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Valley-dependent band structure and valley polarization in periodically modulated graphene
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The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field
are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered
superlattice is composed of two different barriers, providing more degrees of freedom for engineering the
electronic structure. The electrons near the K and K ′ valleys are dominated by different effective superlattices.
It is found that the energy bands for both valleys are symmetric with respect to ky = −(AM + ξAS)/4 under
the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new
crossing points are found for K ′ valley. The degenerate miniband near the K valley splits into two subminibands
and produces a new band gap under the asymmetric superlattices. The velocity for the K ′ valley is greatly
renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the
velocity for the K ′ valley is zero. Especially, the miniband and band gap could be manipulated independently,
leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission
spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable
valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and
the voltage.
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I. INTRODUCTION

Graphene is the most exciting material in condensed
matter today, which has inspired people to search for other
two-dimensional Dirac materials [1], such as silicene and
germanene, in the same group. In pristine graphene, the
valence and conduction bands touch at two degenerate but
inequivalent valleys at the corner of the Brillouin zone.
The two valleys K and K ′ are related by the time-reversal
symmetry. The linear spectrum and the chiral nature give
rise to abundant new physics and potential applications in
nanoelectronic devices. However, a technological challenge in
application is the absence of band gap [2]. Therefore, several
methods have been proposed to modify the band structure and
control the transport of graphene, such as nanoribbons [3–5],
substrate strains [6–9], and magnetic fields [10–13].

One significant feature of graphene is the valley degree of
freedom, which can be used to store and process information,
referred to as valleytronics. Valleytronics aims to generate
and manipulate a valley-polarized current. In the pioneering
work by Beenakker et al. [14,15], the valley filter and valley
valve effect have been proposed in graphene nanoribbons with
a zigzag edge, originating from intervalley scattering by a
potential step. Subsequently, several improved approaches to
realize the valley filter were reported by utilizing the trigonal
warping effect of the energy dispersion [16,17], topological
line defects [18–21], and electrostatic gates in bilayer graphene
[22]. After the discovery of the strain-induced pseudomagnetic
fields which could lead to a shift of the K and K ′ valleys in
the opposite direction [23], the high polarization of the valley
is proposed by strain engineering [24–27]. The strain effect
in graphene opens up a new direction in manipulating the
electronic structure.
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On the other hand, the band structure of graphene
under a superlattice structure has attracted great interest
[11–13,28–35]. It is theoretically reported that the electric
superlattice could result in the strongly anisotropic renormal-
ization of the carrier group velocity owing to their chiral
nature, leading to the phenomenon of so-called supercol-
limation [28–30]. Extra Dirac points in the band structure
corresponding to the zero averaged wave number have been
experimentally observed [30–33]. On the contrary, in the
magnetic superlattice, new finite-energy Dirac points are
generated in the band structure and the Fermi velocity at zero-
energy Dirac points is isotropically renormalized [11–13].
On the aspect of controlling transport property in graphene,
the magnetic superlattice is more prominent due to Klein
tunneling. However, the electric and magnetic superlattices
alone cannot lift the valley degeneracy, and so works on the
valley dependence of band structure are very few.

Experimentally, various proposals to engineer strain in
graphene have been discussed [5,36,37]. A local strain can
be achieved by patterning grooves, creases, steps, or wells
in the substrate where graphene rests, so that different
regions of the substrate interact differently with the graphene
sheet, generating different strain profiles [7]. The strain can
give rise to a pseudomagnetic field which preserves time-
reversal symmetry, different from the real magnetic field. It
is demonstrated that the graphene can sustain elastic strain
up to 25% [38,39], paving an avenue for the development of
strain-engineered electronics. The evidence for strain-induced
spatial modulations in the local conductance of graphene on
SiO2 substrates has been already reported in experiment [40].
In addition, an inhomogeneous magnetic field on submicron
scales in ordinary two-dimensional electron gases has been
produced by ferromagnetic metal (FM) stripes [41,42] and
superconducting materials [43]. A magnetic barrier with the
strength up to 1 T and a length scale as low as 10 nm can
be realized using nanolithography or domain walls [44]. It
is believed that the same technologies can be used to create
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similar magnetic fields in graphene [12]. The anomalous
integer quantum Hall effect in graphene under a uniform
magnetic field has been observed [10], which is caused by the
n = 0 Landau level [45]. It is proved that the pseudomagnetic
fields could interfere with the magnetic fields in many ways
[46–49]. Recently, an unconventional splitting of Landau
levels in strained graphene is observed due to the valley-
polarized Landau level induced by the coexistence of the
pseudomagnetic fields and magnetic fields [48].

Motivated by this literature, we consider a magnetic-
strained superlattice in graphene, where the time-reversal
symmetry is broken and the valley degeneracy is lifted. As
a consequence, both energy band and transmission strongly
depend on the valley feature. Different from the typical
superlattices, the considered superlattice is composed of two
different barriers (magnetic and strained barriers), providing
more degrees of freedom when engineering the electrons, and
so the unusual electronic structure is available. In particular,
the miniband and band gap could be controlled independently.
The valley-dependent band structure is reflected in transport
property and provides a guide in enhancing the valley
polarization.

The paper is organized as follows. In Sec. II we present
the theoretical formalism and the dispersion relation. The
numerical results on band structure and transmission for
different valleys are shown in Secs. III and IV, respectively.
Finally, we draw conclusions in Sec. V.

II. THEORETICAL MODEL

Let us consider a one-dimensional magnetic-strained super-
lattice in graphene formed by a series of magnetic barriers and
strained barriers. Such a structure can be created by placing
the graphene layer on a heterogeneous substrate with periodic
steps and then depositing FM strips periodically on the top
of graphene separated by a thin dielectric layer. Figure 1(a)
shows a schematic illustration. The magnetization of the FM
stripe is parallel to the graphene sheet, and so the electrons
would feel a local magnetic field which can be expressed
by B(x) = B{z0a/(x2 + z2

0) − z0a/[(x − a)2 + z2
0]}ẑ, where

B = M0h/a. M0, h, and a are the magnetization, height, and
width of strips, respectively, and z0 is the distance between the
strips and the graphene sheet. A local strain can be induced
by a tension along the x direction applied on the structured
substrate with a step [7], and the deformation can be described
by a gauge vector potential AS with opposite direction at
the K and K ′ valleys. For the produced superlattice with
smooth magnetic and strained barriers, the length scale of
its spatial variation is much larger than the lattice constant
of graphene, and the intervalley scattering is weak and can
be neglected. In order to simplify the calculations and make
the analysis clearer, the produced magnetic field may be well
approximated as δ-function barriers B(x) = B[δ(x) − δ(x −
a)]ẑ. The corresponding vector potential in the Landau gauge is
AM (x) = BlB�(x)�(a − x)ŷ, where lB is the magnetic length
and �(x) is the Heaviside step function. For simplicity, AS

is taken as AS(x) = δt�[x − (a + b)]�[(a + b + c) − x]ŷ,
where δt is the strain-induced changes in the nearest-neighbor
hopping amplitude t [6,7]. Therefore, the total effective vector
potential fields for electrons near the K and K ′ valleys are

FIG. 1. (a) Schematic illustration of the magnetic-strained
graphene superlattices produced by a series of FM stripes and
substrate strains. (b) Theoretical model of the effective vector
potential field for electrons in the K valley. (c) The same as that
in (b) but for the K ′ valley. The length of one unit is L = a + 2b + c.

different, which could be theoretically modeled in Figs. 1(b)
and 1(c), respectively. As a result, the valley degeneracy is
expected to be lifted. Two units of such a structure are depicted
in Fig. 1, and the length of one unit is L = a + 2b + c. We
assume a short and wide magnetic-strained structure, i.e., its
length in the x direction is much smaller than its width in the
y direction, in which the edge effect could be neglected.

In the single-particle approximation, the electronic states at
low energy could be described by the massless Dirac equation,

[vF σ · (p + eAM + ξeAS)]� = E�, (1)

where vF is the Fermi velocity, σ = (σx,σy) is the Pauli
matrix, and p = (px,py) is the momentum operator. ξ = ±1
corresponds to the K and K ′ valleys, respectively. The
dimensionless units are introduced: lB = √

�c/eB0, E0 =
�vF /lB , B(x) → B0B(x), AM (x) → B0lBAM (x), �r → lB�r ,
k → k/lB , and E → E0E. For B0 = 0.1T , one has lB =
81 nm and E0 = 7 meV. For a given incident energy E and
transverse wave vector ky , the eigenstate in the j th region has
the form �j (x,y) = ψj (x)eikyy with

ψj (x) = GjHj

(
aj

bj

)
, (2)

where Gj=( 1 1
(qj + ikj )/E (−qj + ikj )/E), Hj (x)=(e

iqj x 0
0 e

−iqj x),

kj = ky + Aj , qj requires q2
j + k2

j = E2, and Aj is AM (or
ξAS) in the magnetic barriers (or strained barriers).

Based on the continuity condition of wave functions at the
interface x = xj between the j th and (j + 1)th regions, one

can get (aj+1
bj+1

) = Fj (aj

bj
), and Fj = H−1

j+1(xj )G−1
j+1GjHj (xj ).

Thus, the total transfer matrix for the system with N

regions can be written as F = FN−1 . . . Fj . . . F1. Then the
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transmission probability can be obtained from

TK,K ′ = 1 − |F21|2/|F22|2, (3)

and Fij is the matrix element of F . The valley-dependent
conductance at zero temperature can be written as

GK,K ′ (E) = G0

∫ π/2

−π/2
TK,K ′ (E,E sin θ ) cos θdθ, (4)

where θ is the incident angle with respect to the x direction,
G0 = 2e2ELy/(π�) is taken as the conductance unit, and Ly

is the sample size along the y direction. The valley polarization
is defined as

P = (GK − GK ′)/(GK + GK ′ ). (5)

The dispersion relation can be also calculated by the transfer
matrix method. Assuming (aI

bI
) and (aF

bF
) are the amplitudes of

the wave functions before and after a unit, they could be related
by transfer matrix: (

aF

bF

)
= M

(
aI

bI

)
, (6)

where M = H−1
2 (a + b + c)G−1

2 G3H3(a + b + c)H−1
3 (a +

b)G−1
3 G2H2(a + b)H−1

2 (a)G−1
2 G1H1(a)G−1

1 G2. Based on
the Bloch’s theorem, the states in the superlattices satisfy

G2H2(x)

(
aF

bF

)
= exp(ikxL)G2H2(x − L)

(
aI

bI

)
, (7)

and kx is the Bloch wave number. Submitting Eq. (6) into
Eq. (7) gives rise to

det[H2(L)M − exp(ikxL)] = 0. (8)

The solution of Eq. (8) gives the dispersion relation E(kx) near
the K and K ′ valleys, namely,

cos(kxL) = cos(2q2b) cos(q1a) cos(q3c) + k2
y + AMky − E2

q2q1
sin(2q2b) sin(q1a) cos(q3c) + k2

y + ξASky − E2

q2q3
sin(2q2b)

× cos(q1a) sin(q3c) + ξAMASE
2−[

q4
2−(AM+ξAS)q2

2ky+ξAMASk
2
y

]
cos(2q2b)

q2
2q1q3

sin(q1a) sin(q3c). (9)

For K valley under a symmetric superlattice, that is, AM = AS and a = c, the dispersion relation is governed a simpler
transcendental equation,

cos(kxL) = cos(q1a) cos(q2b) −
(
q2

1 + q2
2 + A2

M

)
2q1q2

sin(q1a) sin(q2b), (10)

and L = a + b here.

III. BAND STRUCTURE NEAR K AND K ′ VALLEYS

As seen from Eq. (9), the dispersion relation is invariant
with respect to kx → −kx and E → −E. The band structures
near both K and K ′ valleys are symmetric with respect
to kx = 0 and the Fermi level. Thus, in what follows, we
mainly focus on the conduction band. Since the electrons
experience completely different superlattices near the K and
K ′ valleys, the profound differences of electronic spectrum are
expected.

A. Finite-energy Dirac points and group velocity

First, we discuss the band structures near the K and
K ′ valleys under a symmetric superlattice. As shown in
Figs. 2(a)– 2(c) for K valleys, the zero-energy Dirac point
is shifted to ky = −1 along kx = 0, which satisfies ky =
−AM/2, contrary to that observed in pristine graphene. The
band curves are symmetric with respect to ky = −AM/2. Such
a result is quite reasonable because the dispersion relation
of Eq. (10) is invariant under the change ky → −ky − AM .
It could be also understood based on the invariance of the
effective potential Veff(ky) = Veff(−ky − AM ), where Veff =
(ky + AM + ξAS)2. As expected, finite-energy Dirac points
are found along ky = −AM/2 [see Fig. 2(b)]. To find the
locations of the Dirac points, we assume kx = 0, ky = −AM/2,
and a = b = c in Eq. (10). Then Eq. (10) reduces to the

form

cos2(qa) −
(

1 + A2
M

2q2

)
sin2(qa) = 1, (11)

where q2 = q2
1,2 = E2 − (AM/2)2. Equation (11) has the

solutions for 1 + A2
M

2q2 = −1 or sin(qa) = 0. The solution of

FIG. 2. Band dispersion near the (a–c) K and (d–f) K ′ valleys
under the symmetric superlattices: (a,d) the lowest conduction
miniband; (b,e) several low-energy minibands in (E,ky) space; (c,f)
energy spectrum vs kx at ky = 0 (solid curve) and 1.9 (dashed curve).
The values of parameters are AM = AS = 2 and a = b = c = 1.
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FIG. 3. The first (black curves) and the second (red curves) finite-
energy Dirac points near (a) K and (b) K ′ valleys at a = b = c = 1.
The solid, dashed, and dotted curves are for AM = AS = 2, 4, and 6,
respectively.

1 + A2
M

2q2 = −1 is E = 0, corresponding to the zero-energy
Dirac point. The solutions of sin(qa) = 0 have the form

En = ±
√(

nπ

a

)2

+
(

AM

2

)2

, (12)

corresponding to the finite-energy Dirac points, where n is
the integer. Therefore, we could control the positions of the
Dirac points in (E,ky) space by adjusting the barrier height
and barrier width. Figure 3(a) shows the variation of the first
and the second finite-energy Dirac points with different barrier
heights, and the blue lines are the curves on which the Dirac
points are obtained by solving Eq. (12). The above result for
the K valley is analogous to the general band spectrum with
valley degeneracy discussed in the pure magnetic superlattices
[11–13].

For the K ′ valley in Figs. 2(d)– 2(f), the Dirac points are
located along ky = 0, around which the energy spectrum is
symmetric, due to the invariance of the dispersion relation
of Eq. (9) under the change ky → −ky . Contrary to the K

valley, more finite-energy Dirac points appear in the considered
energy region near the K ′ valley, by comparing Figs. 2(b)
and 2(e). Assuming kx = ky = 0, AM = AS , and a = b = c,
Eq. (9) for the K ′ valley can be rewritten as

cos(2Ea) cos2(qa) − E

q
sin(2Ea) sin(2qa)

−A2
M + E2 cos(2Ea)

q2
sin2(qa) = 1, (13)

where q2 = E2 − A2
M . Distinctly, E = 0 is one solution of

Eq. (13), corresponding to the zero-energy Dirac point. The
finite-energy Dirac points near the K ′ valley can be obtained by
solving Eq. (13) numerically. It is clearly seen from Figs. 3(a)
and 3(b) that the Dirac points near the K and K ′ valleys
present alternative distribution in the energy region, which
plays a basic role to the valley-dependent transport and the
valley polarization, as discussed in Sec. IV. For both valleys,
the widths of the minibands and the gaps strongly depend
on E and ky [see Figs. 2(b), 2(c), 2(e), and 2(f)]. As |ky |

FIG. 4. Band dispersion near the (a–c) K and (d–f) K ′ valleys
under the asymmetric superlattices: (a,d) the lowest conduction
miniband; (b,e) several low-energy minibands in (E,ky) space; (c,f)
energy spectrum vs kx at ky = 0 (solid curve) and −2.1 (dashed
curve). The values of parameters are AM = 2, AS = 1, and a = b =
c = 1.

increases, the bands become narrower and independent of kx .
Consequently, the electrons are localized in the kx direction
and the motion becomes nearly unidimensional, indicating a
collimation behavior along the ky direction. Obviously, the
collimation is more prominent in the K ′ valley. Furthermore,
the circles in Fig. 2(e) manifest that there exist new level
crossing points between the two minibands at the edges of the
Brillouin zone (kx = ±π/L), implying the close of a band gap,
which are also exhibited in Fig. 2(f) by the dashed curve. At the
crossing point, the degeneracy of energy levels occurs when
there is a Fabry-Pérot effect for the electron waves, achieving
constructive interference in both the magnetic barrier and
strained barrier. The crossing points emerge in pairs located
symmetrically with respect to ky = 0. Note that such crossing
points are not found in the K valley under the symmetric
superlattices.

Figure 4 shows the band structure for the (a–c) K and (d–f)
K ′ valleys under a general asymmetric superlattice, that is,
AM �= AS or a �= c. For the K valley, the remarkable feature is
that each degenerate miniband of the symmetric superlattices
splits into two subminibands and produces a new band gap
of the asymmetric superlattices [see Figs. 2(b) and 4(b)], due
to a perturbation introduced by a different strained barrier
of the complex unit. Interestingly, the subminibands become
degenerate again at the edges of the Brillouin zone, forming
crossing points (marked by the circles), which are clearly
shown in Fig. 4(c). Opposite to the K valley, the minibands
near the K ′ valley in Figs. 4(d)–4(f) stay degenerate. In addi-
tion, for both valleys, the zero-energy Dirac point is slightly
shifted to ky = −(AM + ξAS)/4. However, it is more difficult
to locate the finite-energy Dirac points which do not occur at
ky = −(AM + ξAS)/4. The energy band is asymmetric with
respect to ky = −(AM + ξAS)/4 [see Figs. 4(b) and 4(e)],
contrary to the symmetric case, because the effective potential
Veff(ky) of the asymmetric superlattice is no longer invariant
under the change ky → −ky − (AM + ξAS)/2. Note that a
similar band structure could be also induced in the asymmetric
superlattice by a �= c. Furthermore, as the well width b
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FIG. 5. Velocity vs barrier width for the (a) K and (b) K ′ valleys
under the symmetric superlattices. The black solid curve is the group
velocity v0 at zero-energy Dirac point. The red solid, red dashed, blue
solid, and blue dashed curves are the velocities v1x , v1y , v2x , and v2y at
the first and the second finite-energy Dirac points, respectively. The
parameters are set as AM = AS = 2 and a = b = c.

increases, more minibands would appear in the considered
energy region for both valleys (not shown in the figure).

Now we turn to discuss the group velocities for the K

and K ′ valleys, which are defined as vx/vF = ∂E/∂kx and
vy/vF = ∂E/∂ky . Figure 5 shows the velocities in units of vF

as a function of barrier width near the Dirac points for the
(a) K and (b) K ′ valleys under the symmetric superlattices.
For both valleys, the velocity at zero-energy Dirac point
(black solid curve) is isotropic, whereas the velocities at
finite-energy Dirac points (red and blue curves) are anisotropic.
By expanding Eq. (10) at the zero-energy Dirac point (E = 0
and ky = −AM/2), the dispersion relation of the K valley
could be obtained:

E = ± AML/4

sinh(AML/4)

√
k2
x + (ky + AM/2)2, (14)

indicating an isotropic velocity. As the barrier width a

increases, v0 and the components vnx (n = 1,2) decrease
monotonically, because the electrons become more and more
localized along the x direction by the magnetic-strained
barrier. However, the variation of components vny is not
monotonous. When the barrier width is relatively narrow
(a < 0.5), vnx → vF while vny → 0, suggesting a collimation
along the kx direction. By comparing Figs. 5(a) and 5(b) one
may find that the velocity for the K valley is completely distinct
from that for the K ′ valley, and the velocity for the K ′ valley
is more sensitive to the change of barrier width. Dramatically,
there exists a range of barrier width (a > 3) where the velocity
for the K valley is finite, while the velocity for the K ′ valley
is reduced almost to zero. Hence, we can achieve a normal
conduction in the K valley and extremely low conduction
in the K ′ valley simultaneously. This enables us to control
the valley-dependent motion of electrons and realize valley
polarization.

Figure 6 shows the velocity v0 as a function of barrier
width near the zero-energy Dirac point for the (a) K and (b) K ′
valleys under the general asymmetric superlattices for different
values of AS . We find that the asymmetry of superlattices does

FIG. 6. Velocity v0 vs barrier width for the (a) K and (b) K ′

valleys under the asymmetric superlattices at AM = 2 and a = b = c.
The solid, dashed, dotted, and dash-dotted curves are the velocity v0

at zero-energy Dirac point at AS = 1, 2, 3, and 5, respectively.

not destroy the isotropic dispersion near the zero-energy Dirac
point and the anisotropic dispersion near finite-energy Dirac
points for both valleys (not shown in the figure). The feature
of the velocity in Fig. 6 is analogous to that discussed in
Fig. 5. With the increase of strained barrier AS , the velocity
is suppressed gradually, and the renormalization for the K ′
valley is stronger.

Note that we mainly discussed the anisotropic dispersion
induced by the superlattice. In graphene with a uniform uniax-
ial strain, the energy dispersion and the velocity also become
anisotropic [50,51]. Actually, the strengths of magnetic and
pseudomagnetic fields in the proposed system are a few tenths
of a Tesla to a few Teslas. The pseudomagnetic field with
such an order of magnitude could be produced by a very
small strain, less than 1% [8], the effect of which on the
velocity is very small, and the velocity is almost isotropic [6].
Therefore, we neglect the effect of the strain itself, compared
with the superlattice-induced anisotropy. The above results
demonstrate that electrons in the K and K ′ valleys have
different band structures and group velocities, which can be
used to realize valley polarization and construct a valley filter
in graphene. Compared with the typical magnetic superlattices
or strained superlattices, the magnetic-strained superlattices
with a complex unit are more superior in controlling the band
structure, as discussed in the following part.

B. Tunable miniband and band gap

In this part, we demonstrate that it is possible to manipulate
the band structures and alter the position of the miniband
independently by adjusting the strained barrier. Figure 7
presents the energy band in (E,ky) space for (b, c) K and
(d, e) K ′ valleys with different values of c, at AM = 2, AS = 4,
and a = b = 1. In the absence of strain, i.e., c = 0, the band
structures near the K and K ′ valleys are the same [see Fig. 7(a)]
and the valley electrons are degenerate, leading to identical
transmission and zero polarization. In the presence of strain
(c �= 0), the valley degeneracy is lifted. With the increase of
c, it is found that for the K valley the second miniband shifts
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FIG. 7. Energy band in (E,ky) space for the (b, c) K and (d, e)
K ′ valleys at AM = 2, AS = 4, and a = b = 1, c = 0 in (a), 0.2 in
(b, d), and 0.4 in (c, e).

down gradually and finally combines with the first miniband
[see Figs. 7(b) and 7(c)]. Oppositely, for the K ′ valley the
second miniband shifts up to the third miniband and the band
gap between them becomes smaller [see Figs. 7(d) and 7(e)].
Simultaneously, the zero-energy Dirac point moves to the left
(or right) along ky for the K (or K ′) valley and the finite-energy
Dirac points are shifted as well. However, it should be noted
that other minibands are insensitive to the change of c. Such
a behavior could be understood as follows. In fact, the strong
and narrow strain could be regarded as a perturbation of the
pure magnetic superlattices, which is set in the potential well.
The strain works as a barrier (or well) for the K (or K ′) valley,
which mainly affects the bound state of the second miniband
and leads to a shift of the miniband.

Figure 8 shows the dependence of the miniband and the
band gap on the strain width c for the (a) K and (b) K ′ valleys.
For the K valley in Fig. 8(a), the second and the first minibands
move closer and merge with each other at c ≈ 0.45 where the
band gap is closed. For the K ′ valley in Fig. 8(b), the second
and the third minibands merge with each other at c ≈ 0.25. As
a consequence, the width of the merged miniband is enlarged.
Interestingly, the widths of the minibands keep almost constant

FIG. 8. Three lowest energy minibands vs the width c of the strain
for the (a) K and (b) K ′ valleys at AM = 2, AS = 4, a = b = 1, and
ky = −0.5.

before merging. With the further increase of c, the widths begin
to become narrow, and the closed band gap is reopened. At the
same time, the positions of other minibands weakly depend
on the width c, such as the third miniband for the K valley
and the first miniband for the K ′ valley. Therefore, the band
gap between the merged miniband and its adjacent miniband
is enlarged by adjusting c. Indeed, other minibands could be
also controlled by properly adjusting the position of strain in
the potential well. An analogous technique for engineering the
bands of two-dimensional electron gas by electric superlattices
was discussed in previous literature [52]. The ability to control
the miniband and band-gap widths independently is of a great
value for tuning of the tunneling current and electro-optic
switches [52,53], and it also offers possible application in
infrared photodetectors, in which it is desirable to have only
two minibands with a small band gap [54].

In fact, the properties of the band structure under the
magnetic-strained superlattices could be generalized to a pure
magnetic superlattice with the same spatial structure (such as
symmetric, antisymmetric, or asymmetric), but the valleys are
degenerate. The characteristics of graphene mainly depend
on the electrons near the K and K ′ valleys. Therefore, our
discussion on the band structure for the K and K ′ valleys
should be helpful in manipulating the electronic structure and
could be used to understand and control the valley-dependent
transport, as discussed in the following.

IV. VALLEY-DEPENDENT TRANSPORT

In this section we discuss the properties of valley-dependent
transport through a finite magnetic-strained superlattice and
their relation with band structure. The superiority of the
considered system is reflected in controlling the valley-
dependent transmission. Note that in the absence of strain,
the transmission is independent of the valleys, because the
valley degeneracy cannot be lifted by the magnetic field alone
due to the inversion symmetry of the graphene lattice [55].
In the absence of the magnetic field, the transmissions at the
K and K ′ valleys present just mirror symmetry with respect
to ky = 0, because the strain-induced pseudomagnetic fields
are of opposite directions at the K and K ′ valleys and do not
break the time-reversal symmetry. Accordingly, the strain or
the magnetic field alone cannot generate a valley-polarized
current in graphene. However, a combination of the magnetic
field and the strain could lift the valley degeneracy and break
the time-reversal symmetry, leading to valley polarization.

Figure 9 shows the transmission in (E,ky) space for (a, b)
K and (c, d) K ′ valleys, under the (a, c) symmetric and (b, d)
asymmetric superlattices, taking the period number n = 2 as
example. The dashed curves indicate the borders for different
electronic states inside the potential wells. One can clearly
see that for both valleys, the transmissions are restricted in
the region −E < ky < E where the states inside the potential
wells are traveling waves. For the K valley in Fig. 9(a),
the distribution of transmission is asymmetric, although the
band structure is symmetric around ky = −(AM + AS)/4 [see
Fig. 2(b)]. The resonant regions composed of many peaks
become narrow and move to the high-energy region as ky

increases. Under the asymmetric superlattices, the resonant
regions present split [see Fig. 9(b)]. For the K ′ valley in
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FIG. 9. Contour plot of the transmission TK,K ′ (E,ky) for the
(a, b) K and (c, d) K ′ valleys at AM = 2, a = b = c = 1, and n = 2.
(a, c) The symmetric case with AS = 2 and (b, d) the asymmetric
case with AS = 1.

Fig. 9(c), the transmission is symmetric around ky = 0, which
is destroyed by the asymmetric superlattices [see Fig. 9(d)].
The resonant characteristic of transmission arises from a
combined effect of the resonant states in the wells and the
barriers, which are more pronounced in the low-energy region.
Comparison with Figs. 2 and 4 indicates that the distribution
of transmission spectra is completely consistent with the band
structure, that is, the resonant transmission (or transmission
gap) corresponds to the miniband (or band gap). Furthermore,
one may find that the transmission probability TK,K ′ is always
equal to unity at the positions of the Dirac points and the
crossing points, which manifest themselves in the transmis-
sion. Such a robust feature results from the Fabry-Pérot
interference effect of the incident electron inside the potential
barrier. At these particular points, the Fabry-Pérot resonances
with TK,K ′ = 1 could occur in transmission with constructive
interference, different from the Klein paradox. Figure 9 reveals
the strong valley-dependent feature of transmission, and the
resonances exist in different energy regions for electrons in the
K and K ′ valleys.

The valley-dependent transmission feature is reflected in the
conductance. Figure 10 displays the conductance for the (a) K

and (b) K ′ valleys and (c) the corresponding valley polarization
as a function of Fermi energy with different periods n. As n

increases, the positions of the resonant conductances for both
valleys are invariant, and the conductance in the nonresonant
region is suppressed gradually [see Figs. 10(a) and 10(b)].
Because the degenerate energy levels in the potential wells
become nondegenerate and split due to the tunnel effect,
the resonant peak of the conductance presents a split. In
the low-energy region (E < AM or AS), the resonance is
mainly contributed by the resonant modes in the wells. When
the incident energy is higher than the barriers, it provides
new propagating modes; as a result, the resonance becomes
indistinct and the conductance increases rapidly. Significantly,

FIG. 10. Conductance GK,K ′ vs Fermi energy for the (a) K and
(b) K ′ valleys and (c) the polarization P at AM = AS = 2 and a =
b = c = 1.

the conductances GK and GK ′ present alternative distribution
in the energy region, i.e., GK nearly vanishes for those
energies where GK ′ is in resonance and vice versa. These
features can be understood based on the band structure in
Figs. 2 and 3 and the transmission probability in Fig. 9. The
resonant conductance (or conductance gap) corresponds to
the miniband (or band gap). It is worth noting that the Dirac
points appear as pronounced peaks in the conductance. This
result directly leads to a remarkable valley polarization, as
shown in Fig. 10(c). The polarization oscillates with Fermi
energy in a decayed way. The polarization can reach 100%
when E < AM , and disappears gradually when E > AM due
to the small difference between GK and GK ′ . Furthermore, the
polarization is greatly enhanced by increasing n, indicating
that a relatively large period is beneficial to the valley
polarization. In addition, the polarization could be controlled
by virtue of the finite-size effect. The increase of barrier
width a or c would enhance the polarization. As the well
width b increases, more resonant modes and more resonant
conductances would appear in the considered energy region,
resulting in more perfect polarization platforms (not shown in
the figure).

Figure 11 shows the effect of the strain strength and the
Fermi energy on valley polarization in the (a) symmetric
and (b) asymmetric cases. For both cases in the absence of
strain AS = 0, the valley degeneracy is not lifted and so the
polarization vanishes, although AM breaks the time-reversal
symmetry in the asymmetric cases. With the presence and
the increase of AS , the polarization increases gradually and
reaches 100%. The perfect polarization at a given Fermi energy
can be achieved by adjusting the strain strength. Obviously, the
polarization exhibits a controllable switching effect with Fermi
energy. Comparison between Figs. 11(a) and 11(b) indicates
that the polarization is insensitive to the symmetry of the
system’s structure.

We have discussed the controllability of the minibands and
the band gaps for the K and K ′ valleys in Figs. 7 and 8, and
it is beneficial to tune the valley-dependent conductance, as
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FIG. 11. Contour plot of the valley polarization P (E,AS) at a =
c = 1, b = 2, and n = 2. (a) The symmetric case with AM = AS and
(b) the asymmetric case with AM = 2.

demonstrated in Fig. 12. Figure 12 shows the conductances (a)
GK , (b) GK ′ , and (c) the polarization P as a function of Fermi
energy with different widths c. As c increases, the second
resonance moves to the low (or high) energy region and merges
with the first (or the third) resonance for the K (or K ′) valley,
while other resonances are almost constant. Furthermore, the
corresponding resonant conductance and conductance gap are
enlarged. Such a feature arises from the band structure in Fig. 7.
As a consequence, the perfect polarization is broadened in the
energy region [see Fig. 12(c)].

The perfect polarization mainly occurs in the low-energy
region in the above results. In fact, the polarization region could
be also controlled by the external voltages. The local electric
field U induced by the voltage is assumed to be finite in the
strained and magnetic barrier regions and zero otherwise. An
electron at low energy could be approximately described by
the Dirac equation

[vF σ · (p + eAM + ξeAS) + UÎ ]� = E�, (15)

FIG. 12. Conductance GK,K ′ vs Fermi energy for the (a) K and (b)
K ′ valleys and (c) the polarization P at AM = 2, AS = 4, a = b = 1,
and n = 2.

FIG. 13. Polarization P vs Fermi energy at AM = AS = 2,
a = b = c = 1, and n = 2.

and Î is a 2 × 2 unit matrix. In the presence of U , the
conduction and valence minibands shift to the higher-energy
region, and the minibands for the K ′ valley become narrower
compared to the K valley. As a result, the transmission
resonances for both valleys shift to the higher-energy region,
and the conductance GK ′ strongly decreases while GK stays fi-
nite. The electrons around the K valley give a dominant contri-
bution to the conductance. Therefore, the perfect polarization
shifts to the higher-energy region and the minimum P = −1
disappears gradually as U increases, as seen from Fig. 13.

In the above discussions, we take an ideal structure in
Figs. 1(b) and 1(c) to illustrate the operating principles of the
proposed system. However, it does not hamper its significance
to a realistic system, because the basic electronic properties do
not depend on the actual shape of the superlattices but depend
on its structure. Figure 14 discusses the conductance and polar-
ization through a realistic system shown in the inset. The real-
istic profile of a magnetic field produced by the ferromagnetic
stripe is B(x) = B{z0a/(x2 + z2

0) − z0a/[(x − a)2 + z2
0]}ẑ,

and the corresponding magnetic vector potential has the form
AM (x) = Ba[tan−1( x

z0
) − tan−1( x−a

z0
)]ŷ. We use a smooth

profile to model a realistic gauge potential produced

FIG. 14. Conductance GK,K ′ vs Fermi energy for the (a) K and
(b) K ′ valleys and (c) the polarization P through the realistic system
at B = 0.7, A0 = 2.0, a = b = c = 1.0, and n = 2. The solid and
dashed curves in the inset of (a) are the realistic vector potentials for
electrons near the K ′ and K valleys, respectively.
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FIG. 15. Conductance GK,K ′ and polarization P vs Fermi energy
when (a) the barrier heights and (b) barrier/well widths present
disorder, and n = 50. AM0 = AS0 = 1.5, b = 2.0, and a = c = 1.0
in (a). AM = AS = 1.5, b0 = 2.0, and a0 = c0 = 1.0 in (b).

by the substrate strain, AS(x) = A0
2 [erf( 2[x−(a+b)]

d
− 2) +

erf( 2[(a+b+c)−x]
d

− 2)]ŷ, where erf(x) is the error function, A0

is the amplitude, and d determines the width of the crossover
region [25]. Therefore, the total profile of the relatively
realistic vector potential AM + ξAS is obtained (see the inset
of Fig. 14). Figure 14 displays that the conductances GK

and GK ′ present alternative distribution in the energy region,
leading to a remarkable valley polarization analogous to that
observed in an ideal model. For the realistic system, with
decreasing z0 and d, the profiles of vector potentials AM and
AS become gradually sharper, respectively, which tend to the
ideal case. The results in Fig. 14 suggest that the transmission is
insensitive to the profiles of the structure. The realistic system
could be also used as a valley filter.

Due to the random nature of the experimental techniques,
the disorder of the barrier in superlattices is unavoidable. In
Fig. 15 we discuss the effect of disorder on the conductance
and valley polarization. We set disorder situations in which
the values of barrier heights AM,S fluctuate around their
mean values, given by 〈AM,S〉 = AM0,S0. The fluctuations are
given by AM,S |i = AM0,S0(1 + �ηi), where {ηi} is a set of
uncorrelated random variables or white noise, −1 < ηi < 1,
� is the disorder strength, and i is the site index. In the
same manner, the disorder of the barrier and well widths
can be given by (a,b,c)|i = (a0,b0,c0)(1 + �ηi). Figure 15(a)
shows the effect of the disorder of barrier heights. With
the presence and increase of the disorder strength �, the
conductances for both valleys are suppressed, but the positions
of resonant conductances are nearly invariable, leading to
the excellent polarization. Notably, the disorder enhances the
valley polarization compared with the order case. As shown in
Fig. 15(b), the effect of the disorder of barrier and well widths
on the transmission is similar to that observed in Fig. 15(a),
but the disorder effect of widths is more prominent. The
results provide evidence that the disorder has no fundamen-
tal influence on the valley-dependent transmission, because
the superlattices for electrons near the K and K ′ valleys

are qualitatively different and the disorder just induces a
quantitative change on the superlattices.

V. CONCLUSION

In summary, we studied the valley-dependent band structure
and transport property of graphene under a periodic magnetic-
strained field, where the valley degeneracy is lifted and
the time-reversal symmetry is broken. The electrons near
the K and K ′ valleys are dominated by different effective
superlattices, and so they possess a strong valley-dependent
feature, leading to some peculiar properties which are not
found in magnetic superlattice [11–13] and strain superlattice
[34,35], such as the valley dependence of the minibands,
Dirac points, Fermi velocity, and transmission; the ability of
controlling the miniband and band gap independently; and the
valley filtering effect. The main findings are as follows:

(1) Under the symmetric superlattices, the energy bands
for both valleys are symmetric with respect to ky = −(AM +
ξAS)/4, at which the Dirac points are located. Dirac points
near the K and K ′ valleys present alternative distribution
in the energy region. More finite-energy Dirac points, more
prominent collimation behavior, and new crossing points
at the edges of the Brillouin zone are found for the K ′
valley. The degenerate miniband near the K valley splits into
two subminibands and produces a new band gap under the
asymmetric superlattices.

(2) For both valleys, the velocities at zero (finite) energy
Dirac points are isotropically (anisotropically) renormalized,
which are robust against the symmetry of the superlattices.
However, the velocity for the K ′ valley is greatly renormalized
compared with the K valley, and we can achieve a finite
velocity for the K valley while the velocity for the K ′ valley
is zero.

(3) It is possible to manipulate the position of the miniband
independently by appropriately adjusting the strained barrier.
The widths of the miniband and the band gap can be enlarged
or reduced, which is beneficial to tune the conductance and
broaden the polarization platform.

(4) The transmission spectrum is consistent with the
band structure, and the transmission presents strong valley-
dependent feature. The Dirac points appear as pronounced
peaks in conductance. The electrons in opposite valleys
can be perfectly transmitted or totally reflected. Therefore,
a remarkable valley polarization is achieved which can be
controlled by the strain, the period, and the voltage. The high
polarization, which is insensitive to the disorder, still holds in
the realistic system.

The main results, including band structure and transport
property, are robust against the changes of structural pa-
rameters. The proposed system may provide a reference for
controlling the electronic structure of other two-dimensional
Dirac materials. Finally, we hope these results can be helpful
for understanding the electronic property near the valleys and
benefit potential applications of the valley filter device.
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