which produces the term in the integrand of

Eq. (B10) that is proportional to (k1 − k1′)(k2 − k2′ )] that cancels the contribution to Ṗ (3a)
σ of the diffusion term [the corresponding

term in the integrand is proportional to (k1 − k1′)2].
Similarly to Eq. (B9) for channel (a), the conservation law (B2), linking channels (b) and (c), is represented in the Fokker-Planck

limit as

Ṗ (3b)
σ + Ṗ

(3c)
σ̄ = 1

8L

∑
1231′2′3′

d (k1 − k1′)δ3(. . .)

{
1

νb

W (3b)
σ (1′,2′,3′|1,2,3)

[
(k1 − k1′)∂k1gσ (1) + 2(k2 − k2′)∂k2gσ̄ (2)

]

+ 1

νc

W
(3c)
σ̄ (1′,2′,3′|1,2,3)

[
(k1 − k1′)∂k1gσ̄ (1) + (k2 − k2′ )∂k2gσ̄ (2) + (k3 − k3′)∂k3gσ (3)

]}
, (B11)
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where νb = 2 and νc = 1 [Eq. (A10)]. Substituting Eq. (B3) in the term describing channel (c), one obtains

Ṗ (3b)
σ + Ṗ

(3c)
σ̄ = 1

16L

∑
1231′2′3′

d W (3b)
σ (1′,2′,3′|1,2,3)δ3(. . .)

{
(k1 − k1′)

[
(k1 − k1′)∂k1gσ (1) + 2(k2 − k2′)∂k2gσ̄ (2)

]
+ 2(k3 − k3′ )

[
(k1 − k1′)∂k1gσ (1) + (k2 − k2′)∂k2gσ̄ (2) + (k3 − k3′ )∂k3gσ̄ (3)

]}
(B12)

(the overall factor of 2 in the last line comes from the ratio
νb/νc). Using W (3b)

σ (1′,2′,3′|1,2,3) = W (3b)
σ (1′,3′,2′|1,3,2),

one can change one of two terms (k2 − k2′ )∂k2gσ̄ (2) in the
first square brackets to (k3 − k3′)∂k3gσ̄ (3) and change the
factor 2(k3 − k3′) in front of the second square brackets
to k2 − k2′ + k3 − k3′ . The result is the total momentum
difference k1 + k2 + k3 − k1′ − k2′ − k3′ = 0 emerging as a
factor in the integrand.

APPENDIX C: LIMIT OF � → 0

In the limit � → 0, the coefficients aσ and bσ from
Eqs. (85) and (86) do not depend on σ and are related by
aσ = −bσ , so that the determinant of Eq. (84), aσ aσ̄ − bσ bσ̄ ,
vanishes. The solution for 〈∂kgσ 〉 is not infinite because
cσ = −cσ̄ at � = 0. Specifically, if � = 0, Eq. (84) gives
for the average of the difference gσ − gσ̄ :

〈∂k(gσ − gσ̄ )〉 = e

2
(Eσ − Eσ̄ )

×
〈

(1 − tanh)ζ−2

D(2)ζ 2 + D(3)

〉〈 D(2)ζ 2 + 2μ

D(2)ζ 2 + D(3)

〉−1

(C1)

with D(3) = λ + μ, where we omitted the sign σ in 〈. . .〉σ ,
λσ , and μσ [9]. Importantly, Eq. (72) for � = 0 gives
identically ∂k(gσ + gσ̄ ) = 〈∂k(gσ + gσ̄ )〉. This reflects the fact
that Eq. (72) has a homogeneous solution for gσ of the form
�

reg
1 k with �

reg
1 independent of k (the constant term in gσ is

not allowed by parity, or the particle number conservation for
that matter) and σ . However, �reg

1 = 0 for the regular at ω → 0
solution, so that ∂kgσ = −∂kgσ̄ for � = 0. Using this property
in Eq. (C1) and substituting the latter in Eq. (72), the solution
for ∂kgσ at � = 0 is written as [38]

∂kgσ = e

4
(Eσ − Eσ̄ )

T1 − (λ − μ)(T1〈T2〉 − 〈T1〉T2)

1 − (λ − μ)〈T2〉 , (C2)

where T1 = (1 − tanh)T2/ζ
2 and T2 = 1/[D(2)ζ 2 + D(3)].

APPENDIX D: CHARACTERISTIC MOMENTA FOR Cσ

The functions D(3a),(3b),(3c)
σ (k1) on the one hand and

C(3a),(3b),(3c)
σ (k1) on the other are generically determined by

different combinations of the characteristic scales of k2 and
k3. Namely, D(3a),(3b),(3c)

σ (k1) are determined by k2 and k3 close
to the Fermi surface(s), but the same is not generically true for
C(3a),(3b),(3c)

σ (k1). What k2 and k3 give the main contribution
to C(3a),(3b),(3c)

σ (k1) is determined by the k dependence of
the product ζ 2

σ ∂kgσ . This dependence changes dramatically
with varying strength of intrawire equilibration resulting from
three-particle scattering. In the limit of weak equilibration,
the product ζ 2

σ ∂kgσ is sharply peaked at the bottom(s) of the
spectrum, whereas in the limit of strong equilibration, it is

sharply peaked on the Fermi surface(s) [see Eq. (D11) below].
This simple picture is a hallmark of the clear distinction
between equilibration in the stationary or moving (with the
drift velocity) frame [9]. However, in the extended crossover
between these two limiting cases, ∂kgσ shows rather complex
behavior. The purpose of Appendix D is to concisely describe
this extended crossover. For clarity, and since the essential
features of the transfer of the main weight of ζ 2

σ ∂kgσ from the
bottom(s) of the spectrum to the Fermi surface(s) are similar
for arbitrary �, we describe the steps in the extended crossover
for � = 0 (following the framework developed in Ref. [9]).
The most important difference brought about by nonzero � is
the appearance of a k-independent term in ζ 2

σ ∂kgσ in regime I
below, proportional to �/D(3).

There are six different regimes, depending on the strength
of three-particle equilibration, for the behavior of ζ 2∂kgσ (we
drop the sign σ in ζσ ) as a function of ε for ε < εF . In the limit
of weak three-particle scattering, ζ 2∂kgσ decreases as e−ε/T

with increasing ε up to εF :

(I) ζ 2∂kgσ ∝ e−ε/T , ε < εF ,

D(3)eεF /T , Die
εF /T (εF /T )1/2 � D(2). (D1)

The condition of applicability of Eq. (D1), with Di =
D(3a) − D(3b), is written under the assumption [9] that the
contribution to 〈∂kgσ 〉 of the divergence of the average on the
upper limit of the integration over |k| � kF for two-particle
scattering (peculiar to the Fokker-Planck approximation)
can be neglected. The divergence is cured either by three-
particle scattering or by going beyond the Fokker-Planck
expansion of the collision integral. In the former case, the
additional condition is ln[D(2)/D(3)] � e2εF /T . The sign of
Di is generically positive, which is assumed below. Let us
also assume that [Di/D(3)](εF /T )1/2 � 1, which is satisfied
unless the distance between the wires is very small. Then,
as three-particle scattering becomes stronger, there appears a
plateau in the dependence of ζ 2∂kgσ on ε right below εF :

(II) ζ 2∂kgσ ∝
{
e−ε/T , ε < εc1,

const(ε), εc1 < ε < εF ,

D(3)eεF /T � D(2) � Die
εF /T (εF /T )1/2, (D2)

where

εc1 = εF − T ln

[ Di

D(2)
eεF /T

(εF

T

)1/2
]
. (D3)

The width of the plateau in Eq. (D2) grows logarithmically
with increasing strength of three-particle scattering. The
average 〈∂kgσ 〉 in regimes I and II is determined by ε � T .
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For D(3)eεF /T � D(2), we have

(III) ζ 2∂kgσ ∝
⎧⎨
⎩

const(ε), ε < εc2,

e−ε/T , εc2 < ε < εc3,

const(ε), εc3 < ε < εF ,

(D4)

Di

[
εF

T
ln

D(3)eεF /T

D(2)

]1/2

� D(2) � D(3)eεF /T ,

where

εc2 = T ln
D(3)eεF /T

D(2)
= εF − T ln

D(2)

D(3)
, (D5)

εc3 = εF − T

2
ln

{[ Di

D(3)

]2
εF

T
ln

D(3)eεF /T

D(2)

}
. (D6)

In regime III, 〈∂kgσ 〉 is determined by ε < εc2, with εc2 � T .
Both plateaus in ζ 2∂kg in Eq. (D4), at the bottom of the
spectrum and at the Fermi energy, become wider as D(3)/D(2)

is increased [e.g., for D(3) mainly determined by intrawire
scattering, which corresponds to Di/D(3) 	 1] and eventually
they meet [the left condition of applicability of Eq. (D4) means
that εc3 > εc2]. Note that, if one views D(2) as an independent
variable, εc2 is a much stronger function of D(2) than εc3 [the
same is true with respect to D(3) for Di/D(3) 	 1]. For this
reason, the energy at which the step between the plateaus
disappears (so that the dependence on ε in the entire interval
0 < ε < εF is leveled off), ε∗ 	 εF − T ln[DiεF /D(3)T ], is
close to the Fermi energy: T � εF − ε∗ � εF . For stronger
three-particle scattering, the monotonic decay of ζ 2∂kgσ with
increasing ε in regimes (I), (II), and (III) changes to a
monotonic growth and the step reemerges with an opposite
sign. Specifically,

(IV) ζ 2∂kgσ ∝
⎧⎨
⎩

const(ε), ε < εc3,

eε/T , εc3 < ε < εc2,

const(ε), εc2 < ε < εF ,

D(3) � D(2) � Di

[
εF

T
ln

D(3)eεF /T

D(2)

]1/2

. (D7)

In regime IV, the contribution to 〈∂kgσ 〉 of electrons on the
wide and low plateau (ε < εc3) is much larger than that of
electrons on the narrow and high plateau at the Fermi energy.

For D(3) � D(2), the plateau at the Fermi energy disappears:

(V) ζ 2∂kgσ ∝
{

const(ε), ε < εc4,

eε/T , εc4 < ε < εF ,

D(3)e−εF /T εF /T � D(2) � D(3), (D8)

where

εc4 = εF − T ln
D(3)εF

D(2)T
. (D9)

In regime V, 〈∂kgσ 〉 is determined by |ε − εF | ∼ T ; specifi-
cally, the contribution to 〈∂kgσ 〉 of electrons on the plateau is a
factor of [D(2)/D(3)](εc4/εF )1/2 smaller than that of electrons
in the spike at the Fermi energy. Note that while D(3) can
be larger than D(2) for sufficiently small |V12(0)|/|V11(0)|
(large distance between the wires), the difference D(3) − Di ∼
D(2)(T/εF )3(vF /T a)[V11(0)/vF ]2 is much smaller than D(2)

independently of the ratio D(3)/D(2). In regime V, therefore,
one can neglect the difference between D(3) and Di . The
plateau in Eq. (D8) becomes narrower as D(3)/D(2) increases
and shrinks to zero at D(3)/D(2) ∼ eεF /T T /εF [hence the left
condition of applicability of Eq. (D8)]. For larger D(3)/D(2),
the product ζ 2∂kgσ grows exponentially with increasing ε in
the whole range of ε between 0 and εF :

(VI) ζ 2∂kgσ ∝ eε/T , ε < εF ,

D(2) � D(3)e−εF /T εF /T . (D10)

Thus, the evolution of the behavior of ζ 2∂kgσ as a function of
ε between regimes I and VI results in the change of the sign
in the argument of the exponential function:

e−ε/T (I) ↔ eε/T (VI). (D11)

In regimes V and VI [i.e., for D(3) � D(2)], the main
contribution to 〈∂kgσ 〉 comes from electrons on the Fermi
level, with |ε − εF | � T and gσ being a smooth function of ε

on this scale. Therefore, in these regimes, the representation
of C(3a),(3b),(3c)

σ (k) in terms of the products of the diffusion co-
efficients D(3a),(3b),(3c)

σ (k) and the averages 〈∂kgσ 〉 is accurate.
Now, the integral term Cσ is only important in the calculation of
ρD forD(3) � D(2)eεF /T (T/εF )3/2, i.e., deep in regime V and in
regime VI. Hence, the use of the representation (82) is justified
in the calculation of ρD. It is also worth noting that, in regimes
I, II, and for εc2 � εF in regime III, the representation of Cσ

as a linear combination of 〈∂kgσ 〉 and 〈∂kgσ̄ 〉 is parametrically
accurate as well; however, the prefactors of 〈∂kgσ 〉 and 〈∂kgσ̄ 〉
in this combination are not given by the diffusion coefficients
D(3a),(3b),(3c)

σ , in contrast to the model of Sec. III. This is because
the model neglects the dependence of D(3)

σ on k.
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