
PHYSICAL REVIEW B 94, 085401 (2016)

Uniaxial strain-induced Kohn anomaly and electron-phonon coupling
in acoustic phonons of graphene

M. E. Cifuentes-Quintal,1,* O. de la Peña-Seaman,2 R. Heid,3 R. de Coss,1 and K.-P. Bohnen3

1Departamento de Fı́sica Aplicada, Centro de Investigación y de Estudios Avanzados del IPN,
Apartado Postal 73, Cordemex, 97310 Mérida, Yucatán, Mexico
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Recent advances in strain engineering at the nanoscale have shown the feasibility to modulate the properties
of graphene. Although the electron-phonon (e-ph) coupling and Kohn anomalies in graphene define the phonon
branches contributing to the resonance Raman scattering and are relevant to the electronic and thermal transport
as a scattering source, the evolution of the e-ph coupling as a function of strain has been less studied. In this work,
the Kohn anomalies and the e-ph coupling in uniaxially strained graphene along armchair and zigzag directions
were studied by means of density functional perturbation theory calculations. In addition to the phonon anomaly
at the transversal optical (TO) phonon branch in the K point for pristine graphene, we found that uniaxial strain
induces a discontinuity in the frequency derivative of the longitudinal acoustic phonon branch. This behavior
corresponds to the emergence of a Kohn anomaly, as a consequence of a strain-enhanced e-ph coupling. Thus, the
present results for uniaxially strained graphene contrast with the commonly assumed view that the e-ph coupling
around the K point is only present in the TO phonon branch.
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I. INTRODUCTION

After the discovery of the extraordinary properties of
graphene, the next challenge is to develop mechanisms that
allow the enhancement and modulation of such properties.
Along these lines, strain engineering is currently one of the
trending topics in graphene science because of the possibility
to induce new physical phenomena by means of mechanical
strain. Examples are modifications on the Fermi velocity [1],
the modulation of Landau level spectra [2], the generation
of pseudomagnetic fields [3], and the modulation of the
electrical [4] and thermal conductivities [5]. Furthermore, with
the recent advances in experimental techniques to apply strain,
there are different reports of uniaxial [6,7], biaxial [7,8], and
shear [9] strain in graphene. Interestingly, it has been shown
that uniaxial strain can be applied in a controlled, reversible,
and nondestructive way [6], making it of particular interest.

Two of the most studied properties of uniaxially strained
graphene are its electronic and vibrational structures. Cur-
rently, it is well know that in uniaxially strained graphene
the crossing point of the valence and conduction bands at
the Fermi level, the so called Dirac point, shifts away from
the corner of the Brillouin zone (the K point), with no band
gap opening [1,10–12]. Among the vibrational structure of
graphene, the E2g phonon mode at the center of the Brillouin
zone (the � point) is particularly interesting because it is
responsible for the G band in the Raman spectroscopy [13].
Under uniaxial strain the E2g phonon mode is split into two
modes, one parallel and the other perpendicular to the axis of
the applied strain [14,15]. That effect is useful to characterize
the direction and strength of the uniaxial strain [14,16,17]
via Raman spectroscopy. Even more, the full phonon dis-
persion [11], Grüneisen parameters [15], and the origin of
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the phonon instability at the ideal strength [18,19] have been
studied in uniaxially strained graphene using first-principles
calculations.

Regardless of the level of understanding of the electronic
and vibrational structure of uniaxially strained graphene, some
fundamental and important microscopic properties such as
the electron-phonon (e-ph) coupling need to be studied in
detail. In pristine graphene the e-ph coupling induces strong
anomalies in the phonon dispersion [20], contributes to the
intrinsic electronic resistivity [21], is responsible for most
of the linewidth in the Raman G band [13], and determines
the scattering rules for the double-resonance Raman 2D
band [13]. Even more interesting could be the possibility to
induce electron-phonon superconductivity by means of atomic
decorating [22,23], heavy doping [24], and a combination of
doping and biaxial tensile strain [25]. Therefore, in order to
have a deep understanding of the effects of uniaxial strain on
the vibrational, thermal, and transport properties, a detailed
study of the e-ph coupling in uniaxially strained graphene is
mandatory.

A key feature of the e-ph coupling is Kohn anoma-
lies [26]—anomalous behavior in the phonon dispersion due
to an electronic screening of the ionic vibration—which are
fully determined by the geometry of the Fermi surface. In
graphene the Fermi surface is the Dirac point; thus the Kohn
anomalies take place only at the � and K points, which are
shown as a discontinuity in the frequency derivative of the
phonon dispersion of the highest optical (HO) branches [20].
Therefore, the e-ph coupling is localized on the transversal
(TO) and longitudinal (LO) optical branches at � in the E2g

phonon mode. Meanwhile, at K the e-ph coupling is almost
entirely localized on the TO A′

1 phonon mode, with a very
small contribution from the double-degenerated E′ phonon
mode on the LO and the longitudinal acoustic (LA) phonon
branches [20], which is usually neglected in the study of
properties related to the e-ph coupling. In uniaxially strained
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graphene, the loss of hexagonal symmetry and the shift of the
Dirac point is expected to have an effect on the e-ph coupling
but, to the best of the authors’ knowledge, this is not yet
reported.

In this work we have employed first-principles density func-
tional theory (DFT) calculations to systematically study the
effects of uniaxial strain along the armchair (AC) and zigzag
(ZZ) directions on the Kohn anomalies and e-ph coupling in
graphene. In particular, we determine the displacement of the
Kohn anomaly from K, its frequency softening, vibrational
modes, and e-ph coupling [27]. We show that uniaxial strain
induce a substantial enhancement of the e-ph coupling in
the LA branch around K with respect to pristine graphene,
generating a non-negligible Kohn anomaly.

This paper is organized as follows: In Sec. II we describe
the computational details of our first-principles calculations.
In Sec. III A we present the changes in the bond length and
average force constants that will be useful for forthcoming
discussions. The Kohn anomalies in the phonon dispersion and
its vibrational phonon modes and frequency shifts are shown in
Sec. III B. An analysis of the uniaxial strain effects in the e-ph
coupling is discussed in Sec. III C. In Sec. IV we summarize
our main findings. Finally, we include four appendices with
several useful relations used in this article, concerning the
structural properties of uniaxially strained graphene, the
Kohn anomaly shift, the classical atomic displacement of the
discussed phonon modes, and the calculated e-ph coupling
quantities.

II. COMPUTATIONAL DETAILS

The present calculations were performed within DFT,
in the framework of the mixed basis pseudopotential ap-
proach (MBPP) [28]. Core electrons were replaced by
norm-conserving pseudopotentials [29] with nonlinear core
corrections included. Valence states were represented by a
combination of s and p type localized functions at each atomic
site, complemented with plane waves up to a kinetic energy
of 25 Ry. The exchange-correlation functional was treated
with the PBE [30] parametrization of the generalized gradient
approximation. During the structural optimization, the carbon
positions were relaxed until the interatomic forces were 0.0001
Ry/bohr or less.

For phonon and e-ph coupling calculations we employed
the density functional perturbation theory as implemented
in the MBPP code [31]. Special attention was paid to the
integration in the irreducible Brillouin zone with a 72×72×1
Monkhorst-Pack k-point mesh and a small Gaussian broaden-
ing of 0.10 eV. This was needed in order to avoid electronic
smearing effects on the Kohn anomalies and at the same time
obtain converged phonon frequencies. Dynamical matrices
were calculated using 12×12×1 and 9×9×1 q-point grids
for pristine and uniaxial strained graphene, respectively. Full
phonon dispersion and force constants were obtained via
standard Fourier interpolation. In order to resolve the Kohn
anomalies on the phonon dispersion we also computed several
low-symmetry q points corresponding to the full q grid of
72×72×1. For the evaluation of the e-ph coupling properties
we used a denser k grid of 144×144×1, within a Gaussian
broadening varying from 0.05 to 0.30 eV which, however,

does not affect our final results. To simulate a single atomic
layer, we used the supercell approach and we left at least
12 Å of vacuum space between successive layers to avoid
spurious supercell effects on the electronic states and phonon
frequencies.

III. RESULTS AND DISCUSSION

A. Structural properties

For pristine graphene we have obtained a lattice parameter
of 2.465 Å, which corresponds to a bond length of 1.423 Å.
Taking the derivative of the acoustic phonon branches in the
limit of q → 0, we estimate a Young modulus of 369 N/m
and a Poisson’s ratio of 0.182. The calculated elastic constant
values are in agreement with the previously experimental
and computational reported values. For instance, Politano
et al. [32] perform phonon dispersion measurements from
macroscopic graphene samples, and estimate a Young modulus
of 342 N/m and a Poisson’s ratio of 0.19 from the sound
velocities of the TA and LA phonon branches. In the context of
previous DFT-based reports, the Young modulus value varies
from 344 to 356 N/m [18,33,34], and the Poisson’s ratio
from 0.162 to 0.186 [18,33–35], depending on the exchange-
correlation functional and other numerical approximations.

As we describe in the Appendix A, the structural properties
of graphene under ZZ and AC strain are defined by the relation
between the parallel or applied strain ε‖, the perpendicular
contraction ε⊥, and the C-C distances α and β (see Fig. 1 for
the definition of strain directions, and the real and reciprocal
lattice). In Fig. 2(a) we present the computed values for ε⊥
as a function of ε‖, and for reference we have included the
linear dependence for a constant Poisson’s ratio. From that,
it clearly shows a nonlinear behavior for ε‖ > 2%, which
indicates a nonconstant Poisson’s ratio, in agreement with
previous works [15,18,36]. Hereinafter, for simplicity ε‖ will
be referred to only as strain.

The changes in the interatomic C-C distances α and β

are show in Fig. 2(b). Although we consider only tensile
strain, the C-C distances do not increase in all cases. For ZZ
strain there is a small contraction in α, corresponding to the
bond perpendicular to the direction of the applied strain. In a
classical picture, the contraction of α should increase the force

FIG. 1. (a) Schematic representation of the lattice vectors, C-C
distances (α and β), and strain directions (AC and ZZ) employed in
this work. (b) First Brillouin zone in the reciprocal space with the
high symmetry points for uniaxially strained graphene.
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FIG. 2. Structural properties for uniaxially strained graphene. (a)
Evolution of the perpendicular strain as a function of the parallel
strain. (b) Changes of bond distances as a function of uniaxial strain.

constant related to this bond, contrary to what is expected
when a material is under tension. To corroborate this picture,
we calculate the average force constant related to atom-atom
bonds, defined by

I (b) =
√√√√1

3

∑
ij

�2
ij (b), (1)

where �ij (b) represents the force constant matrix assigned to
a bond b. The respective I (α) and I (β) are shown in Fig. 3
for both ZZ and AC uniaxial strain. In all cases we found
that the dominant change in I (b) comes from the longitudinal
component of the force constant. Just as expected from the
change in the length of the C-C bonds, all the average force
constants decrease, except for a small hardening in I (α) under
ZZ strain. Such behavior is a key feature in the forthcoming
discussion of the phonon frequency shift for the Kohn anomaly.
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FIG. 3. Average force constants normalized with respect to value
for the bond in pristine graphene as a function of uniaxial strain.

B. Kohn anomalies

In order to determine the position of the Kohn anomalies
under uniaxial strain, we need to determine the distance �

between the Dirac point and the K point in the electronic
structure, as we describe in Appendix B. We estimate the
evolution of � as a function of the applied strain by an
interpolation of the electronic bands at the Fermi level [see
Fig. 4(a)]. We found that � is bigger for strain in the AC
direction than in ZZ, although for strains lower than 3% it is
almost independent of the strain direction. Then, the position
of the Kohn anomaly should be at the phonon nesting vector
qZZ or qAC , presented for the unit cell of the reciprocal space
in Figs. 4(b) and 4(c) for the ZZ and AC strain, respectively.

The phonon dispersion around the Kohn anomaly in
uniaxially strained graphene for ε = 5% is shown in Fig. 5.
For an easy reference and comparison, each branch and its
respective phonon mode will be identified by its polarization
in pristine graphene: LO, TO, and LA. As general trends,
at � we can observe the splitting of the E2g phonon mode
[see Fig. 5(a)], and that the derivative discontinuity of the HO
branches depends on the chosen direction along the Brillouin
zone. Around K, the Kohn anomaly in the HO branch shows
the expected shift according to our estimation for � [dotted
line in Fig. 5(b)]. More interesting is the new derivative
discontinuity on the LA branch at approximately 125 and
129 meV for the AC and ZZ strain, respectively. The fact that
such discontinuities occur at the nesting vector that connects
two Dirac points (qZZ and qAC) is a direct indication of a Kohn
anomaly in the LA branch. This is confirmed in Sec. III C with
the analysis of e-ph coupling in the LA branch.

For a further discussion of the phonon modes at the
Kohn anomaly, we first focus on the � point. As has been
reported previously [14,15], the splitting of the E2g phonon
mode results in two modes with eigenvectors which are
perpendicular (with smaller softening) and parallel to the strain
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FIG. 4. Dirac point shift from K. (a) � as a function of ZZ and
AC strain. Note that a is the lattice parameter of the strained system
and is given by Eq. (B2). (b) Representation of qZZ and qAC . The
cross marks represent the Dirac points shifted from K and K′.
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FIG. 5. (a) Kohn anomalies under uniaxial 5% of AC (blue) and
ZZ (red) strain at �, and (b) qZZ and qAC . Dotted lines represent the
position of qZZ/AC . Symbols correspond to computed frequencies:
circles for LO, inverse triangles for TO, and squares for LA branches.

direction [see Fig. 6(a)]. This effect is measured in Raman
spectroscopy via the G band, and because of its relevance in
graphene characterization, we adopt the same nomenclature
that identifies the G+ (G−) as the band with smaller (higher)
softening.

The phonon frequency shift for the G+ and G− bands
is shown in Fig. 6(b). The present results for the shift and
splitting of the G band are in good agreement with previous
theoretical [11,14,15] and experimental [14] reports. However,
it is important to mention that there is a wide range of
reported values because of the different setups and conditions
to induce strain on graphene, as well as other effects such as
substrate interaction, temperature, and the number of graphene
layers. Besides that, in the studied range of strain we obtain
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FIG. 6. (a) Representation of the phonon modes for G+ and G− at
� and (b) its respective phonon frequency shift. The arrows indicate
the instantaneous displacement of the carbon atoms at a particular
time.

an almost linear softening in G+ and G−, which becomes
independent of the strain direction for deformations lower
than 2%.

For the anomalies at qZZ and qAC in the TO and LA
branches, we found a polarization of the phonon eigenvectors
η

qν
κs as a function of the strain, such that the atoms move on

ellipses with the mayor axis parallel (LA) and perpendicular
(TO) to the strain direction, and whose eccentricity approaches
1 as the strain increases, until the ellipses become almost
straight lines (see Appendix C for a proper description
of the classical atomic displacement in graphene). During
this evolution the phase difference Φ between the atomic
displacements along the x and y direction is ±π/2, the major
and minor axes of the ellipses are defined by the magnitude
of the phonon eigenvectors, and the relations |ηT O

x | = |ηLA
y |

and |ηT O
y | = |ηLA

x | are always fulfilled. This means that the
Kohn anomaly shift from the high symmetry point K induces
a mixing of the phonon eigenvectors ηT O

κs and ηLA
κs , which

belong to the same irreducible representation of the point
group of qZZ and qAC , as in pristine graphene for q points
outside the high symmetry points �,K, and M. Thus the
classical atomic displacement on each anomaly is in mutually
perpendicular ellipses, but with the same magnitudes for
the major and minor axes. The magnitude of the phonon
eigenvectors and the eccentricity of the resulting ellipses for
the Kohn anomaly in the TO branch are shown in Fig. 7 with
the norm

√
|ηx |2 + |ηy |2 = 1 assumed for simplicity. Within

the ZZ (AC) strain along the x (y) Cartesian axis (see Fig. 1), it
is clear that the phonon eigenvectors tend to align in the strain
direction, especially for the ZZ strain where the eccentricity
approaches 1 faster than for the AC strain, resulting in a straight
line displacement.

Using the same nomenclature as that for the splitting of
the G band (G− and G+) for the anomalies at the TO and LA
branches, we will employ the + (−) superindex to indicate that
the phonon mode has eigenvectors perpendicular (parallel)
to the strain direction and the smaller (higher) softening. A
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FIG. 8. (a) Representation of the phonon modes for the TO and
LA branches at qZZ and qAC and (b) the respective phonon frequency
shift. The arrows indicate the instantaneous displacement of the
carbon atoms at a particular time.

schematic representation of the TO+ and LA− modes and the
behavior of the phonon frequency shift are shown in Fig. 8.
Unlike the phonon frequency shift in G−,G+, and LA−, in the
case of TO+ the phonon softening is nonlinear and becomes
nearly constant starting from 2% of ZZ strain. In TO+

ZZ the
atoms move along the AC direction, inducing a large distortion
of the α bond. Thus, the constant frequency softening is a
consequence of the very small increment of the force constant
for the α bond, whose length remains almost constant under
ZZ strain (see Figs. 2 and 3). In TO+

AC the atoms move along
the ZZ direction, the atomic distortion is not along the α bond,
and therefore the frequency softening is not yet constant as in
TO+

ZZ .

C. Electron-phonon coupling

The computed values for the average e-ph coupling matrix-
element square over the Fermi surface in pristine graphene
are 〈g2

�,G〉 = 0.0400 eV2 and 〈g2
K,T O〉 = 0.0989 eV2, which

are in excellent agreement with previously reported val-
ues [20,37,38]. We also obtain a value of 0.0037 eV2 for the
double-degenerate LO and LA branches at K, which is very
small in comparison with the TO branch. The effect of uniaxial
strain on the e-ph coupling matrix element square over the
Fermi surface is shown in Fig. 9. We report the evolution of
〈g2〉 for G+ and G− at the � point [Fig. 9(a)]; meanwhile
for the qZZ and qAC points we analyze the TO, LO, and LA
branches [Fig. 9(b)]. In the case of the LO branch at qZZ and
qAC we found that 〈g2〉 remains practically constant for both
ZZ and AC strain, and for clarity it has not been included
in Fig. 9.

At the � point, we found that after the splitting of the
E2g phonon mode under uniaxial strain, the e-ph coupling
in G+ (G−) slightly increases (decreases) with almost no
dependence on the strain direction. The overall change at �

for 5% of uniaxial strain, considering the sum of both G+
and G−, shows a small reduction in 〈g2

�〉 of 0.0017 eV2,
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FIG. 9. Electron-phonon coupling 〈g2〉 for strained graphene at
(a) � point, and (b) qZZ and qAC .

which corresponds to −2% with respect to the value for the
pristine case. A more complex behavior takes place in qZZ

and qAC as a function of uniaxial strain: the 〈g2〉 in the TO
branch starts to decrease with a nonlinear dependence, while
in the LA branch the e-ph coupling increases with almost
the same rate as the corresponding one of the TO. In the
same way that the phonon eigenvector polarization behaves
under uniaxial strain, these changes occur faster in ZZ than
AC, with the LA branch overcoming the TO after 3% of ZZ
strain. However, if we take into account the sum of all the
branches in qZZ and qAC , the total 〈g2

q〉 for ZZ and AC strains
are very similar, and increase only by 2% with respect to
the pristine case. Therefore, considering both the � and qZZ

and qAC contributions to the e-ph coupling, we have that the
total 〈g2〉 in uniaxially strained graphene remains practically
constant.

To understand the trend shown in Fig. 9, it is important
to note that 〈g2〉 ∼ (δV )2/ω [see Eqs. (D2) and (D3)]. Thus,
considering only the contribution of ω, due to the phonon
softening of the Kohn anomalies, one would expected an
increment in 〈g2〉. However, from Fig. 9 we can see that 〈g2〉
decreases for some phonon modes as a function of strain. On
the other hand, it should be noted that for ZZ and AC strain
the pattern of the atomic vibrations in the � point remains the
same as in pristine graphene, even though the atomic distances
α and β are not equal. Meanwhile for qZZ and qAC, as a result
of the Kohn anomaly shift from the high symmetry point K, the
mixing of the phonon eigenvectors for the TO and LA branches
induces an important modification of the atomic vibration with
respect to pristine graphene. Therefore, the behavior of 〈g2〉 as
a function of uniaxial strain is mainly due to the change in the
polarization of the phonon eigenvectors, which contributes to
the enhancement (reduction) of the e-ph coupling in the LA
(TO) branch.

Regarding the anomaly in the phonon dispersion for the
LA branch at qZZ and qAC discussed in Sec. III B, based on
the substantial increment of 〈g2〉, it could be assigned to an
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emergent Kohn anomaly in uniaxially strained graphene. This
feature is a major difference in the e-ph coupling between
pristine and uniaxially strained graphene, due to the presence
of a new intervalley phonon-scattering channel for electronic
states close to the Dirac point, in addition to the TO branch. On
the other hand, it was previously reported that in comparison
to many-body theories which include electronic correlation
effects, standard DFT underestimates the e-ph coupling of
the E2g and A′

1 phonon modes of graphene [39]. Therefore,
the inclusion of such many-body effects could give rise
to a stronger Kohn anomaly and e-ph coupling than our
results. However, the use of linear response theory to compute
the phonon dispersion and e-ph coupling is, at present, not
implemented in many-body methodologies such as GW.

Here we have shown that uniaxial strain induces a non-
negligible Kohn anomaly even for small strain rates, which
opens the possibility to be experimentally observed. It would
be even more interesting to evaluate the contribution of this
anomaly to those graphene properties which depend on the
e-ph coupling. For example, it could be important to determine
whether this new Kohn anomaly contributes to the splitting of
the double-resonance Raman scattering 2D band [40–44] or to
the intrinsic electronic resistivity [21], where until now only
the optical A′

1 intervalley phonon mode was considered.

IV. CONCLUSIONS

We have performed a first-principles study of the structural
properties, Kohn anomalies, and e-ph coupling for uniaxially
strained graphene in the ZZ and AC directions. For ZZ strain
we found a small contraction of the bond perpendicular to
the strain direction, that increases the corresponding force
constant. Evaluating the shift of the Dirac point from K,
the phonon nesting vectors qZZ and qAC were calculated.
Analyzing the phonon dispersion we found that a Kohn
anomaly in qZZ and qAC emerges as a function of the uniaxial
strain, in the LA branch. For both the original Kohn anomaly
in the TO branch and the new anomaly in the LA branch,
there is a polarization of the phonon eigenvectors as induced
by the strain, in directions parallel and perpendicular to the
applied strain, in the same way as is known to occur for G+
and G− at �. The softening of frequency in the Kohn anomaly
shows a linear behavior as a function of the strain, except
for the TO branch which shows a nonlinear softening, and
becomes almost constant for ZZ strains higher than 3%. From
the analysis of the average e-ph coupling matrix element square
over the Fermi surface as a function of the uniaxial strain, for
the � point we found that the strain has a small effect on the G+
and G− phonon modes. For the TO branch there is a reduction
of 〈g2〉 at qZZ and qAC , while for the LA branch there is a
large enhancement of the e-ph coupling as a function of strain.
Such behavior is mainly a consequence of the change in the
polarization of the phonon eigenvectors because of mixing of
the LA and TO modes induced by the uniaxial strain.

Finally, it is important to emphasize that uniaxial strain in
graphene induces a Kohn anomaly and enhancement of the
e-ph coupling in the LA phonon branch, in contrast with the
view commonly assumed that the e-ph coupling around the K
point is present only in the TO phonon branch.
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APPENDIX A: UNIAXIAL STRAIN

In general, when an isotropic material is subjected to
uniaxial mechanical strain, there is a deformation in the
perpendicular direction of the applied strain. In the linear
elastic region, the Poisson’s ratio between the transverse strain
(ε⊥) and the longitudinal stain (ε‖), defined as −ε⊥/ε‖, is
constant. This relation could be very useful to model uniaxial
strain, but its range of validity strongly depends on the
material. In graphene, nonlinear effects and relaxation of the
internal atomic coordinates can produce a deviation from that
approximation [36]. Therefore, in this work for a given ε‖
we minimize the total energy as a function of ε⊥, allowing
the relaxation of the internal atomic positions in each step, in
order to get vanishing interatomic forces.

For the description of the atomic structure let us consider
the diatomic unit cell of graphene under two mutually
perpendicular deformations. The first one is along the AC
direction and the second one is in the ZZ direction, as defined
in Fig. 1(a). In such a case, the lattice vectors are given by

a1 = 1

2
a0(1 + εZZ)x̂ −

√
3

2
a0(1 + εAC)ŷ,

a2 = 1

2
a0(1 + εZZ)x̂ +

√
3

2
a0(1 + εAC)ŷ, (A1)

where a0 is the lattice constant of pristine graphene, and εAC

(εZZ) represents the applied strain in the AC (ZZ) direction.
Under these considerations, when ε‖ = εZZ then ε⊥ = εAC ,
and vice versa.

For both ZZ and AC strains the internal displacement of the
carbon atoms is along the AC direction, with two different
interatomic distances, α and β (see Fig. 1). The atomic
positions in uniaxially strained graphene could be described
by the relations

C1 = 1

2
a0(1 + εZZ)x̂ + 1

2

(√
3

3
a0 + �α

)
ŷ,

C2 = 1

2
a0(1 + εZZ)x̂ − 1

2

(√
3

3
a0 + �α

)
ŷ, (A2)

where a0

√
3/3 is the C-C distance in pristine graphene, and

�α = α − a0

√
3/3 represents the change in the interatomic

distance due to the uniaxial strain.

APPENDIX B: KOHN ANOMALY SHIFT

In graphene Kohn anomalies may occur only at q nesting
vectors which connect two Dirac points k1 and k2 = k1 + q.
Under uniaxial strain, the hexagonal symmetry of the recipro-
cal space is lost and a shift of the Dirac point from K is induced;
consequently there is also a displacement of the Kohn anomaly
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away from q = K. To follow such displacement, we employ
the following reciprocal lattice vectors:

b1 = a

a0

1

(1 + εZZ)
x̂ − a

a0

1√
3(1 + εAC)

ŷ,

b2 = a

a0

1

(1 + εZZ)
x̂ + a

a0

1√
3(1 + εAC)

ŷ, (B1)

where

a = |a1,2| = 1
2a0

√
(1 + εZZ)2 + 3(1 + εAC)2 (B2)

is the lattice constant, and the reciprocal space is given in units
of 2π/a.

The Brillouin zone corresponding to the uniaxially strained
graphene is schematically represented in Fig. 1(b), with the
high symmetry points for the uniaxially strained system given
by the relations

K = 2

3

(
a

a0

)3 1

(1 + εZZ)(1 + εAC)2
x̂,

M =
(

a

a0

)
1

1 + εZZ

x̂, (B3)

K′ = 2M − K.

For ZZ (AC) strain in accord with Fig. 1, the Dirac point shifts
to the left (right) of the K point. Considering � as the distance
between the Dirac point and the K point, the nesting vectors q
which indicate the position of the Kohn anomaly (formerly at
K) are

qZZ = 2(M − K − �x̂), qAC = 2(M − K + �x̂), (B4)

which means that the shift of the Kohn anomaly should be
along the K-M line.

APPENDIX C: CLASSICAL ATOMIC DISPLACEMENT

For a given phonon mode qν with frequency ωqν , the
classical atomic displacement uqν

κm as a function of the time
t for the κth atom in the mth unit cell is

uqν
κm =

∑
s

∣∣ηqν
κs

∣∣ cos
(
q · Rm + ϕqν

κs − ωqν t
)
ŝ, (C1)

where η
qν
κs is the complex eigenvector of the phonon mode qν

with phase ϕ
qν
κs along the Cartesian direction s, while Rm is

the position vector of the unit cell.
In a particular unit cell of graphene, the atomic displace-

ment for in-plane phonon modes is reduced to

uqν
κ = ∣∣ηqν

κx

∣∣ cos
(
Φqν

κ − ωqν t
)
x̂ + ∣∣ηqν

κy

∣∣ cos(ωqν t)ŷ, (C2)

where Φ
qν
κ is the phase difference between the x and the y

direction.
From Eq. (C2) we can see that each carbon atom oscillates

in elliptical orbits around its equilibrium position given by
Eq. (A2). For Φ

qν
κ = nπ with n an integer number, the atoms

move in straight lines with a slope of |ηqν
κy |/|ηqν

κx |. In particular,
when |ηqν

κy | = 0 or |ηqν
κx | = 0, the atoms move respectively

along the x or y axis, regardless of Φ
qν
κ . If |ηqν

κx | = |ηqν
κy | and

Φ
qν
κ = nπ/2 with n an integer number different from zero, the

atoms move in circular orbits counterclockwise for n > 0 and
clockwise for n < 0.

In pristine graphene, for the Kohn anomaly at �, each
one of the degenerate E2g modes corresponds to |ηqν

κx | = 0 or
|ηqν

κy | = 0; meanwhile for the second anomaly at K in the A′
1

mode shows the conditions for circular orbits. Consequently,
between these two anomalies along the TO branch, the atomic
vibrations correspond to elliptical orbits whose eccentricity
varies from 1 in the E2g mode, to 0 in the A′

1 mode. This
behavior of the atomic vibrations is due to a mixing of the
phonon eigenvectors of the TO and LA branches, which belong
to the same irreducible representation of the point group of q
outside the high symmetry points �,K, and M.

The atomic vibrations of the Kohn anomalies induce large
bond distortions that couple to electronic states close to the
Dirac points through intravalley (q ≈ 0) or intervalley (q ≈ K)
phonon scattering, resulting in strong e-ph coupling [45].
Therefore, modifications on the vibrational phonon mode of
the Kohn anomaly should induce changes in the e-ph coupling.

APPENDIX D: ELECTRON-PHONON COUPLING

In a metal, the strength of the e-ph coupling for a
given phonon mode qν is characterized by the dimensionless
constant λqν :

λqν = 2

�ωqνN (EF )

∑
kij

∣∣gqν

(k+q)j,ki

∣∣2

× δ(εki − EF )δ(ε(k+q)j − EF ), (D1)

with N (EF ) as the electronic density of states per atom and
spin at the Fermi level EF . The e-ph coupling matrix element
g represents the probability of scattering from an electronic
state εki with momentum k and band index i, to another state
ε(k+q)j via the absorption or emission of a phonon qν with
frequency ωqν , and is defined by

g
qν

(k+q)j,ki =
√

�

2ωqν

∑
κs

1√
Mκ

ηqν
κs 〈k + q,j |δq

κsV |k,i〉, (D2)

where Mκ is the mass of the κth atom in the unit cell, and δ
q
κsV

denotes the first-order change in the total crystal potential with
respect to the displacement of the atom κ in the s direction.

In graphene N (EF ) = 0, and therefore λqν is not well
defined. Following the work of Piscanec et al. [20], for
graphene we characterize the strength of the e-ph coupling
in the Kohn anomalies by means of the average e-ph coupling
matrix-element square over the Fermi surface 〈g2

qν〉, defined
as

〈
g2

qν

〉 =
∑

kij

∣∣gqν

(k+q)j,ki

∣∣2
δ(εki −EF )δ(ε(k+q)j −EF )∑

kij δ(εki −EF )δ(ε(k+q)j −EF )
, (D3)

where
∑

kij δ(εki − EF )δ(ε(k+q)j − EF ) defines the phase
space. In practice, the Dirac delta functions should be
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broadened for a numerical evaluation. However, the smearing
of the double delta functions is canceled when dividing by the
phase space.

In pristine graphene, the Dirac point is exactly localized at
K, which is commensurable with k grids which are multiples of
3. Therefore, Eq. (D3) simplifies to 〈g2

K〉 = ∑π
i,j |g(2K)i,Kj |2/4

and 〈g2
�〉 = ∑π

i,j |g(K)i,Kj |2/4, where the sums are performed

on the two degenerated π bands at the Fermi level [20]. In
uniaxially strained graphene, due to the shift of the Dirac point
from K, it is not possible to obtain an exactly commensurable
k grid. Thus, we had to use the general definition of Eq. (D3)
with a dense k grid and a small but finite smearing. We verify
that our results do not change in the range of 0.05 to 0.30 eV
of Gaussian smearing.
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