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Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets
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When two Landau levels are brought to a close coincidence between them and with the chemical potential in
the integer quantum Hall regime, the two Landau levels can just cross or collapse while the external or pseudospin
field that induces the alignment changes. In this work, all possible crossings are analyzed theoretically for the
particular case of semiconductor trilayer systems, using a variational Hartree-Fock approximation. The model
includes tunneling between neighboring layers, bias, intralayer, and interlayer Coulomb interaction among the
electrons. We have found that the general pseudospin anisotropy classification scheme used in bilayers applies
also to the trilayer situation, with the simple crossing corresponding to an easy-axis ferromagnetic anisotropy
analogy, and the collapse case corresponding to an easy-plane ferromagnetic analogy. An isotropic case is also
possible, with the levels just crossing or collapsing depending on the filling factor and the quantum numbers of
the two nearby levels. While our results are valid for any integer filling factor v (=1,2,3, . ..), we have analyzed
in detail the crossings at v = 3 and 4, and we have given clear predictions that will help in their experimental
search. In particular, the present calculations suggest that by increasing the bias, the trilayer system at these two
filling factors can be driven from an easy-plane anisotropy regime to an easy-axis regime, and then can be driven
back to the easy-plane regime. This kind of reentrant behavior is a unique feature of the trilayers, compared with

the bilayers.
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I. INTRODUCTION

The integer quantum Hall (IQH) effect in a semiconductor
quasi-two-dimensional electron gas (2DEG) is essentially a
single-particle phenomena [1]. The magnetic field applied in
the direction perpendicular to the layer quantizes the in-plane
kinetic energy, forming the celebrated Landau levels. The
degeneracy of each of these Landau levels (LLs) is given by
Ny = AB/®y, with A being the area of the 2DEG in the x — y
plane, B the magnetic field strength along the z direction,
and ®¢ = ch/e the magnetic flux number. The adimensional
filling factor v is defined as v = N /Ny, with N being the total
number of electrons; for 2DEG’s, it is usually expressed as
v=(N/A)/(B/®Py), in terms of the two-dimensional density
N/A of the 2DEG. For typical densities N/A ~ 10'! cm?
and B ~ some teslas, filling factors v = 1,2,3, ... are easily
achieved. Ateach of and around these integer filling factors, the
chemical potential lies in the gap between two Landau levels,
and the 2DEG behaves nontrivially, with zero longitudinal and
Hall quantized resistances. These are the hallmarks of the IQH
effect, first observed by von Klitzing, Dorda, and Pepper in
1980 [2].

At even stronger magnetic fields, the increasing degeneracy
of the Landau levels leads to filling factors smaller than one,
and the 2DEG enters in the fractional quantum Hall (FQH)
regime, with a somehow similar experimental phenomenology
as in the integer case, but at particular fractional filling factors
[3]. The stability of the 2DEG at these fractional v’s is
understood as a many-body effect induced by the Coulomb in-
teraction among electrons in partially filled Landau levels [4].

However, many-body effects can also dominate the physics
of the 2DEG even in the IQH regime, at the crossing of two
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Landau levels. The appearance of broken-symmetry states
like easy-axis or easy-plane ferromagnets at these crossing
situations has been termed under the name of quantum
Hall ferromagnets (QHF) [5]. Single-layer QHF have been
extensively studied via magnetotransport measurements [6—9].
Near LL crossings in tilted magnetic fields, the longitudinal
resistivity as a function of the in-plane component of the
magnetic field exhibits hysteretic spikes, which signals toward
quantum Hall ferromagnetism [10]. The resistance spikes and
hysteretic transport properties were discussed theoretically in
Ref. [11], using a self-consistent RPA/Hartree-Fock theory.
In bilayer systems or single layers with two subbands,
spin-split LLs from distinct subbands cross even without a
tilted magnetic field, as observed experimentally [12-14] and
discussed theoretically [15-19] in many previous works. In
particular, and based in a variational Hartree-Foch theory,
Ref. [18] provides an exhaustive classification of the pos-
sible ferromagnetic anisotropies: depending on the quantum
numbers of the two crossing levels, it was found that bilayers
may exhibit isotropic, easy-plane, or easy-axis ferromagnetic
states. More recently, it was shown that near opposite spin LL.
crossings, magnetotransport and NMR measurements suggest
a high degree of spin polarization, which in turn points to a
ferromagnetic instability of the 2DEG [20]. Later experiments
using tilted magnetic fields lend further support to this
suggestion [21]. On the theoretical side, in Ref. [22] the work
of Jungwirth and MacDonald [18] was generalized by allowing
a finite width to the subband wave functions along the growth
direction, the subband wave function itself being obtained
through a self-consistent local density approximation (LDA).
The results were found in agreement with the experimental
findings [20,21], explaining the stability of the observed
easy-plane (easy-axis) ground state at v = 3 (v = 4). A good
agreement was also found with the theoretical results of
Ref. [18], validating the strict-bidimensional approximation
used in this work for the subband wave function in the growth
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direction. Using spin density-functional theory, plus a linear
response approach for the magnetotransport calculations,
Ref. [23] investigates the ringlike structures formed in the
longitudinal resistivity p,, of a two-subband semiconductor
quantum well, when plotted in a density-magnetic field phase
diagram [24]. Their theoretical findings are consistent with
the experimental results [21,25] for the case of crossings
between opposite-spin LLs, but not for the case of crossings
between same-spin LLs. For this later case, the authors
suggested that a better treatment than the local spin density
approximation (LSDA) for the exchange functional may be
needed [26].

It is the aim of this work to discuss how many-body effects
also manifest in trilayer systems in the IQH regime at the
crossing between two Landau levels of the trilayer. As we will
see, the three possible types of magnetic anisotropies that are
present in bilayers (isotropic, easy axis, and easy plane) are
also present in trilayers, but with some unique features that
make these systems particularly attractive for experimental
search. For instance, we have found that by increasing the
bias applied to the trilayers, the system can display easy-plane
anisotropy, then easy-axis anisotropy, and then again easy-
plane anisotropy, both for the v = 3 and 4 cases, with the effect
being however much more pronounced in the case v =4. A
similar reentrant behavior has been also found at zero bias at
v = 3, with the energy of the central layer playing a similar
role to the bias.

Trilayer systems have been already studied theoretically at
zero magnetic field [27-29], and in the IQH effect regime [30].
This last work uses a theoretical approach similar to the one
used here, but the analysis is restricted to the case of one (v =
1) or two (v = 2) fully occupied Landau levels, and focused in
the possibility that the trilayer system develops spontaneous
interlayer coherence, even in the absence of tunneling between
layers, at these two filling factors. Here, we concentrate instead
in the trilayer physics at the Landau level crossings, and make
clear predictions possible to be tested experimentally for the
particular filling factors v = 3 and 4. On the experimental side,
earlier publications report the finding of IQH and FQH signals
in trilayers [31], and the evidence of a trilayer — bilayer
transition induced by increasing the perpendicular component
of the magnetic field [32-34]. More recent experimental work
in trilayers concentrates on the multisubband fingerprints in the
magnetoresistance oscillations as measured in Shubnikov—de
Haas experiments at v =2 and 4 [35], on the effect of a
tilted magnetic field on the IQH plateaus [36], and reports
spectroscopic evidence on the collapse of the interlayer
tunneling gap for particular values of the tilted component
of the magnetic field [37]. The unique features of the IQH
effect in trilayer graphene has been also studied [38]. The
authors observed at high magnetic fields that the degenerate
crossing points split into manifolds, and suggested from this
the existence of broken-symmetry quantum Hall states.

The rest of the paper is organized as follows. In Sec. II
we explain the model, introduce the corresponding single-
particle states, and explain the pseudospin analogy for its
representation. Section III is devoted to the building of the
many-body Hamiltonian in the restricted pseudospin subspace
of the two crossing Landau levels, and how its solution is
obtained within a variational Hartree-Fock method. In Sec. IV
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FIG. 1. Schematic view of the trilayer system. y_; [A_;(2)],
Yo [Ao(2)], and y; [X1(z)] are the eigenvalues (eigenvectors) of the
3 x 3 matrix in Eq. (4). t and A represent the quantum mechanical
tunneling and bias between neighboring layers, respectively. d is
the distance between quantum-well centers, and a magnetic field of
amplitude B is applied along the z direction (thick arrow).

we analyze in detail the magnetic anisotropy terms which
give rise to the easy-axis, the easy-plane, and the isotropic
classification scheme for the crossings, while in Sec. V the
effect of the finite pseudospin field is determined. Finally, the
conclusions are given in Sec. VL.

II. MODEL AND SINGLE-PARTICLE STATES

Let us start from the simplest possible case: the trilayer
at zero magnetic field [27-29]. In the absence of a magnetic
field perpendicular to the layers, and assuming translational
invariance along the layers, the electronic single-particle states
may be written in the factorized form

eik-p

Vo (r) = ——2:(2) 0o, ey

where r = (p,z) with p the in-plane coordinate, £ is the
subband index, and k = (k,,k,) is the in-plane wave vector. o
is the spin index, which can take the values :I:%. and 7, is the
spin-1/2 spinor, such that

o} -l} w

Within our simple model for the trilayer, as schematized
in Fig. 1, the normalized subband wave functions Ag(z) are
written as

re(@) = agy/8(z + d) + be/8(2) + ce/8(z —d),  (3)

with £ = —1,0,1, and the coefficients ag,bg,c¢ being the
eigenstates of the 3 x 3 tight-binding matrix

&1 —t 0
-t & -—t). )
0 —t &3

€1, €2, and &3 are the diagonal energies for electrons in layers
1, 2, and 3, respectively. In our model, each of the three
2DEG’s is represented by an strictly bidimensional metallic
layer; this is the approximation behind Eq. (3). However, this
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approximation is not essential and can be relaxed as it has been
already done in the case of bilayers at zero [39] and finite [22]
magnetic fields. These more elaborated calculations, where
the wave functions Ag(z) have a finite width at the layers,
shows only quantitative differences in comparison with the
strict 2D approximation. We expect that the same type of
considerations regarding this issue will apply to our trilayer
model.

Calling ye(e1,¢2,€3,1) to the corresponding eigenvalues of
Eq. 4) (y—1 € Y0 < 1), the solutions associated with the
wave functions in Eq. (1) have the zero-field energies E; (k) =
Ye + B?k?/(2m*). m* is the effective mass for electrons in
the well-acting semiconductor, typically GaAs. Due to the
in-plane kinetic energy, the zero-field energy spectrum is
continuous.

The physical situation changes dramatically when a mag-
netic field is applied in the direction perpendicular to the
layers. In this case, the eigenstates still may be expressed in a

factorized form, but the in-plane factor must be replaced,
ezk P eivkv
— = Pu, (X)

A VL

&)

with

Pk (x) =

exp [~ "] (x —12Bk> ©
Wl 22 "\ )

Here H,(x) are the nth order Hermite polynomials, n (=
0,1,2,...) is the Landau level orbital quantum number, and
k (=1,2,...,Ny) is the one-dimensional wave vector label
that distinguishes states withina given LL. [z = /ch/eB isthe
magnetic length. The single-particle energy spectrum consists
now of discrete LLs,

Eno =y + (n+1/2hew, — olg|lusB, @)

where w. = eB/(m*c) is the cyclotron frequency, and the
last term is the real-spin Zeeman coupling. Note that E¢, »
does not depend on k,, and this explains the macroscopic Ny
degeneracy of each LL, the same for all of them.

The Coulomb interaction among the electrons, whose
effects will be analyzed in detail in the following section,
mixes (in principle) all the LLs, and then the single-particle
labels &, n, o lose the nice property of being “good quantum
numbers.” In this work, we are interested in the possible many-
body ground states that may occur when two LLs are brought
close to alignment while remaining sufficiently separated from
all other LLs. Following the strategy of Ref. [18] for the
bilayer case, we will simplify the full interacting problem
described above by considering explicitly only the Coulomb-
induced mixing between the two LLs close to degeneracy at
chemical potential, while including the effect of the totally
filled lower energy LLs in the form of single-particle effective
fields. We will denote with the symbol p = 4,] to each
of the two approaching LLs, and we will refer to it as a
pseudospin index or label. The two close to alignment LLs
will have single-particle quantum numbers £(1),n(1),0(1)
and £(]),n({),0(]), respectively, and at least one of them
should be different.
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Within this truncated model, the full set of single-particle
states reduces then to the following wave functions,

exp(iyky)

JLy
Where @n(p).o(p).ky (X) = Pup).k, (X) X N5 (p)-
In a second-quantization language, the operator that creates
a particle in a state with a pseudospin oriented in an arbitrary
direction 71 = (sinf cos ¢, sinf sin¢g, cosf) is described

by
0 A
éjﬁ,ky = COS (E)éﬁ,k) + sin (5)6"”@'%,@, ©)]

where ¢ l x creates a single-particle state whose wave function
is given in Eq. (8). As we will see, the value of 7z at crossing
will allow us to provide a general classification scheme for all
possible coincidences in trilayers. Note that for 6 = 0 (m, =
+1)or 6 = 7 (m, = —1), the electron is in a pure pseudospin
state 1 or |, while for any other value of 6 the electron is in a
mixed pseudospin state.

wp,ky (I') = )\S(p) (Z)(ﬁn(p),a(p),ky ()C)

III. MANY-BODY HAMILTONIAN

The many-body Hamiltonian that represents the interaction
between two crossing LLs, taking into account the mean field
contribution of lower filled LLs, can be written in the truncated
two-dimensional pseudospin Hilbert space in the compact
form

Ny 2
H=— z : Z : 2 : T p(a’) kcl’(d)k
i=1,x,y,z k=1 a,a'=1
Ny
2 : 2 : 2 : ké,kl,kz
lj =1Lx,y.2 ki k] ay,af
kz,ké = laz,aé =1
« 0‘1 o a, ax AT Jf (10)
T Cota kg E ptag s Crten i Cpan b

where p(1) =1, p2) =1, ., 7y, T, are the Pauli spin
matrices, and 77 is the 2 x 2 identity matrix. The potential
W, ; represents different combinations [see Eq. (16) below] of
the Coulomb interaction matrix elements Vy . 1, 5,

V]k ki, ko
/’1/’2/’1]’2

= [@n [ @rvg e e

2
e

X ———— r ). 11
T r2|¢p1,k1( DY,k (r2).  (11)

€ is the dielectric constant of the semiconductor well ma-

terial (~12.5 for GaAs). The single Slater approximation

to the many-electron state with pseudospin orientation 7 is

expressed in the form

Ny
il =[] chelo). (12)

Then we
particle  as

in Eq. (9).
energy  per

with the &}, as defined
find the Hartree-Fock
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TABLE 1. Each entry in the table defines the coefficient 4051.";.g 'pé’pl’pz. Only the four pseudospin indices are shown as up and down arrows,
and they should be multiplied by the factor —i when indicated. As an example of the use of the table, fori = j = z, the only nonzero coefficients

are oM = a}JW = 1/4 and o]}V

=it = —1/4.

1

X

y

Z

LA = L) = 1=

M =M = = W

YA = =i =t =
(=)

M = =L = M =

M= 1AL = U = LUt
AT = U = 1l = LIt
A = =M = M = LM

(—i)
M= At = i = L

M= 1 = It = LU
(=)
At = =4t = =M = LI
(=)
A = UM = = = LM

M = = = 4 = L
(=)

M = 4l = A = Ut
MU= UM = b =~y
MUt =~ = = = L

(—=1)
M = L =~ = Uit

follows:
- _ (YDl Ay )
egr(ih) = ————— (13)
Ny
= - Z (b— U11_2 ) Z Ui jmim;, (14)
i=x,y,z i,j=x,y,2
where
Wk kik ko Kok
Z_Z 1212_‘/1/13112) (15)
Ny ki o=1
Kk K Kk . .
The quantities W ‘ """ in Eq. (15) are related to the Voo o ; through the following definition:
ki ko ki ko PPy p1p2 v KK ks
Wiqj - Z & vp’l,p’z»pl,pz’ (16)
P1:P5: P12
where the coefficients ozp LPPUP e given in Table I. Replacing this definition in Eq. (15) yields
1 Yo
- PisPysP1sP2 kikokiky  yrkaokikiks
Uij = Ny Z ij Z (Vpi,pé,pl,pz pi,pé,pl,pz)’
PPy P1>P2 ki,ky=1
piphpips 1 = —-q%/2
= Y o 3 \ Uit @ = [ a e Py (@) ). (17)
PPy P1,D2

In passing from the first to the second line in the above equation we have used the quasi-2D Fourier representation of the Coulomb
interaction, for obtaining the relation [18]

—Z

¢k1k2 1

kl k2 ki .k
P1:P3:P1:P2

ka,ki,kiky ) —
P1:P3: D1 P2

Upi.py.p1.p2(q) 18 the product of two terms,

1
v
P’lspésﬂlspz

(g) is the subband factor and !

_
Uplphoprpa (@) =0

P1:P2P1. D2

d’q
(2m)?

1 ° _an
b Vpl.phprop(0) — A qe Vpl. o (@)dq ).

PPy P1,P2

-4*/2
€ [Upi.péqpn,pz(o) -

1
DV ) 0080 £ p) (D

Upiapé,m,pz(ﬁl)]’

(18)

19)

(g) is the in-plane factor. This last factor depends only on the wave function

in the 2D plane that is the same in bilayers and trilayers. For this reason the only term that differs from the bilayer case is the
subband factor. In this last equation and in the following of this work we have used /g (the magnetic length) as unit of length
and e?/elp as unit of energy. The first factor in Eq. (17) at ¢ = O represents the Hartree contribution and the second factor
corresponds to the exchange contribution.

The subband factor is defined by

o0 o0
1 — —
Ve(p)6(p.p0.(p) (D) = /_Do dz /_m dzae™ 2 ey (2D ke (22 he () (2D A () (22)- (20)

085304-4



PSEUDOSPIN ANISOTROPY OF TRILAYER ...

From Egs. (3) and (20) we have

PHYSICAL REVIEW B 94, 085304 (2016)

1
Ve £ (o) (@) = Qe AE(py@e(p) @t (py) T PeppbeppLe(pnbep) F Caipi)Capy Cap) Ce(p2)

—qd
+ [@e )by @epnbepy) T ey eppbepasom €4 + [becopCenbeoCeim

+ e ey Cepbeipm |71 [asonCen s Ceipn + s Cernapm]e . Q1)
Note that expression (21) reproduces all cases of a bilayer system if we take b = 0 and ag, c; as given by Eq. (1) of Ref. [18].

The in-plane factor is given by

I el

22 oo
= iq:x1 gt
Vbt @) = q /dQ /;oo Ax1€ %G 0), (o120, 2P0 (). =g, 2(X1)

00
—igexy 3t
X/; d)C2€ 1 xz¢n(p£)_g(p’2),,q),/z(x2)¢n(p2),a(p2),qy/Z(XZ)v

o]

= 5a<p;>,a<p1>5a<p;>,a(pz>5n<p;>n(pu.,n(pz)n(p’z)(

where dQ2 is the 2D solid angle. Here L)'(x) are the gen-
eralized Laguerre polynomials, n;~ = min[n(p;),n(p;)] and
n> = max[n(p;),n(p})]. For later use, L”(x) = L,(x) are the
Laguerre polynomials.

Before concluding this section, it is important to emphasize
the physical content of the variational Hartree-Fock state in
Eq. (12): it is a single Slater state for Ny electrons, all having
the same value of 71, and remembering that N, is the exact
degeneracy of each LLs. As the angles 6 and ¢ are not fixed,
they provide the minimizing energy parameters in all later
calculations. It is also worth at this point to remark that for all
derivations in this section we have used the general expression
for the wave function ¥, x, (r) in Eq. (8), only in Eq. (21) we
have used the particular expression of Eq. (3) for the subband
wave functions Ag(z). In particular, the crucial factorization
in Eq. (19) is valid as long as the factorization in Eq. (8)
is fulfilled. The different approximations for A (z) will only
impact on v;l’i)f(!’é)f(ﬁl)«E(Pz)(q)’ that in turn as we will see

below may lend only to quantitative changes in the results.

IV. MAGNETIC ANISOTROPY

The results of the previous section naturally lead to the con-
cept of magnetic anisotropy in two-dimensional ferromagnets.
In the present case of QHF, Eq. (14) applies and the possible
types of magnetic anisotropies are embodied in the quadratic
coefficients U; ;. In this section we will provide general
expressions for these magnetic anisotropy coefficients U;;
covering all possible crossings between two LLs. To calculate
the anisotropy coefficients U;; we will use the expressions
(17), (19), and Table I. We begin by considering the crossing
of LLs that belong to the same subband.

A. Crossing of Landau levels from the same subband:
§) =&

In this case only two LLs with different spins can be
aligned. From Eq. (22), this means that p| = p; = £ p,
and p, = p, =+ p. This condition arises from the first
two delta functions that impose real-spin conservation at
the “scattering” process, while the remaining delta function

<Ip! 1/227.[ 2\ "7 —ny . 2 . 2
e ,ni,> —(q—> Ly " ("—)L;z " (q—) 22)
ny 'ny! q \ 2 ! 2 2 2

[
involving the orbital quantum numbers is satisfied auto-
matically: n(p}) — n(py) = n(£p) —n(£p) =0 = n(£p) —
n(£p) = n(p5) — n(p,). From the same Eq. (22), we obtain

then that
2 q° 2
II
v = L, — ,
p.p.p.p Q) q [ (P)< > >:|

27 2 2
II q q
Vp,—p.p—p(@) = 7Ln(p) (7>Ln(p) <7)

while for all other cases v!, | (g) = 0. Using now
P1:Py:P1,P2

Eq. (17) and after inspection of Table I, it is easy to
conclude that there is only one nonzero magnetic anisotropic
term,

(23)

(24)

g’ *\ 7T’
x [an)(?) - L,,(p)(?)} : (25)
If the two LLs have the same orbital quantum number
[n(p) = n(—p)], then U,, =0 and the ferromagnetic state
at the crossing is isotropic [40]. In the isotropic universality
class, all pseudospin magnetization directions have identical
energy, only the ground state has long-range order, and there
are no finite-temperature transitions. A particularly important
example of this case here is the v = 1 situation with £(]) =
EM) =—-Ln(l)=n)=0,06(1) # o(1). On the other side,
since végﬁg’g(q) > 0, for n(1) # n({) Eq. (25) implies that
U., < 0 and the system has a z easy-axis anisotropy (m, =
=£1). In this type of universality class with discrete directions at
which the energy of the ordered state is minimized, the system
has long-range order at finite temperature and phase transitions
of the Ising type. A particularly important example of this
situation is the v = 2 case corresponding to £() = &(1) =
—-1,n(})=0,n(t) =1,0(}) = —%,U(T) = % Here, the only
difference between the bilayer and the trilayer is the subband
factor véa £.6(q), whose sign is however the same in both cases
(positive) [41].
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B. Crossing of Landau levels from different subbands:
E) # &)

We will analyze now the crossing between two LLs with dif-
ferent subband indices. Several cases are possible, as follows.

1. Same spin and orbital quantum number: o(}) = o (1),
n(}) =n(1)
In this situation the three delta functions in Eq. (22) are
satisfied in all cases, yielding that

2 N7
iln proprpn (@) = . |: "<%>:| ' 26)

for all possible choices of the four pseudospin indices; L,(x)
are the Laguerre polynomials. Using once again Eq. (17) and
Table I, as in the previous case, one obtains now four nonzero
anisotropic terms,

d 2
U, = E[(“szm —agy))” + (G — )]

L 1
X Wzen eemeeneen Ve .EEEW)

1
= 2V EhEAY) (27

— = (2 2 2 2
Use = (@i + cen i)

o 4 qz ? L
—fo dge > [Ln<7>] Vih.£.£h) 6@

(28)
d
Ui = U = 2, [asmasm(asm - "at))
2 2 2 2
+ bg(T)bg(t)(bg(T) - bg(t))'i‘cé(T)cé(U(cé(T) - Cé(i))]

1 [} 2 2 2
——/ dq e 7| L, 4
2 Jo 2

1 1
X Wep,emene) @D Vepeeen@)- (29
The quadratic contribution in Eq. (14) reduces here to

Z Ui jmim; = Uxxmjzc +2U,,;m,m; + Uzsz. (30)
i,j=x,y,2

This last equation can be minimized under the constraint
m,zc + m? + m% =1 by using a Lagrange multiplier. If the
conditions (a) Ufz — Uy U,, <0 and (b) U, ,U,, > 0 are
satisfied, the system will have a minimum when (c) U, m, +
U,,m, =0and (d) U,;m, + U,,m, = 0. Since conditions (c)
and (d) define one plane each in the m,,m,,m_ space, they are
satisfied simultaneously only at the intersection line between
the two planes, which is the m, axis. Assuming that the
remaining conditions are satisfied, the trilayer system exhibits
in this case y easy-axis anisotropy: m, = m; = 0,m, = %1.
This y easy-axis configuration is new in comparison with
the results for bilayer, since it represents two degenerate
states that are fixed combinations (6 = 7 /2, = +m/2) of the
pseudospin up and down states with a phase factor. Note that
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according to Eq. (9) each electron is then in a mixed pseudospin
state in the y easy-axis anisotropy class, while it is in a pure up
or down pseudospin state in the z easy-axis anisotropy class.
The y easy-axis anisotropy stems from the fact that the up
and down pseudospin states have different charge distributions
in each layer. Hence the total energy can be lowered more
efficiently by mixing the up and down pseudospin states for
some values of parameters.

The case UZ, = Uy, U..
may be simplified to

Z U,Jmm]—(

i,j=x.,y,z

is particular, since then Eq. (30)

wx My + Uz my)?, @31

whose minimum is given by the equation /U,,m, +
/U, m; = 0. This is the equation that defines a single plane
inthe m,,m,,m, space, which is however away from the x — y
plane. The trilayer systems exhibit easy-plane anisotropy once
again. Geometrically, for this particular case, the two planes
of the general situation collapse to a single one. Conditions
(a) and (b) have been checked numerically, showing that
the system can indeed present either y easy-axis or easy-
plane anisotropy. Systems with easy-plane anisotropy have a
continuum of coplanar pseudospin magnetization orientations
at which the energy of the ordered state is minimized, and
do not have long-range order but do have Korterlitz-Thouless
phase transitions at finite temperature.

2. Same orbital quantum number and different spins:
o(}) #a (1), n(l) =n(1)

In the case when the crossing is between LLs with equal
orbital quantum numbers and different spins we obtain,
through similar arguments as used in the case of the crossing
between LLs in the same subband, that the only nonzero
anisotropy term is U,,, with the same value as in Eq. (27). U,
is always non-negative and the crossing belongs then to the
easy-plane category for U,, > 0, with the x — y plane as the
easy plane. When U, = 0 the quantum Hall ferromagnetism
at the crossing is (fine-tuning) isotropic [40].

3. Different orbital quantum numbers and equal spins:
o({)=a(1), n(}) # n(1)

Applying once more Eq. (22), since the spins of the two
approaching LLs are the same, the two delta functions acting
on the possible spin values are satisfied automatically, and
only the delta function acting on the orbital quantum numbers
is operative After some inspection, one concludes that only
vp 2.0 (@), v,, —p.p.—p(q),and v[, _p.—p.p(q) are different from
zero. We already have the expressions for the first two, while

@) = 27 n.! g\ " pnene 2\ (32)
p -p.—p.r\4 g 1\ 2 n- 2 .

From Eq. (17) and Table I we obtain only three nonvanishing
quadratic anisotropic terms:

d 2 2
E[(“szm —azy)” + (G — i)’

1 e e q2 ? 1
_Z/o dge = ”Ln(n(?)] VE.ehsh a0 (@)
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2 2
q 1
+ [Lnu)(?)] Ve (@)

q’ N\ 1
— 2L (7) Lnct) <7) vsm),su)mxsu))@)} . 33)

Lnll [ e g\ "
Ui = Uy = __n_ dge = q_
YT 0 2

2 2
n.—n-. q 1
X[LK (7)] Vensemen(@):- (34)

Using that m? + m? = 1 — m?, the quadratic contribution
to anisotropic energy is in the form

Y Upmimj = U = Updm? + Uy (35)

i,j=x,y,2

If U,, — U,y < 0 the trilayer has easy-axis anisotropy, while
for U,, — U,, > 0 it has easy-plane anisotropy. The condition
U,, = U,, defines the boundary between the two possible
crossings. A numerical analysis of this case is provided in the
next section, since it corresponds to the experimental relevant
case v = 3.

4. Different orbital quantum numbers and different spins:
o(}) #a(t) n() #nt)

Forn(1) # n(})and o (1) # o({), the only difference with
the previous case is that vl',,_ p—p.p(@) = 0, since real spin
must be conserved at the crossing. The only nonzero quadratic
anisotropic term is U, as given in Eq. (33). The sign of
U,, alone determines the type of anisotropy: U,, > 0 induces
easy-plane anisotropy; U,, < 0induces z easy-axis anisotropy.
U,, = 0 corresponds to the (fine-tuning) isotropic case [40]. A
detailed numerical analysis of this case is provided in the next
section, since it corresponds to the experimental relevant case
v =4

C. Numerical results for the general case

For arbitrary values of ¢, &, €3, and 7, the eigenvalues
and eigenvectors of Eq. (4) should be obtained numerically.
This implies that the subband wave functions of Eq. (3)
must be handled also numerically. One particular case for
which the analytical solution of Eq. (4) is available is the
zero-bias situation €; = ¢3. We will analyze then this case first,
considering that it is also a standard experimental situation.

1. Trilayer at zero bias: ¢, = e3 =0

The subband eigenvalues y; here are given by yy = 0, and

yer = 5les £1(e3) + 817, (36)
with e/ = ¢;/t. The associated normalized eigenvectors are
for £ = —1 (subband ground state),

1
apg = —Cy = E, b() = 0, (38)

PHYSICAL REVIEW B 94, 085304 (2016)
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FIG. 2. Zero-bias v = 3 magnetic anisotropy phase diagram in
the €5 — d /1 parameter space for the trilayer system. The isotropic
(D) line divides the easy-axis (EA) region on the left from the easy-
plane (EP) region on the right. Left inset: schematic view of the
trilayer for positive (upper inset) or negative (lower inset) €. Right
inset: schematic view of the Landau levels crossing at v = 3; the
crossing conserves the real-spin value. p represents the chemical
potential. The 1, symbols represent the two crossing pseudospin
levels.

for £ = 0 (first-excited subband state), and

1 4!

- hy=——"
(J/]2+2)1/2 1 ()/12-1-2)1/2

for the last-excited state. For &5 > 1, y_i(&5 > 1) — 0
and y; — &5. Accordingly, a_i(e5 > 1) =c_i(e5 > 1) —
1/ ﬁ, and b_,(¢5 > 1) — 0; this is the (effective) zero-bias
bilayer limit. For &5 <« —1, y_; — €} and y; — 0. Accord-
ingly, a_i(e; K =1) =c_1(e; €« —=1) = 0, and b_ (e K
—1) — —1; this is the (effective) zero-bias monolayer limit.
Away from these two extreme limits, the system is in the
trilayer regime, with electrons populating the three layers.

Using these expressions, the analytical evaluation of the
subband potential v;p,] & £ g (@) INEQ. (21) is feasible,
for arbitrary values of the pseudospin. As an example,
we show in Fig. 2 the v =3 magnetic anisotropy phase
diagram, corresponding to the crossing between two LLs
with quantum numbers £(}) = —1,n(}) = 1,0() = +% and
EM)=0,n(1)=0,01) = —i—%, as displayed schematically in
the inset.

As discussed above in Eq. (35), the energetic balance
dictates that the trilayer will display EA (EP) magnetic
anisotropy if U,, < (>) Uy, with U, and U,, as given in
Egs. (33) and (34), respectively, particularized for the case
E)=-LE&1)=0,n()=1,and n(1) = 0. The resulting
phase diagram may be understood as a competition between
the Hartree energy represented by the first term in U, and the
exchange contributions contained in the second term in U,

(39)

ap = —C =
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FIG. 3. Similar to Fig. 2, for v = 4. The two crossing Landau
levels have opposite real-spin values. The dotted line corresponds to
the analytical approximation of Eq. (41), valid for d/Ilp > 1.

and by the full U,,. The Hartree contribution can be evaluated
analytically in this zero-bias case, yielding

d
0l = S [(a — )+ (- )

d 4 es
=—1- - Z . (40
8@( (63 +8 mgﬂ+9 @0

As a function of &}, it attains its maximum value d/4lp
for negative values of &5, while it goes to zero for &5 > 1;
being always positive, it stabilizes the EP type of anisotropy.
This explains why for large enough values of d/[p, the EP
anisotropy dominates the phase diagram. On the contrary, for
small values of d /[ g, the energetic balance is dominated by the
exchange contributions, which induces EA type of anisotropy
on the left region of the phase diagram. For large enough &3,
the trilayer system moves gradually to the effective bilayer
configuration, and we recover the critical value of d/[g found
in Ref. [18] at zero bias, after realizing that in our effective
bilayer the distance between the two occupied layers is 2d.

The relatively large stability of the EA magnetic anisotropy
for &5 ~ 0 may be understood as follows. Splitting U, in
Eq. (33) in its Hartree (U ) and exchange (U] X >) contributions,
the condition U,, < U,, is rewritten as U — U,y < Ufg ;
the signs here are Ug ,—UX, —Ux > 0. On the other side,
for increasing €3, UZZ( U,.) decreases (increases) monotoni-
cally, while —Uz)g displays a weak decreasing behavior, with a
shallow minimum around &5 ~ 0. The important point here is
that U fj — U, exhibits a minimum value for &5 ~ 0, and this
explains the reentrant behavior in the phase diagram of Fig. 3.
For instance, for d/lp ~ 0.8, by increasing &5 the crossing
belongs to the EP anisotropy case, then to the EA type, and
finally to the EP type again.

PHYSICAL REVIEW B 94, 085304 (2016)

FIG. 4. v = 3 magnetic anisotropy phase diagram in the ro-d/lp
parameter plane, for several values of 3. From left to right, &5 = 0.8,
06,04, 0.2,0, —0.2, —0.4, —0.6, and —0.8. The two insets show
schematically the trilayer under low (ro ~ 0) and high (rp ~ 1) bias.

The magnetic anisotropy phase diagram for filling fac-
tor v =4 is displayed in Fig. 3. The two crossing LLs
have quantum numbers £(|) = —1 nl)=10({) = +;, and
E(M) =0,n(1) =0,06(1) = —5, as shown in the inset. The two
real spins being different, the energetlc balance dictates that
if U;; < (>)0 the system will display EA (EP) anisotropy at
the crossing situation. The expression for U,, is the same as
in the previous case. Once again the stability of the EP type of
anisotropy is provided by the Hartree contribution of Eq. (40).
For increasing d, the EP region grows in size at the expense of
the EA region. For large enough d/ [, the boundary between
the EA and the EP anisotropy phases, corresponding to the
isotropic condition U,, =0, or UZ = UX may be obtained
analytically

L(13— 3 )
v wir i 1)
8 forer

*
“2

d(ep)/ly = Y2 -
(1 8+(s 3+ W)

This equation is an explicit example of the “fine-tuning” of
the parameters needed to stabilize the isotropic type of crossing
as introduced before [40]. For large enough &3, we reach the
zero-bias bilayer limit of Ref. [18], d(e;) diverges, and the
system displays EA anisotropy for all values of d/lp.

2. Trilayer with applied bias

While the case &} + &5 = 0, &5 = 0 also allows an analyti-
cal evaluation of Eq. (4) in the presence of bias, to have a more
complete understanding of the possible magnetic anisotropies
we have solved numerically the case ] = —&j = A, and
arbitrary values of €5. A # 0 means that a bias 2A is applied
to the trilayer (see Fig. 1). The corresponding results are
displayed in Figs. 4 (v = 3) and 5 (v = 4).
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09 | |

iy

FIG. 5. v = 4 magnetic anisotropy phase diagram in the rx-d/lp
parameter plane, for several values of 3. From left to right, &5 = 0.8,
0.6,0.4,0.2,0, —0.2, —0.4, —0.6, and —0.8.

For discussing the trilayer properties with bias we introduce
a new adimensional parameter 7, defined as
A*
ra = ———, 42)
Ve +2
with A* = A/t.rpn = 0in the zero-bias case, while rn — *£1
when |A*| > 1.

The phase diagram for v = 3 is given in Fig. 4. As before,
for large enough d/ I3, the lineal increase of the Hartree energy
in U, in Eq. (33) with the distance between layers stabilizes the
EP type of anisotropy. For small values of d//p, on the other
side, the exchange contribution in U, stabilizes the EA type of
anisotropy. Interestingly, the boundary between the two phases
displays a nontrivial behavior depending on the value of £}. In
particular, for €5 < 0 (the standard situation in real samples),
and for d/lg ~ 1, the trilayer displays first EP anisotropy at
small bias, then enters in a EA regime by increasing bias, and
finally the EP anisotropy recovers by further increasing the
bias. A similar situation, although somehow less pronounced
and with the role played by the EA and the EP magnetic
anisotropies exchanged is observed for &5 > 0. By inspection
of U g , one realizes that for &5 < 0, it presents a minimum at
intermediate values of r, that becomes deeper as &; becomes
more negative. For the particular case &5 = 0, this Hartree
energy may be evaluated analytically, yielding

d/ly 1+2A%  d/ly

H _
Vaelrs) = =m0 a e = 16

(1 —2ri +9ri).

(43)

Minimizing this with respect to r», one finds % = 1/3. Eval-
uating, one further obtains U (ra = 0) = d /1615, UZ(r}) =
d/18lg, and that UZFZI(rA =1)=d/2lg. In this case, the
minimum is quite small, and the boundary between the
EA and the EP phases has no evidence of a ‘“reentrant”
behavior. However, as soon as £ becomes more negative, we
have checked numerically that the minimum becomes more
pronounced, and moves to higher values of r . Smaller Hartree

PHYSICAL REVIEW B 94, 085304 (2016)
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FIG. 6. Bilayer limit of the trilayer model, for the v =3 and
v = 4 crossings displayed in Figs. 3 and 4, respectively. Note that the
y axis (r2) is not the same as in these two previous figures (r).

energies help in stabilizing the EA anisotropy, and explain why
this regime increases in size for intermediate values of bias, as
€5 becomes more negative. On the other side, for positive
values of &}, UX(rp) shows only a monotonic increasing
behavior from Ug (ra = 0) = d/16lp towards its maximum
value U (rp = 1) = d/21p.

The v = 4 phase diagram is displayed in Fig. 5. It shows
the same reentrant behavior of the v = 3 case, but much
more enhanced: for intermediate values of rp, the EA type
of anisotropy is stable for large values of d/lp, for the same
moderate negative values of &; as in Fig. 4. The physics is
the same as in the previous case: UZFZ’ (ra) has a minimum
at some rp # 0, and stabilizes the EA anisotropy. However,
since for v = 4 only the sign of U,, matters, the impact of this
nonmonotonic behavior of U Z’Z (ra) on the stability of the EA
anisotropy is much higher than for v = 3.

By taking the appropriate limits, our present results for a
trilayer reduce to the previous ones for a bilayer; this is shown
explicitly in Fig. 6, both for the v = 3 and v = 4 cases together.
To make the comparison more direct, we have changed the
trilayer bias-related parameter r to

AB
J(ABE 447

with A® = A* + &}. The idea here is that A% can be small,
even in the limit A*, —egj >> 1. In this limit, one of the
layers will be essentially empty (the one with the well energy
A*>>1), while the other two layers will be more or less equally
occupied, if both of them have similar well energies. In this
way, we recreate the physics of the bilayer from the trilayer
model, in the limit of large bias.

The trilayer — bilayer evolution is easy to follow for
the v =3 case. In particular, it is quite clear how the
boundary between the EA and the EP anisotropies at
r8 =0 moves from trilayer values such that d/l < 1, to

(44)

T =
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the bilayer critical value of d/lp >~ 1.25, as &, becomes
negative.

The trilayer — bilayer evolution for the v =4 case is
not so straightforward, and it should be thought of as that
the “reentrant” behavior shown in Fig. 5 extends to arbitrary
large values of d/ [, if €5 is negative enough. This is already
observed in Fig. 5, and is reinforced in Fig. 6, for the cases
g5 = —10 and &5 = —80, for which the turning point of
the reentrant behavior lies far away from the limiting value
d/lp =5 displayed in Fig. 6. In both cases, the trilayer —
bilayer evolution displays a nonmonotonic behavior. As &3
becomes increasingly negative, the EA type of anisotropy
becomes first more stable than the EP anisotropy; but after
a given (large) negative value of ¢}, the EA regime loses
stability against the EP regime, finally reaching the bilayer
limit from the “above” side of the limiting bilayer boundary
line.

V. ONE-BODY TERMS

In the previous section we have analyzed the crossing
of two LLs by assuming the absence of the linear terms in
Eq. (14). In the general case some of these linear terms will be
present, and they will modify the simple minimization scheme
outlined in the previous section, restricted to consider only the
quadratic terms in the pseudospin magnetization components.
We will illustrate the influence of these one-body terms for the
particular cases v =3 and v = 4.

Atv = 3 the crossing is between LLs in different subbands,
different orbital radius quantum number, and equal spin. Then
we choose & = 0,n = 0,0 = 1/2 as the pseudospin up and
& = —1,n= 1,0 = 1/2 as the pseudospin down. With this in
mind we write the linear terms in Eq. (14) as

br=—1(yw—y-1 — ho. + A + AY), (45)

Z
by = 1AY, (46)

and b, =0. Here yp — y—; > 0 is the difference between
subband energies and Af is the difference between the
two involved pseudospin-up and pseudospin-down exchange
energies with electrons in the lower (fully occupied) & =
—1,n = 0,0 = 1/2 Landau level. To calculate this exchange
energy difference we can use the results of expressions (24)
and (26), obtaining

o0 2 q2
Af :/0 dge > |:7vi_1,—1,—1,—1(4)_vé‘,—l,—l.o(Q) .

(47)

On a similar line of thought, the electrostatic (Hartree)
energy imbalance between the layers caused by electrons
in the two lower (fully occupied) Landau levels (& =
—1,n=0,0 = £1/2) are Vi = 2d/Ip)(a*, — b*, — ),
Vo3 = (2d/1p)@*, +b*, —c*)), and Vi3 =V + Vo3 =
(4d/1 5)a? 1= 631)‘ This electrostatic (Hartree) energy may
be included as effective bias (Af ) and effective tunneling
(A parameters acting on the pseudospin up and down states.
The resulting expressions for these Hartree contributions

PHYSICAL REVIEW B 94, 085304 (2016)

are

8d
Af = E[ao a,l(cil - ail)

— by b,l(tﬁl + bil - C2,1)/2] (43)

and

4d
8 = 20 - )2 - )

— (b —b2)) (a2 + b2, —c2))/2). (49)

It is important to note that A¥ vanishes both in the zero-
tunneling and in the zero-bias limits. In the # =0 case,
this happens because in this limit subband and layer labels
become equivalent, and then products like aga—; and by b_,
are just zero. In the zero-bias situation, a%l = C%l and by = 0,
resulting again in a vanishing A”. In general, this effective
tunneling parameter will be, however, different from zero,
although it can be made smaller by increasing the distance
between the layers, with the associated exponential decrease
of t [29]. Regarding A fi ,it is finite even in the zero-bias case, it
is an even function of the bias, and it takes its maximum value
when a single layer is predominantly occupied (for instance,
when &5 < 0, or in the strong bias limit).

Equation (14) for the HF energy also includes contributions
to the lineal terms that come from Coulomb interactions
between electrons in the two crossing pseudospin LLs. In the
v = 3 case only U, ; and U, are nonzero:

q 2

1 o0
U.=U,1= _4_1/ dge™ 7
0

6]4
x [”&0,0,0(‘1)—’)1—1,_1._l(q)(1 -q + Z)]
(50)

Then, the energy per electron (14) for the v = 3 can be written
without constant terms in the form

enp(it) = —bym, —bim, + (U, — Ugm?. (51

The behavior of HF energy around the perfect alignment
pseudospin field b7 = 0 depends on the kind of pseudospin
anisotropy. In Fig. 7 we show this behavior for all pos-
sible anisotropy cases. The upper panel corresponds to
the isotropic case U,, = U,,. Equation (51) simplifies to
eqrp(M) = — b, my — bl m;, and the minimization with re-
spect to m, and m, can be done analytically, yielding thatm® =
sgn(by)y/T/11 + (b3 /b, )21, m? = sgn(b?)y/1/11 + (b, /b7 V7],

and
bl
JI+G:/b)? T+ (b, /b7

In the limit |b3/b,| > 1, eyp(m?,m?) — —|b¥|, and note
that this limit includes the case b, = 0 [42]. In the oppo-
site limit |b}|/b, <« 1, the HF energy displays a quadratic
behavior with the pseudospin field b} around the condition
of perfect alignment, eHF(mg,m?) — —|by| — |b;|2/(2|bx|).
For any b, # 0, the pseudospin rotates in the x — z plane,
according to the equation tan6 = sgn(by) sgn(b?) |b,/b%|'/2,
and the isotropic crossing leads to a smooth crossover from

(52)

eHF(mg,mg) =
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FIG. 7. Hartree-Fock energies as a function of the pseudospin
field b}: upper panel, isotropic case; middle panel, easy-plane case;
lower panel, easy-axis case. b,,b; = 0 corresponds to the system
with zero tunneling between layers, while b7 = 0 corresponds to the
perfect alignment between the two crossing Landau levels.

mg ~—1to m0 2~ +1. This situation will correspond to a
“collapse” of the two levels at the crossing.

The middle panel corresponds to the EP type of magnetic
anisotropy (U, — U,, > 0), and in this case the trilayer
always displays a quadratic behavior in b}, around the perfect
alignment situation. In the b} — 0 limit, one obtains

0 0
eHF(mx’mz)
— = =
UZZ - Uxx

* 2
po P = UP
2(1 +b%)

with b} = b, /|U,; — Uyx|. As b} increases, the curvature
decreases, as observed in the figure.

Finally, in the lower panel the behavior of the HF energy
for the EA type of anisotropy is displayed. Interestingly, in
this case the trilayer changes from having a lineal behavior
with b} if b} is smaller than a critical value, to a quadratic
behavior otherwise. Once again in the limit of almost perfect
alignment b} — 0, m? — b* — &, and m? — +,/1 — (b}).
Replacing in Eq. (51) one obtains a lineal behavior with b7,
given approximately by —bjm? ~ —|b¥|{/1 — (b¥)*. At the
critical value b} = 1, the lineal dependence in b;‘ vanishes,
and it is replaced by a quadratic dependence.

At v =4 the crossing is between LLs in different sub-
bands, different orbital quantum number, and different spin.
Choosing & = 0,n = 0,0 = —1/2 as the pseudospin up and
E=—-1,n=1,0 =1/2 as the pseudospin down, we can
obtain one-body terms in a way similar to the case v = 3.
The only difference that appears is the Zeeman term |g|up B
that may be added inside the parentheses of Eq. (45). Taking
this into account we obtain a similar behavior to the one shown
in Fig. 7 for the energy around b} = 0, after considering that
in this case U,, = 0.
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FIG. 8. General pseudospin magnetic anisotropy classification
scheme for all possible Landau level crossings in trilayers. d*(ra,€3)
denotes the boundary line between the EA and the EP magnetic
anisotropies in previous figures.

In Fig. 8 the classifications of magnetic anisotropies
obtained in this work are schematically illustrated. The main
differences with the bilayer cases are highlighted.

VI. CONCLUSIONS

Using a variational Hartree-Fock approximation, we have
studied theoretically all possible two Landau level crossings
at the chemical potential, for the case of a trilayer system, in
the regime of the integer quantum Hall effect. The trilayer
system was modeled by three strictly bidimensional electron
gases, coupled by the tunneling between neighboring layers,
and the intra- and interlayer Coulomb interaction among
electrons. The trilayer system is acted on by a strong magnetic
field perpendicular to the layers, and also by an external
bias that simulates the effect of back and front gates in real
experimental samples.

‘We have found that the general classification scheme found
in bilayers also applies to the trilayer situation, with the
simple crossing corresponding to an easy-axis ferromagnetic
anisotropy analogy, and the collapse case corresponding to an
easy-plane ferromagnetic analogy. At the boundary between
these two cases, an isotropic case is also possible. While our
results are valid for any filling factor v (=1,2,3, ...), we have
analyzed in detail the crossings at v =3 and 4, and have
given clear predictions that will help in their experimental
search. For instance, we have found that by increasing the
bias applied to the trilayers, the system can display first
easy-plane anisotropy, then easy-axis anisotropy, and then
again easy-plane anisotropy, both for the v = 3 and 4 cases,
the effect, however, being much more pronounced in the case
v = 4. A similar reentrant behavior has also been found at zero
bias at v = 3, with the energy of the central layer playing a
similar role to the bias.

As one of the experimental techniques used in bilayers
for characterizing the possible types of magnetic anisotropies
has been the measurement of the activation energies at the
crossings, we have also obtained the zero-temperature Hartree-
Fock energies close to the perfect coincidence condition of
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vanishing pseudospin field, at v =3 and v = 4. While the
easy-plane HF energies always display a quadratic dependence
on the pseudospin field, for the easy-axis anisotropy case,
the trilayer at the v = 3,4 crossing point exhibits a lineal
dependence on the pseudospin field, if the contribution to the
Hartree energy that mixes the two pseudospins which are in
coincidence is smaller than a critical value. As this parameter is
zero both in the zero-bias case and in the zero-tunneling case, in
principle it can be changed from one regime or the other, either
by changing the bias or doing experiments in samples with
different distance between layers. The isotropic case may have
either a linear or quadratic dependence on the pseudospin field
close to the perfect alignment situation, depending on the fill-
ing factor and the quantum numbers of the two crossing levels.

PHYSICAL REVIEW B 94, 085304 (2016)

We expect the general classification scheme found here for
all possible Landau level crossings in semiconductor trilayers
to be as useful as the similar classification scheme of the
bilayers has been.
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PSEUDOSPIN ANISOTROPY OF TRILAYER ...

U..(d,B,v,t,e,6,63) = 0, that for v = 1 is satisfied automat-

ically, without the necessity of any “fine-tuning” among the

arguments of U_,.

[41] Note that vE{é, £.£(q) > 0 always, beyond the strict 2D approxi-

mation for the subband wave functions A¢(z).

085304-13

PHYSICAL REVIEW B 94, 085304 (2016)

[42] ForU,, = U,, and b, = 0,Eq.(51) describes the v = 1 isotropic

QHF discussed above. Since the minimizing solution is m? =

sgn(b}), in this case the system has an abrupt change from

m? = —1to m? = +1, and the two pseudospin levels will just

cross after coincidence.





