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Nonequilibrium itinerant-electron magnetism: A time-dependent mean-field theory
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We study the dynamical magnetic susceptibility of a strongly correlated electronic system in the presence of a
time-dependent hopping field, deriving a generalized Bethe-Salpeter equation that is valid also out of equilibrium.
Focusing on the single-orbital Hubbard model within the time-dependent Hartree-Fock approximation, we
solve the equation in the nonequilibrium adiabatic regime, obtaining a closed expression for the transverse
magnetic susceptibility. From this, we provide a rigorous definition of nonequilibrium (time-dependent) magnon
frequencies and exchange parameters, expressed in terms of nonequilibrium single-electron Green’s functions
and self-energies. In the particular case of equilibrium, we recover previously known results.
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The dynamical magnetic susceptibility of an electronic sys-
tem is a key quantity in both theoretical and experimental stud-
ies of magnetism [1,2]. In addition to its physical meaning as
the first-order response function of the local magnetic moments
to the application of a (space- and time-dependent) magnetic
field, its relevance is due to the fact that its frequency spectrum
contains all the magnetic excitations of the system. In particu-
lar, the spectrum of the transverse component of the magnetic
susceptibility tensor contains the magnon frequencies.

To enable theoretical analysis, it is desirable to compute
the magnon spectrum directly from a closed formula, rather
than doing a numerical search of the poles of the transverse
susceptibility. For strongly correlated systems in equilibrium,
methods were developed to map electronic Hamiltonians onto
effective classical spin models, from which one extracts the
magnetic parameters (e.g., exchange) that are appropriate for
the initial electronic systems when the magnetic moments
undergo small rotations from their initial configuration [3,4];
in the modern formulation, parameters are expressed in
terms of single-electron Green’s functions (1EGFs) and self-
energies [5,6]. The original methods were recently extended to
include unquenched electronic orbital degrees of freedom and
relativistic interactions [7–11]. However, a direct connection
between the magnetic parameters so determined and the poles
of the transverse susceptibility is not obvious; within the
framework of spin-density functional theory, it has been shown
that the original formulas yield accurate low-wavelength
magnon frequencies for ferromagnetic systems within the local
spin-density approximation [12]; corrections are required to
compute thermodynamic properties [13].

Experimental progress has allowed us to modify the mag-
netic properties of materials by applying time-dependent fields
coupling with the electrons, thereby modulating the magnetic
interactions in time. In particular, subpicosecond laser fields
[14–22] promise to provide the fastest possible modifications
of magnetic states and, in the future, the fastest memory
devices. Understanding how the magnetic properties are mod-
ulated in time requires a nonequilibrium microscopic theory of
magnetism. Computationally, strongly correlated systems are
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typically treated with dynamical mean-field theory [23–26] or
cluster perturbation theory [27–29] and their nonequilibrium
formulations [30–33]. At the moment, the computation of
full nonequilibrium two-electron Green’s functions (2EGFs),
such as the dynamical magnetic susceptibility, is not feasible
due to huge memory requirements (even the computation of
nonequilibrium 1EGFs is, in general, very demanding [34]).
To avoid the computation of 2EGFs, mapping to a dynamical
classical spin model has been proposed [35], where the
time-dependent magnetic parameters are expressed in terms
of nonequilibrium 1EGFs and self-energies. Also in this case,
the connection to magnetic susceptibility is not obvious.

In this article, we derive a self-consistent equation for
nonequilibrium magnetic susceptibility, and we solve it for
the Hubbard model within the time-dependent Hartree-Fock
approximation in the adiabatic regime. We show that the effect
of an external time-dependent field acting on the electrons
(such as that of a laser or a phonon distribution) can be
described by endowing the transverse magnetic susceptibil-
ity with time-dependent poles, i.e., time-dependent magnon
frequencies.

The remainder of this article is organized as follows. In
Sec. I, we introduce our notation and discuss the features of
our nonequilibrium theory. We then present the problem in its
most general formulation, before successively applying several
approximations to reduce it to a solvable one. Therefore, in
Sec. II we introduce a generalized Bethe-Salpeter equation
for magnetic susceptibility that is valid for arbitrary electronic
models. The first two steps of the approximations are taken
in Sec. III, where we apply the time-dependent Hartree-Fock
approximation, and in Sec. IV, where we restrict our theory
to the (nonequilibrium) single-band Hubbard model. At this
point, the problem can be solved in closed form in equilibrium,
but not in the most general nonequilibrium case. The minimal
nonequilibrium situation, which allows for a closed solution
of the Bethe-Salpeter equation, corresponds to the adiabatic
regime, which we introduce in Sec. V. In this regime, the
system sustains time-dependent magnon excitations, meaning
that the magnon frequencies are modulated in time by the
action of the external field, but the magnon concept is
still valid. In Sec. VI, we characterize the nonequilibrium
magnon frequencies by introducing nonequilibrium exchange
parameters, and we recover well-known expressions that are
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valid in equilibrium as a particular case. In Sec. VII, we
show that our theory is consistent with the Goldstone theorem
even out of equilibrium. Finally, in Sec. VIII we summarize
our results and mention possible future extensions. In the
Appendixes, we include the most technical passages of the
derivations, which can be useful to the reader in order to
reproduce our main results, but they are not essential for
following the discussion in the main text.

I. NOTATION

We formulate our nonequilibrium theory using the
Kostantinov-Perel’ (KP) time contour γ = γ+ ∪ γ− ∪ γM,
where γ± is the forward (backward) branch of the real-time
(Keldysh) contour γK = γ+ ∪ γ−, and γM is the imaginary-
time (Matsubara) branch [36–39]. If z denotes a contour time
variable, we write z = t(±) if z lies on γ±, where t ∈ [t0,∞)
denotes a physical time; t(+) < t(−) on the contour. We use M

to denote the third component of spin of the electron fields, and
i,j,k to denote the sets of the other quantum numbers. Sα

i is
the α component of the vector of spin matrices for the ith field,
with dimensionality Si . The nonequilibrium Hamiltonian is

Ĥ (z) =
∑

12

ψ̂
†
1T

1
2 (z) ψ̂2 + 1

4

∑
1234

ψ̂
†
1ψ̂

†
2V

2,1
3,4 ψ̂3ψ̂4 (1)

for z ∈ γK, where 1 ≡ (i1,M1) is a complete set of elec-
tron field indices, the single-electron terms depend on the
contour coordinate z, and the interaction matrix element is
antisymmetrized, V 2,1

3,4 = V
1,2

4,3 = −V
1,2

3,4 = −V
2,1

4,3 . The single-
electron Hamiltonian includes the time-dependent terms gen-
erated by the coupling of the electrons with an external time-
dependent field. On the Matsubara branch, the Hamiltonian
may have a different form [38], which we denote, in general,
as

Ĥ (z) = ĤM, (2)

independent of z for z ∈ γM. The Hamiltonian on the Matsub-
ara branch should be considered as a tool to prepare the system
in some known state at the initial time t0; it might coincide
(up to conserved quantities) with the physical Hamiltonian at
the initial time t0, in which case the system is prepared in a
thermal superposition. Alternatively, one can choose ĤM as
an effective projector over a state or a set of states of interest.
For example, to prepare the system in a fully spin-polarized
state, one can include in ĤM a Zeeman term coupling the
spins with an auxiliary uniform magnetic field, despite the
fact that the Hamiltonian of the system of interest (on the
real-time branches) might not include such a magnetic field.
In this situation, taking a low temperature effectively restricts
the system to a broken-symmetry configuration, which would
not be captured in the absence of the auxiliary magnetic field.
The results that we present in this work hold regardless of the
particular choice of the Hamiltonian on the Matsubara branch.

1EGFs and 2EGFs are denoted as

G
1z1
2z2

≡ −i
〈
Tγ ψ̂1z1ψ̂

†
2z2

〉
,

(3)
G

1z1,3z3
2z2,4z4

≡ (−i)2〈Tγ ψ̂1z1ψ̂3z3ψ̂
†
4z4

ψ̂
†
2z2

〉
,

where 〈· · · 〉 denotes an expectation value computed using the
contour evolution operators [36–38]. The contour 1EGFs are

related to the lesser/greater Green’s functions via

G
1z1
2z2

≡ �(z1,z2)(G>)1t1
2t2

+ �(z2,z1)(G<)1t1
2t2

,
(4)

(G>)1t1
2t2

= −i
〈
ψ̂1t1ψ̂

†
2t2

〉
, (G<)1t1

2t2
= i

〈
ψ̂

†
2t2

ψ̂1t1
〉
,

where �(z1,z2) is the step function on the KP contour. Finally,
the Dyson equation reads

i∂zG
1z
2z2

−
∑

3

[
T 1

3 (z)G3z
2z2

+
∫

γ

dz3�
1z
3z3

G
3z3
2z2

]
= δ1

2δ(z,z2),

(5)

where the self-energy � is defined via∑
5

∫
γ

dz5�
1z1
5z5

G
5z5
2z2

≡ i

2

∑
345

V
3,1

4,5 G
4z1,5z1
2z2,3(z1+ε). (6)

II. GENERALIZED BETHE-SALPETER EQUATION

The dynamical magnetic susceptibility tensor is

χαα′
ij (t,t ′) ≡ δ

〈
Ŝα

i (t)
〉
B

δBα′
j (t ′)

∣∣∣∣∣
B=0

= −i�(t − t ′)
〈[
Ŝα

i (t),Ŝα′
j (t ′)

]〉
, (7)

where 〈· · · 〉B denotes an expectation value computed in the
presence of the magnetic field B ≡ {Bi(t)} coupling with the
spins, and Ŝα

i (t) is the α component of the ith spin operator
of the system at time t ; α ∈ {x,y,z} or α ∈ {+, − ,z}. The
second line of Eq. (7) is the Kubo formula, which connects
χαα′

ij (t,t ′) to relevant many-body quantities. For example, for
a ferromagnetic lattice in equilibrium, the low-energy poles of
the Laplace transform of the transverse magnetic susceptibility
χ+−

q (ω) are the magnon frequencies ωq .
We now generalize the Bethe-Salpeter equation (BSE) for

the magnetic susceptibility to the case of the most arbitrary
electronic system out of equilibrium. It is convenient to define
the matrices

χαα′
1,2;j (z1,z2; z3) ≡ − i

δ(SαGB)1z1
2z2

δBα′
jz3

∣∣∣∣∣
B=0

,

(8)
χαα′

1,2;j (z1,z2; t ′) ≡χαα′
1,2;j (z1,z2; t ′(+)) − χαα′

1,2;j (z1,z2; t ′(−)),

where the magnetic field is allowed to take different values
for the two Keldysh coordinates corresponding to the same
physical time. The susceptibility matrix defined in Eq. (8)
satisfies the following generalized Bethe-Salpeter equation
(GBSE) on the KP contour [for the full derivation, see
Appendix A]:

χαα′
1,2;j (z1,z2; t ′) = (χ0)αα′

1,2;j (z1,z2; t ′)

+
∑
α′′α′′′

∑
4567

∫
γ

d(w4,w5,w6,w7)
(
χαα′′

0

)1z1,5w5

2z2,4w4

× (�α′′α′′′
)4w4,7w7
5w5,6w6

χα′′′α′
6,7;j (w6,w7; t ′), (9)

where we have introduced the quantities(
χαα′′

0

)1z1,5w5

2z2,4w4
≡ −i(SαGSα′′

)1z1
4w4

G
5w5
2z2

, (10)
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(�α′′α′′′
)4w4,7w7
5w5,6w6

≡ i

Si4 (Si4 + 1)

δ(Sα′′
�)4w4

5w5

δ(Sα′′′
G)6w6

7w7

, (11)

(χ0)αα′
1,2;j (z1,z2; t ′) =

∑
s=±

s
∑
M

(
χαα′

0

)1z1, jMt ′(s)

2z2, jMt ′(s)
. (12)

The physical susceptibility given by Eq. (7) can be obtained
from Eq. (8) via the relation

χαα′
ij (t,t ′) =

∑
M

χαα′
iM,iM;j (t(+),t(−); t

′), (13)

as detailed in Appendix B.

III. TIME-DEPENDENT HARTREE-FOCK
APPROXIMATION

Equation (9) is exact, but its matrix structure is very compli-
cated. The time-dependent Hartree-Fock approximation (THF)
[38] greatly simplifies its time-domain structure. In THF, the
2EGF is approximated as

G
A,C
B,D

THF= GA
BGC

D − GA
DGC

B, (14)

which yields the following expression for the self-energy:

�
1z1
2z2

THF= −iδ(z1,z2)
∑

34

V
1,3

2,4 (G<)4t1
3t1

. (15)

It should be noted that the 1EGFs appearing in Eqs. (14) and
(15) are not the noninteracting Green’s functions that are used
in conventional many-body perturbation theory for weakly
correlated systems, where the electron-electron interaction is
the small parameter. In that case, Eqs. (14) and (15) would
reduce to the RPA scheme. In our case, instead, single-particle
Green’s functions are the solutions of an interacting problem,
although simplified via the THF approximation, which keeps
only the part of the self-energy that is local in time. Although
the equations are formally similar, this difference between
THF and RPA is crucial to properly describe the magnon
excitations for strongly correlated systems.

With this distinction in mind, we now introduce

(χ0)αα′
ij (t,t ′) =

∑
M

(χ0)αα′
iM,iM;j (t(+),t(−); t

′), (16)

which is a physical quantity defined in terms of 1EGFs, whose
meaning depends on the approximation scheme. In our case, it
can be called Stoner susceptibility, since its spectrum contains
only electron-hole excitations that are analogous to those of
the Stoner theory for the Hubbard model. In contrast, within
the RPA, Eq. (16) would coincide with the bare magnetic
susceptibility of a noninteracting system.

Applying Eq. (15) to Eq. (11), we obtain

(�α′′α′′′
)4w4,7w7
5w5,6w6

THF= δ(w4,w5)δ(w4,w6)δ(w7,w4 + ε)
(
�α′′α′′′

THF

)4,7
5,6,

(17)

where

(
�α′′α′′′

THF

)4,7
5,6 ≡

∑
MM ′

(
Sα′′

i4

)M4

M ′ V
(i4M

′),7
5,(i6M)

(
Sα′′′

i6

)M

M6

Si4 (Si4 + 1)Si6 (Si6 + 1)
. (18)

Inserting Eq. (18) into Eq. (9) yields the THF form of the
GBSE,

χαα′
1,2;j (z1,z2; t ′) THF= (χ0)αα′

1,2;j (z1,z2; t ′)

+
∑
α′′α′′′

∑
4567

∫
γ

dw4
(
χαα′′

0

)1z1,5w4

2z2,4w4

(
�α′′α′′′

THF

)4,7
5,6

× χα′′′α′
6,7;j (w4,w4 + ε; t ′). (19)

If t4 is the physical time corresponding to the contour
coordinate w4, then the quantity

χα′′′α′
6,7;j (w4,w4 + ε; t ′) ≡ χα′′′α′

6,7;j (t4; t ′) (20)

depends only on t4, independently of the contour branch on
which w4 lies. This can be seen by applying Eq. (8) with
z1 = w4 and z2 = w4 + ε. In terms of Eq. (20), we have

χαα′
ij (t,t ′) ≡

∑
M

χαα′
iM,iM;j (t ; t ′). (21)

Setting z1 = t(+) and z2 = t(−), and

χαα′
1,2;j (t ; t ′) ≡ χαα′

1,2;j (t(+),t(−); t
′),

(22)
(χ0)αα′

1,2;j (t ; t ′) ≡ (χ0)αα′
1,2;j (t(+),t(−); t

′),

we then obtain, from Eq. (19), the THF GBSE in real-time
coordinates:

χαα′
1,2;j (t ; t ′) THF= (χ0)αα′

1,2;j (t ; t ′) +
∑
α′′α′′′

∑
4567

∫ ∞

t0

dt ′′χαα′′
0 (t,t ′′)1,5

2,4

× (
�α′′α′′′

THF

)4,7
5,6χ

α′′′α′
6,7;j(t

′′; t ′), (23)

where we have converted the contour integration to physical-
time integration, we have used the fact that χα′′′α′

6,7;j (w4,w4 +
ε; t ′) = 0 if w4 ∈ γM, and we have introduced

χαα′′
0 (t,t ′′)1,5

2,4 ≡(
χαα′′

0

)1t(+),5t ′′(+)

2t(−),4t ′′(+)
− (

χαα′′
0

)1t(+),5t ′′(−)

2t(−),4t ′′(−)

= − iθ (t − t ′′)
[(

Sα
(
G>

)t

t ′′S
α′′)1

4(G<)5t ′′
2t

− (
Sα(G<)tt ′′S

α′′)1
4(G>)5t ′′

2t

]
, (24)

and therefore

(χ0)αα′
1,2;j (t ; t ′) =

∑
M

χαα′
0 (t,t ′)1,jM

2,jM. (25)

IV. SINGLE-ORBITAL HUBBARD MODEL

To achieve a further simplification, we restrict our theory
to the single-orbital Hubbard model (SOH). In this case, the
spin space has dimensionality S = 1/2 at every site, and the
interaction Hamiltonian becomes

V̂ = 1

4

∑
3456

V
4,3

5,6 ψ̂
†
3ψ̂

†
4ψ̂

5ψ̂6 SOH=
∑

i

Uin̂i↑n̂i↓, (26)

which implies

V
4,3

5,6
SOH= δ

i4
i5
δ

i3
i5
δ

i3
i6

δ
M4

M3
δ

M5
M6

(
δ

M3
M5

− δ
M3
M5

)
Ui3 . (27)

The SOH Hamiltonian is spin-independent: [Ĥ (t),Ŝz] = 0,
so the total third component of the spin of the system
is a good quantum number. The transverse component of
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Eq. (23), corresponding to (α,α′) = (+,−), then simplifies
as

χ+−
ij (t,t ′) THF= SOH= (χ0)+−

ij (t,t ′) +
∑

k

∫ ∞

t0

dt ′′

× (χ0)+−
ik (t,t ′′)(−Uk)χ+−

kj (t ′′,t ′), (28)

which is the nonequilibrium SOH version of the equation used
in Ref. [12]. Compared to the general case, this form of the
BSE has the simplest possible structure in both time and spin
domains. Details about the derivation of Eq. (28) are given in
Appendix C.

The Stoner transverse susceptibility is

(χ0)+−
ij (t,t ′) SOH= iθ (t − t ′)

[
(G<)i↓t

j↓t ′ (G
>)j↑t ′

i↑t

− (G>)i↓t

j↓t ′ (G
<)j↑t ′

i↑t

]
. (29)

We now derive an effective equation for this quantity by
applying the operator −i∂t ′ to Eq. (29) and using the Dyson
equations in the THF approximation, which read

−i∂t ′ (G
≶)iMt

jMt ′
THF= (G≶T )iMt

jMt ′ + (G≶)iMt
jMt ′�jM (t ′),

(30)
i∂t ′ (G

≶)jMt ′
iMt

THF= (T G≶)jMt ′
iMt + �jM (t ′)(G≶)jMt ′

iMt ,

where �jM (t ′) ≡ UjρjM (t ′) is the THF self-energy for the

SOH model, with ρjM (t ′) ≡ 〈ψ̂†
jM

(t ′)ψ̂jM (t ′)〉. We then obtain

(χ0)+−
ij (t,t ′)[−i

←−
∂t ′ − �j (t ′)]

SOH= THF= δ(t − t ′)δijmj (t ′) + �ij (t,t ′), (31)

where mj (t ′) ≡ ρj↑(t ′) − ρj↓(t ′),

�j (t ′) ≡ Ujmj (t ′) ≡ −2�jS(t ′) ≡ �j↓(t ′) − �j↑(t ′) (32)

is the time-dependent Stoner splitting, and

�ij (t,t ′) = iθ (t − t ′)
[
(G>)i↓t

j↓t ′ (T G<)j↑t ′
i↑t −(G<)i↓t

j↓t ′(T G>)j↑t ′
i↑t

− (
G>T

)i↓t

j↓t ′ (G<)j↑t ′
i↑t +(G<T )i↓t

j↓t ′ (G
>)j↑t ′

i↑t

]
. (33)

We now determine the transverse magnetic susceptibility from
the BSE, Eq. (28), and the approximate equation for the bare
susceptibility, Eq. (31).

V. ADIABATIC APPROXIMATION AND
NONEQUILIBRIUM MAGNONS

We introduce the Wigner time coordinates, τ ≡ t − t ′ and
T ≡ (t + t ′)/2, which are called the relative time and the total
time, respectively. In this section, we send the initial time t0 →
−∞, so that the domain of T is (−∞,∞), and we can define
the Fourier transforms with respect to T on the whole real axis.
We set f (t,t ′) ≡ f̃ (τ,T ) to distinguish the representations of
a function in terms of the individual fermionic time arguments
versus the Wigner coordinates. We apply to both Eqs. (28) and
(31) the Laplace transform with respect to τ and the Fourier
transform with respect to T . We use the notation

f̃ (ω,�) ≡
∫ ∞

−∞
dT ei�T

∫ ∞

0
dτeiωτ f̃ (τ,T ), (34)

where Im(ω) > 0. We obtain the following representations of
Eqs. (28) and (31) in the frequency domain [the full derivation
can be found in Appendix D]:

χ̃+−
ij (ω,�) − (χ̃0)+−

ij (ω,�)
THF= SOH= −

∫ ∞

−∞

d�′

2π

∑
k

(χ̃0)+−
ik

(
ω + � − �′

2
,�′

)
Ukχ̃

+−
kj

(
ω − �′

2
,� − �′

)
, (35)

(
ω − �

2

)
(χ̃0)+−

ij (ω,�) −
∫ ∞

−∞

d�′

2π
(χ̃0)+−

ij

(
ω + � − �′

2
,�′

)
�j (� − �′) THF= SOH= δi

jmj (�) + �̃ij (ω,�). (36)

In the nonequilibrium adiabatic (AD) regime, we assume
that the susceptibilities are nonzero only when the frequencies
related to the Fourier transforms with respect to the total time
T are much smaller than the frequencies related to the Laplace
transforms with respect to the relative time τ . In this case,
Eq. (36) simplifies to

(χ̃0)+−
ij (ω; T )

THF= SOH= AD= δijmj (T ) + �̃ij (ω; T )

ω − �j (T )
, (37)

while Eq. (35) simplifies to

∑
k

[δik + (χ̃0)+−
ik (ω; T ) Uk]χ̃+−

kj (ω; T )

THF= SOH= AD= (χ̃0)+−
ij (ω; T ). (38)

We substitute Eq. (37) into Eq. (38), and, after some algebra,
we get

χ̃+−
ij (ω; T )

THF= SOH= AD= ω − �i(T )

ω − �j (T )

∑
k

Uk

Ui

−→
F −1

ik (ω; T )

× [δkjmj (T ) + �̃kj (ω; T )], (39)

where we have introduced the matrix

Fik(ω; T ) ≡ δikω + Ui�̃ik(ω; T ) (40)

and its left inverse
−→
F −1(ω; T ), defined via∑

i

−→
F −1

li (ω; T ) Fik(ω; T ) = δlk. (41)

The susceptibility has a pole when the matrix (40) has a null
eigenvalue. If we assume that �̃ik(ω; T ) is almost independent
of ω at frequencies much smaller than the Stoner excitations,
then the poles are obtained when ω is an eigenvalue of the
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time-dependent matrix,

�ij (T ) ≡ −Ui�̃ij (0; T ). (42)

The eigenvalues of (42) can then be called nonequilibrium
magnon frequencies, and they are time-dependent due to
the action of the external field. It should be noted that the
system given by the union of the magnetic medium and the
external field might in general have a lower spatial symmetry
than the lattice of the magnetic medium in the absence of
the field (the field typically has some privileged directions,
such as the polarization and direction of propagation for an
electromagnetic wave). If such symmetry lowering is absent
or negligible, one can exploit the symmetry of the magnetic
lattice to diagonalize �ij (T ) (see Appendix E).

In equilibrium, which is formally a particular case of
this treatment that is obtained when the Hamiltonian is
time-independent, �ij is independent of T and its eigen-
values are the conventional magnon frequencies. Therefore,
we have formally demonstrated that the minimal correction
to the transverse magnetic susceptibility in nonequilibrium
situations, valid in the adiabatic regime, consists in the fact
that the magnon frequencies acquire a time dependence.

We note that the approximation that produces Eq. (42),
namely replacing �̃ij (ω; T ) → �̃ij (0; T ), corresponds to
linearizing the eigenvalue problem associated with Eq. (40).
Corrections can be computed by taking into account
higher-order terms in the Taylor expansion of �̃ij (ω; T ) in
powers of ω; such analysis is beyond the scope of this work.

We now characterize the nonequilibrium magnon fre-
quencies and establish the correspondence to the previous
literature by introducing two different forms of nonequilibrium
exchange parameters.

VI. NONEQUILIBRIUM EXCHANGE PARAMETERS

A. Two-times exchange parameters

We first switch back from the frequency-domain repre-
sentation to the time-domain representation. We define the
two-times exchange matrix

�ij (t,t ′) THF= SOH= −Ui�ij (t,t ′), (43)

and we express it in terms of nonequilibrium 1EGFs and self-
energies. Toward that end, we use the nonequilibrium Dyson
equations in the THF approximation, Eq. (30), to eliminate
the hopping matrix T from the expression of �, Eq. (33). We
obtain

�ij (t,t ′) THF= iθ (t − t ′)[2�jS(t ′) − i
−→
∂ t ′]

× [
(G<

↓ )itj t ′(G
>
↑ )j t ′

it − (G>
↓ )itj t ′(G

<
↑ )j t ′

it

]
. (44)

We split the exchange matrix into two parts,

�ij (t,t ′) THF= SOH= 4

mi

(
t+t ′

2

) [Jij (t,t ′) + Xij (t,t ′)], (45)

where

Jij (t,t ′) ≡ iθ (t − t ′) �iS

(
t + t ′

2

)
�jS(t ′)

× [
(G<

↓ )itj t ′(G
>
↑ )j t ′

it − (G>
↓ )itj t ′ (G

<
↑ )j t ′

it

]
(46)

is the two-times exchange parameter (equivalent to the
analogous quantity obtained in Ref. [35]), and

Xij (t,t ′) ≡ θ (t − t ′)
1

2
�iS

(
t + t ′

2

)
× −→

∂ t ′
[
(G<

↓ )itj t ′(G
>
↑ )j t ′

it − (G>
↓ )itj t ′(G

<
↑ )j t ′

it

]
(47)

is a quantity whose meaning will be clarified in Sec. VI B.
Switching again to the Wigner-coordinates representation and
Laplace transforming with respect to relative time, we obtain

�̃ij (ω; T )
THF= SOH= 4

mi(T )
[J̃ij (ω; T ) + X̃ij (ω; T )]. (48)

We simplify the second term on the right-hand side of Eq. (48);
after performing partial integration and using the relation
(G>)i,Tj,T = −iδi

j + (G<)i,Tj,T , we obtain

X̃ij (ω; T ) = − 1

2
δij�iS(T ) mi(T )

+ 1

2
�iS(T )

(
1

2
−→
∂ T + iω

) ∫ ∞

0
dτ eiωτ

× [
(G<

↓ )i,T +τ/2
j,T −τ/2(G>

↑ )j,T −τ/2
i,T +τ/2

− (G>
↓ )i,T +τ/2

j,T −τ/2(G<
↑ )j,T −τ/2

i,T +τ/2

]
. (49)

The first term on the right-hand side of Eq. (48) involves the
Laplace transform of the two-times exchange parameters,

J̃ij (ω; T ) ≡ i�iS(T )
∫ ∞

0
dτ eiωτ�jS(T − τ/2)

× [
(G<

↓ )i,T +τ/2
j,T −τ/2(G>

↑ )j,T −τ/2
i,T +τ/2

− (G>
↓ )i,T +τ/2

j,T −τ/2(G<
↑ )j,T −τ/2

i,T +τ/2

]
. (50)

B. One-time exchange parameters

If �̃ij (ω; T ) is almost independent of ω, we can determine
a time-dependent pole of the nonequilibrium transverse sus-
ceptibility, which is a generalization of the magnon frequency
to the nonequilibrium adiabatic regime, as in Eq. (42). More
explicitly, from Eq. (48) we write

�ij (T ) ≡ lim
ε→0+

lim
ω→0

�̃ij (ω + iε; T )

≡ 4

mi(T )
[Jij (T ) + Xij (T )], (51)

where ω and ε > 0 are real, and

Jij (T ) = i�iS(T ) lim
ε→0+

∫ ∞

0
dτ e−ετ �jS(T − τ/2)

× [
(G<

↓ )i,T +τ/2
j,T −τ/2(G>

↑ )j,T −τ/2
i,T +τ/2

− (G>
↓ )i,T +τ/2

j,T −τ/2(G<
↑ )j,T −τ/2

i,T +τ/2

]
, (52)

Xij (T ) = −1

2
δij�iS(T ) mi(T )

+ 1

4
�iS(T ) lim

ε→0+

−→
∂ T

∫ ∞

0
dτ e−ετ

× [
(G<

↓ )i,T +τ/2
j,T −τ/2(G>

↑ )j,T −τ/2
i,T +τ/2

− (G>
↓ )i,T +τ/2

j,T −τ/2(G<
↑ )j,T −τ/2

i,T +τ/2

]
. (53)
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As seen in Eq. (51), both terms Jij (T ) and Xij (T ) contribute
on the same footing to the time-dependent magnon dispersion.
We identify Jij (T ) given in Eq. (52) as the time-dependent
exchange parameter due to its nonlocality in space and its
general structure that can be schematically denoted as �G�G,
which is analogous to the structure found for the equilibrium
exchange parameters in equilibrium theories (see, e.g., Refs.
[5,6,8]). The term Xij (T ) defined in Eq. (53) is given by two
contributions. The first line is local in space; an analogous
term appears in the expression of the dynamical transverse
susceptibility in equilibrium (see Sec. VI C), of which this
is the nonequilibrium generalization. The second line is a
purely (nonlocal) nonequilibrium term with no analog in
equilibrium. In fact, the Green’s functions would not depend
on T in that case, so the derivative would vanish. Out of
equilibrium, instead, the T dependence is not trivial, due to
the time-dependent hopping. This term is explicitly related to
the dynamical variation of the sites’ electronic population.
The presence of the term Xij (T ) in the expression of the
susceptibility has an important role in showing that the
magnon dispersion satisfies the Goldstone theorem, even out
of equilibrium (see Sec. VII).

C. Equilibrium exchange parameters

The equilibrium regime is a particular case of the adiabatic
regime, such that 1EGFs depend only on the relative time
τ and not on the total time T , while THF self-energies
are time-independent. The equilibrium exchange parameters
are obtained from Eqs. (52) and (53) by removing the
dependence on T . If the state of the system is given by
a thermal distribution, in the limit of zero temperature (or
inverse temperature β → ∞) we can apply the analytical
continuation from the real-time branches of the KP contour
to the imaginary-time branch, and we represent 1EGFs in the
Matsubara formalism. In this case, we obtain (details are given
in Appendix F)

Jij =1

2
lim

β→∞
1

β

∑
ωn

�iG
↓
ij (iωn)�jG

↑
ji(iωn),

(54)

Xij =1

4
δij�imi.

This result agrees with the equilibrium formulas derived with
different methods in Refs. [5–8,35], specialized to the SOH
model in the HF approximation. We see that Eq. (53) is the
nonequilibrium generalization of the last term of Eq. (31) in
Ref. [12].

VII. GOLDSTONE THEOREM

The SOH model is not relativistic, therefore rotating all
the electronic spins of the same angle with respect to a given
axis costs no energy. Since this is a continuous symmetry, the
Goldstone theorem predicts that the exchange matrix has a null
eigenvalue, which in a lattice corresponds to the eigenstate with
q = 0 (that is, limq→0 ωq = 0). We recover this result in our
theory, even out of equilibrium, since it immediately follows

from Eqs. (33) and (43) that∑
j

�ij (t,t ′) = 0 ⇒
∑

j

�ij (t,t ′) = 0, (55)

hence the vector (1,1,1, . . . ,1) is an eigenvector of the
exchange matrix �(t,t ′), with eigenvalue ω = 0 (if the system
is a lattice, such an eigenvector corresponds indeed to the
state with q = 0). Obviously, this property holds also in
equilibrium, as a particular case. An alternative way to check
that our theory is consistent with the Goldstone theorem is
shown in Appendix G.

The Goldstone theorem suggests a possible alternative
definition for the exchange parameters contributing to the
(one-time) exchange matrix. We can define starred exchange
parameters by combining Eq. (52) and the nonlocal part of
Eq. (53) (second line). We get

J �
ij (T ) =i�iS(T ) lim

ε→0+

∫ ∞

0
dτ e−ετ

[
�jS(T − τ/2) − i

4
−→
∂ T

]
× [

(G<
↓ )i,T +τ/2

j,T −τ/2(G>
↑ )j,T −τ/2

i,T +τ/2

− (G>
↓ )i,T +τ/2

j,T −τ/2(G<
↑ )j,T −τ/2

i,T +τ/2

]
. (56)

Combining this definition with Eq. (55), we can rewrite
Eq. (51) in terms of J � only as

�ij (T ) ≡ 4

mi(T )

[
J �

ij (T ) − δij

∑
k

J �
ik(T )

]
. (57)

VIII. SUMMARY

To summarize, we have presented a rigorous derivation
of the transverse spin susceptibility in the nonequilibrium
adiabatic regime for the SOH model within the THF approx-
imation, leading to the definition of nonequilibrium magnon
frequencies and exchange parameters. Our results should be
relevant to interpret the physics associated with ultrafast laser
experiments, and possibly to unravel the effect of phonons
on the magnetic properties of materials, provided that the
frequencies of the oscillating fields are much smaller than the
Stoner excitations. Further work can be envisaged to remove
the THF approximation and extend to more general electronic
systems, including relativistic interactions. The starting point
for these possible developments is given by the GBSE, Eq. (9).

With regard to the possibility of developing a nonequi-
librium theory beyond the THF approximation, we mention
that using exact Green’s functions but neglecting the vertices
is not acceptable because it would break the Goldstone
theorem [40]. The possibility of obtaining a problem that
can be solved in closed form without employing the THF
approximation must rely on the assumption of some small
parameter (and therefore a necessary loss of generality with
respect to the unspecified electronic configuration that we have
considered here). In equilibrium, a technique involving exact
Green’s functions of the Hubbard X-operators was presented in
Refs. [41,42], applied to study a fully spin-polarized electronic
system with a small concentration of holes, with emphasis on
the two-magnon scattering processes. The inclusion of full
Green’s functions beyond the Hartree-Fock approximation
was possible due to the assumed smallness of either the
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concentration of holes or the inverse number of nearest
neighbors, which allowed a linear approximation in one of
those parameters. The generalization of this technique to the
nonequilibrium regime is beyond the scope of the present
work, where we have focused instead on obtaining the THF-
approximated results without making any assumption about
the electronic configuration.
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APPENDIX A: DERIVATION OF THE GENERALIZED
BETHE-SALPETER EQUATION

We derive the generalized Bethe-Salpeter equation using
the properties of the nonequilibrium Green’s functions. The
Dyson equations on the KP contour are written as∑

3

∫
γ

dz3(
−−→
G−1

B)1z1
3z3

(GB)3z3
2z2

= δ1
2δ(z1,z2),

(A1)∑
3

∫
γ

dz3(GB)1z1
3z3

(
←−−
G−1

B)3z3
2z2

= δ1
2δ(z1,z2),

where

(
−−→
G−1

B)1z1
3z3

= δ1
3δ(z1,z3)i

−→
∂ z3 − (TB)1z1

3z3
− (�B)1z1

3z3
,

(A2)
(
←−−
G−1

B)3z3
2z2

= −i
←−
∂ z3δ

3
2δ(z3,z2) − (TB)3z3

2z2
− (�B)3z3

2z2
.

Here �B and TB denote, respectively, the self-energy and
single-particle Hamiltonian matrix in the presence of a mag-
netic field B depending on the KP coordinate. In particular,

(TB)1z1
3z3

≡ δ(z1,z3)
{
[T (z1)]1

3 + δ
i1
i3

Bi1z1 · (Si1 )M1
M3

}
, (A3)

where [T (z1)]1
3 is the hopping term that does not depend on B,

but is time-dependent as well, since it includes all the external
fields acting on the electrons. Using a condensed notation,
where the sums over all matrix indices and integrations over
intermediate times are implied, we can write

−−→
G−1

B · GB =1 ⇒ δ
−−→
G−1

B

δBα′
jz3

· GB +
−−→
G−1

B · δGB

δBα′
jz3

= 0

⇒GB ·
−−→
G−1

B · δGB

δBα′
jz3

= −GB · δ
−−→
G−1

B

δBα′
jz3

· GB.

(A4)

We can replace GB · −−→
G−1

B → GB · ←−−
G−1

B ≡ 1, since the two
expressions differ only by boundary terms that vanish due to
the Kubo-Martin-Schwinger relations [43] on the KP contour.
We then obtain the identity

δGB

δBα′
jz3

= GB · δ�B

δBα′
jz3

· GB + GB · δTB

δBα′
jz3

· GB. (A5)

We apply Eq. (A5) to Eq. (8), obtaining

χαα′
1,2;j (z1,z2; z3) ≡(χ0)αα′

1,2;j (z1,z2; z3)

+ (χ�)αα′
1,2;j (z1,z2; z3), (A6)

where

(χ0)αα′
1,2;j (z1,z2; z3) ≡ − i

(
SαGjz3S

α′
j Gjz3

)1z1

2z2

= − i
∑
M

(SαGSα′
)1z1
jMz3

G
jMz3
2z2

, (A7)

(χ�)αα′
1,2;j (z1,z2; z3) ≡ − i

(
SαG

δ�B

δBα′
jz3

∣∣∣∣
B=0

G

)1z1

2z2

= − i

∫
γ

d(w4,w5)
∑
4,5

(
SαG4w4

)1z1
G

5w5
2z2

× δ(�B)4w4
5w5

δBα′
jz3

∣∣∣∣
B=0

. (A8)

We now perform some manipulations on Eq. (A8). If the
dimensionality of the spin associated with quantum numbers k

is Sk , then a fundamental property of the spin matrices is that(∑
α′′

Sα′′
k Sα′′

k

)M

M ′

= δM
M ′Sk(Sk + 1), (A9)

with α′′ ∈ {x,y,z}. Using this relation, we obtain

δ(�B)4w4
5w5

δBα′
jz3

=
∫

γ

d(w6,w7)
∑
6,7

δ�
4w4
5w5

δG
6w6
7w7

δ(GB)6w6
7w7

δBα′
jz3

=
∫

γ

d(w6,w7)
∑
6,7

1

Si4 (Si4 + 1)Si6 (Si6 + 1)

×
∑
α′′

δ
(
Sα′′

i4
Sα′′

i4
�

)4w4

5w5

δG
6w6
7w7

∑
α′′′

δ
(
Sα′′′

i6
Sα′′′

i6
GB

)6w6

7w7

δBα′
jz3

=
∫

γ

d(w6,w7)
∑
6,7

1

Si4 (Si4 + 1)Si6 (Si6 + 1)

×
∑
α′′

∑
M ′

(
Sα′′

i4

)M ′

M4

δ(Sα′′
�)4w4

5w5

δG
6w6
7w7

×
∑
α′′′

∑
M

(
Sα′′′

i6

)M

M6

δ
(
Sα′′′

GB
)6w6

7w7

δBα′
jz3

. (A10)

Inserting this into Eq. (A8) yields

(χ�)αα′
1,2;j (z1,z2; z3)

≡
∑
α′′α′′′

∫
γ

d(w4,w5,w6,w7)
∑
4567

(
χαα′′

0

)1z1,5w5

2z2,4w4

× (�α′′α′′′
)4w4,7w7
5w5,6w6

χα′′′α′
6,7;j (w6,w7; z3), (A11)

where we have introduced the quantities defined in Eqs.
(10) and (11). We note here that a more explicit form of
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Eq. (11) is

(�α′′α′′′
)4w4,7w7
5w5,6w6

= i

Si4 (Si4 + 1)Si6 (Si6 + 1)

×
∑
MM ′

(
Sα′′

i4

)M4

M ′
δ�

i4M
′w4

5w5

δG
i6Mw6
7w7

(
Sα′′′

i6

)M

M6
. (A12)

Equation (A7) is related to Eq. (10) via the identity

(χ0)αα′
1,2;j (z1,z2; z3) =

∑
M

(
χαα′

0

)1z1,jMz3

2z2,jMz3
, (A13)

and the quantity defined in Eq. (12) is related to Eq. (A7) via

(χ0)αα′
1,2;j (z1,z2; t ′)

≡ (χ0)αα′
1,2;j (z1,z2; t ′(+)) − (χ0)αα′

1,2;j (z1,z2; t ′(−)). (A14)

By inserting Eq. (A11) into Eq. (A6), one obtains the
generalized Bethe-Salpeter equation, given by Eq. (9) of the
main text.

APPENDIX B: NONEQUILIBRIUM DYNAMICAL SPIN
SUSCEPTIBILITY

To establish the relation between the supermatrix defined
in Eq. (8) and the physical susceptibility defined in Eq. (7), it
is first convenient to define the quantity

χαα′
ij (z1,z2; z3) ≡

∑
M

χαα′
iM,iM;j (z1,z2; z3). (B1)

We obtain the physical susceptibility from Eqs. (8) and (B1)
as follows. From Eq. (B1) we obtain∑

j

∑
α′

∫
γ

dz3χ
αα′
ij (z1,z2; z3)δBα′

jz3

= −i
∑

j

∑
α′

∫
γ

dz3Sp

{
Sα

i

δ(GB)iz1
iz2

δBα′
jz3

∣∣∣∣
B=0

}
δBα′

jz3

= δ
[ − i Sp

(
Sα

i G
iz1
iz2

)]
. (B2)

This quantity is equal to the variation of the local magnetic
moment under a variation of the magnetic field, δ〈Ŝα

i (t)〉, if we
take z1 = t(+) and z2 = t(−). Moving from the KP coordinates
to physical times (z3 → t ′(+) if z3 ∈ γ+ and z3 → t ′(−) if z3 ∈
γ−) gives

δ
〈
Ŝα

i (t)
〉 =

∑
j

∑
α′

∫ ∞

t0

dt ′
[
χαα′

ij (t(+),t(−); t
′
(+)) δBα′

j t ′(+)

− χαα′
ij (t(+),t(−); t

′
(−))δB

α′
j t ′(−)

]
, (B3)

where we have set δBα′
jz = 0 if z ∈ γM. Moreover, the variation

of the magnetic field is physically meaningful only if δBα′
j t ′(+)

=
δBα′

j t ′(−)
≡ δBα′

j (t ′). This gives

δ
〈
Ŝα

i (t)
〉 =

∑
j

∑
α′

∫ ∞

t0

dt ′χαα′
ij (t,t ′)δBα′

j (t ′), (B4)

where the physical susceptibility is obtained as

χαα′
ij (t,t ′) ≡ χαα′

ij (t(+),t(−); t
′
(+)) − χαα′

ij (t(+),t(−); t
′
(−)). (B5)

Using Eq. (B1), we immediately obtain that the relation
between Eqs. (7) and (8) is given by Eq. (13).

APPENDIX C: SIMPLIFICATION OF THE
BETHE-SALPETER EQUATION IN THE CASE OF THE

SINGLE-ORBITAL HUBBARD MODEL

We show here the details of the simplification of the THF
Bethe-Salpeter equation for transverse susceptibility in the
single-orbital Hubbard model (SOH). Using the fact that
[Ĥ (t),Ŝz] = 0, thus the total third component of the spin of
the system is a good quantum number, we obtain

χα′′′−
iM ′′,iM ′;j (t ; t ′)

SOH= −iθ (t − t ′)
∑
M

(Sα′′′
)M

′′
M δM

↓ δ
↑
M ′

〈[
ρ̂

i↓
i↑ (t),Ŝ−

j (t ′)
]〉

= −iθ (t − t ′)δ↑
M ′(Sα′′′

)M
′′

↓
〈[
Ŝ+

i (t),Ŝ−
j (t ′)

]〉
= δ

↑
M ′(Sα′′′

)M
′′

↓ χ+−
ij (t,t ′). (C1)

Equation (25) simplifies as

(χ0)+−
1,2;j (t,t ′) SOH= − iθ (t − t ′)δM1

↑
[
(G>)i1↓t

j↓t ′ (G
<)j↑t ′

2t

− (G<)i1↓t

j↓t ′ (G
>)j↑t ′

2t

]
, (C2)

from which

(χ0)+−
ij (t,t ′) SOH= − iθ (t − t ′)

[
(G>)i↓t

j↓t ′ (G
<)j↑t ′

i↑t

− (G<)i↓t

j↓t ′(G
>)j↑t ′

i↑t

]
. (C3)

Equation (24) simplifies as

χ+α′′
0 (t,t ′′)iM,5

iM,4
SOH= −iθ (t − t ′′)δM

↑ δ
M5
↑ (Sα′′

)↓M4

× [
(G>)i↓t

i4↓t ′′ (G
<)i5↑t ′′

i↑t

− (G<)i↓t

i4↓t ′′ (G
>)i5↑t ′′

i↑t

]
≡ δM

↑ δ
M5
↑ (Sα′′

)↓M4
(χ0)+−

i,i4i5
(t,t ′′). (C4)

Using these expressions, from Eq. (23) one obtains Eq. (28).

APPENDIX D: DERIVATION OF THE EQUATIONS FOR
THE SUSCEPTIBILITY IN THE FREQUENCY DOMAIN

We show here the detailed derivation of the frequency-
domain representations of the Bethe-Salpeter equation,
Eq. (28), and the equation for the bare susceptibility, Eq. (31).

We start from the Bethe-Salpeter equation. Equation (28)
becomes

χ̃+−
ij (τ,T ) − (χ̃0)+−

ij (τ,T )

THF= SOH=
∑

k

∫ ∞

−∞
dt ′′(χ̃0)+−

ik

(
T + τ

2
− t ′′,

T

2
+ τ

4
+ t ′′

2

)

× (−Uk)χ̃+−
kj

(
t ′′ − T + τ

2
,
t ′′

2
+ T

2
− τ

4

)
, (D1)

where we have extended the lower boundary of integration
over t ′′ to −∞. Applying the Laplace and Fourier transforms,
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we get

χ̃+−
ij (ω,�) − (χ̃0)+−

ij (ω,�)

THF= SOH=
∫ ∞

0
dτ eiωτ

∫ ∞

−∞
dT ei�T

∑
k

∫ ∞

−∞
dt ′′

× (χ̃0)+−
ik

(
T + τ

2
− t ′′,

T

2
+ τ

4
+ t ′′

2

)
× (−Uk)χ̃+−

kj

(
t ′′ − T + τ

2
,
t ′′

2
+ T

2
− τ

4

)
. (D2)

We change variables according to t ′′ = τ ′ − τ
2 + T ,

χ̃+−
ij (ω,�) − (χ̃0)+−

ij (ω,�)

THF= SOH= −
∫ ∞

0
dτ eiωτ

∫ ∞

−∞
dT ei�T

∫ ∞

−∞
dτ ′

×
∑

k

(χ̃0)+−
ik

(
τ − τ ′,T + τ ′

2

)

× Uk χ̃+−
kj

(
τ ′,T − τ − τ ′

2

)
. (D3)

Using the inverse Fourier transform on the second arguments
of the two susceptibilities, we perform the integration over T ,

χ̃+−
ij (ω,�) − (χ̃0)+−

ij (ω,�)

THF= SOH= −
∫ ∞

0
dτ

∫ ∞

−∞
dτ ′

∫ ∞

−∞

d�′

2π
ei(ω+ �−�′

2 )τ e−i �
2 τ ′

×
∑

k

(χ̃0)+−
ik (τ − τ ′; �′)Ukχ̃

+−
kj (τ ′; � − �′). (D4)

For a fixed τ ′, we substitute σ = τ − τ ′ and we obtain

χ̃+−
ij (ω,�) − (χ̃0)+−

ij (ω,�)

THF= SOH= −
∫ ∞

−∞
dτ ′

∫ ∞

−τ ′
dσ

∫ ∞

−∞

d�′

2π
ei(ω+ �−�′

2 )σ ei(ω− �′
2 )τ ′

×
∑

k

(χ̃0)+−
ik (σ ; �′)Uk χ̃+−

kj (τ ′; � − �′). (D5)

Finally, we notice that the integrand vanishes when τ ′ < 0
because χ̃ (τ ′; . . .) ∝ θ (τ ′), so we can restrict the integration
over τ ′ to the interval (0,∞). The integrand also vanishes when
σ < 0 because χ̃0(σ ; . . .) ∝ θ (σ ), so we can also restrict the
integration over σ to the interval (0,∞). We then recognize
two Laplace transforms, and we obtain

χ̃+−
ij (ω,�) − (χ̃0)+−

ij (ω,�)

THF= SOH= −
∫ ∞

−∞

d�′

2π

∑
k

(χ̃0)+−
ik

(
ω + � − �′

2
,�′

)

× Uk χ̃+−
kj

(
ω − �′

2
,� − �′

)
. (D6)

We now treat the equation for the bare susceptibility,
Eq. (31). Introducing the Wigner coordinates, we obtain

(χ̃0)+−
ij (τ,T )

[
i
←−
∂τ − i

2
←−
∂T − �j

(
T − τ

2

)]
SOH= THF= δ(τ )δijmj (T ) + �̃ij (τ,T ). (D7)

We multiply both sides of the previous equation by eiωτ ei�T

and we integrate over τ and T , in both cases on the full real
axis (−∞,∞). We obtain

δijmj (�) + �̃ij (ω,�)

SOH= THF=
∫ ∞

−∞
dτ

∫ ∞

−∞
dT

∫ ∞

−∞

d�′

2π
e−i�′T

× (χ̃0)+−
ij (τ ; �′)

(
i
←−
∂τ − �′

2

)
eiωτ ei�T

−
∫ ∞

−∞

d�′

2π
(χ̃0)+−

ij

(
ω + � − �′

2
,�′

)
�j (� − �′).

(D8)

We partially integrate on the variable τ , and we note that the
boundary terms vanish, respectively, because Im(ω) > 0 and
(χ̃0)+−

ij (τ ; �′) ∝ θ (τ ). We then obtain Eq. (36).

APPENDIX E: SIMPLIFICATIONS FOR SPATIALLY
PERIODIC SYSTEMS

If the system is spatially periodic (and stays so under the
application of the time-dependent external field), it is conve-
nient to write and solve the equations for the susceptibility in
wave-vector space. We define the spatial Fourier transforms
according to the usual conventions,

fij = 1

N

∑
q

eiq·(Ri−Rj )fq ⇔ fq = 1

N

∑
i,j

e−iq·(Ri−Rj )fij ,

(E1)

gi = 1√
N

∑
q

eiq·Ri gq ⇔ gq = 1√
N

∑
i

e−iq·Ri gi .

By applying 1
N

∑
i,j e−iq·(Ri−Rj ) to both Eqs. (35) and (36), we

obtain

χ̃+−
q (ω,�) − (χ̃0)+−

q (ω,�)

THF= SOH= −U

∫ ∞

−∞

d�′

2π
(χ̃0)+−

q

(
ω + � − �′

2
,�′

)
× χ̃+−

q

(
ω − �′

2
,� − �′

)
, (E2)(

ω − �

2

)
(χ̃0)+−

q (ω,�) −
∫ ∞

−∞

d�′

2π
(χ̃0)+−

q

×
(

ω + � − �′

2
,�′

)
�(� − �′)

THF= SOH= 2πδ(�)m + �̃q(ω,�), (E3)

where we have introduced the spatial averages

g ≡ 1

N

∑
i

gi = gq=0√
N

, (E4)

and we have noticed that the average magnetic moment

1

N

∑
i

mi(T ) ≡ m (E5)

085153-9



A. SECCHI, A. I. LICHTENSTEIN, AND M. I. KATSNELSON PHYSICAL REVIEW B 94, 085153 (2016)

is independent of time. If Ui → U is spatially uniform, as we
shall assume, then also Um = � is time-independent, then
�(� − �′) → 2πδ(� − �′)�, and Eq. (E3) can be solved
without further approximations:

(χ̃0)+−
q (ω,�)

THF= SOH= 2πδ(�)m + �̃q(ω,�)

ω − �
2 − �

. (E6)

By inserting this result into Eq. (E2), applying the adiabatic
approximation, and switching to the representation in terms of
(ω; T ), we obtain

χ̃+−
q (ω; T )

THF= SOH= AD= (χ̃0)+−
q (ω; T )

1 + U (χ̃0)+−
q (ω; T )

= m + �̃q(ω; T )

ω − [−U�̃q(ω; T )]
. (E7)

If �̃q(ω; T ) is almost independent of ω at frequencies that are
small with respect to the Stoner excitations, we can define the
time-dependent magnon frequency as

ωq(T ) ≡ −U�̃q(0; T ). (E8)

APPENDIX F: THE EQUILIBRIUM CASE

In equilibrium, we have the exact identity

Ã(ω,�) = 2πδ(�)A(ω) (F1)

for the Fourier-Laplace transforms of the many-body functions
of τ and T involved in our derivation, since the latter do
not depend on the total time T . This is a particular case
of the adiabatic regime discussed in the main text, so all
the equilibrium results can be immediately recovered from
those valid in the adiabatic regime by just removing the
dependence of the exchange matrix (and, therefore, of the
magnon frequencies) on the total time T . This can also
be checked by using Eq. (F1) to simplify Eqs. (36) and
(35), and then by solving those equations directly, following
exactly the same procedure that is discussed in the main
text.

In particular, from Eq. (52) we obtain the equilibrium
exchange parameters as

Jij = i�iS�jS lim
ε→0+

∫ ∞

0
dte−εt

[
(G<)i↓t

j↓0(G>)j↑0
i↑t

− (G>)i↓t

j↓0(G<)j↑0
i↑t

]
. (F2)

In the Matsubara representation, it is assumed that the
statistical preparation of the initial state follows a thermal
distribution. At zero temperature (or β → ∞), the above
expression is equivalent to

Jij =�iS�jS lim
β→∞

∫ β

−β

dτ G
i↓
j↓(τ ) G

j↑
i↑ (−τ ), (F3)

where G(τ ) denotes a Matsubara Green’s function in the
imaginary-time (here denoted as τ ) representation. Switching
to the representation in terms of Matsubara frequencies
ωn,

G(τ ) = 1

β

∑
ωn

e−iωnτG(iωn), (F4)

as well as using Eq. (32) in the equilibrium case, we obtain
Eq. (54).

APPENDIX G: A USEFUL SUM RULE FOR
NONEQUILIBRIUM GREEN’S FUNCTIONS

As mentioned in the main text, the fact that our theory is
consistent with the Goldstone theorem, even out of equilib-
rium, can be immediately seen from the fact that

∑
j

�ij (t,t ′) = 0. (G1)

The Goldstone theorem can also be checked in an alternative
way by using a sum rule that we derive here, valid in and
out of equilibrium within the THF approximation. The Dyson
equations are given by Eq. (30), in particular

−i∂t ′ (G
≶)i↓t

j↓t ′
THF= (G≶T )i↓t

j↓t ′ + (G≶)i↓t

j↓t ′�j↓(t ′),
(G2)

i∂t ′(G
≷)j↑t ′

i↑t

THF= (T G≷)j↑t ′
i↑t + �j↑(t ′)(G≷)j↑t ′

i↑t .

We multiply the first equation by (G≷)
j↑t ′

i↑t and sum over j ;

analogously, we multiply the second equation by (G≶)
i↓t

j↓t ′ and
sum over j . We obtain

∑
j

(G≶)i↓t

j↓t ′ (−i
←−
∂ t ′ )(G

≷)j↑t ′
i↑t

THF= [
(G≶)↓t

↓t ′T (t ′)(G≷)↑t ′
↑t

]i

i

+ [
(G≶)↓t

↓t ′�↓(t ′)(G≷)↑t ′
↑t

]i

i
, (G3)∑

j

(G≶)i↓t

j↓t ′ (i
−→
∂ t ′)(G

≷)j↑t ′
i↑t

THF= [
(G≶)↓t

↓t ′T (t ′)(G≷)↑t ′
↑t

]i

i

+ [
(G≶)↓t

↓t ′�↑(t ′)(G≷)↑t ′
↑t

]i

i
. (G4)

We subtract Eq. (G3) from Eq. (G4), divide by 2, and we obtain

1
2 i

−→
∂ t ′

[
(G≶)↓t

↓t ′(G
≷)↑t ′

↑t

]i

i

THF= [
(G≶)↓t

↓t ′�S(t ′)(G≷)↑t ′
↑t

]i

i
. (G5)

The sum rule Eq. (G5) can be used to immediately check that
Eqs. (46) and (47) indeed satisfy

∑
j

[Jij (t,t ′) + Xij (t,t ′)] = 0, (G6)

which is in agreement with the Goldstone theorem.
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