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Coexistence of nematic order and superconductivity in the Hubbard model
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We study the interplay of nematic and superconducting order in the two-dimensional Hubbard model and show
that they can coexist, especially when superconductivity is not the energetically dominant phase. Due to a breaking
of the C4 symmetry, the coexisting phase inherently contains admixture of the s-wave pairing components. As a
result, the superconducting gap exhibits nonstandard features including changed nodal directions. Our results also
show that in the optimally doped regime the pure superconducting phase is typically unstable towards developing
nematicity (breaking of the C4 symmetry). This has implications for the cuprate high-Tc superconductors, for
which in this regime the so-called intertwined orders have recently been observed. Namely, the coexisting phase
may be viewed as a precursor to such more involved patterns of symmetry breaking.
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I. INTRODUCTION

Electronic nematic instabilities are observed across several
families of correlated electron systems [1] including the
cuprates [2–5], pnictides [6,7], ruthanate Sr3Ru2O7 [8], heavy
fermionic URu2Si2 [9], as well as for dipolar gases in optical
lattices [10,11]. In the nematic (N) phase the discrete lattice
rotational symmetry is lowered while the system retains
its translational symmetry. Such phases often appear close
to superconductivity (SC) in the phase diagrams of these
systems [2]. A natural question therefore arises about the
interplay of these two types of symmetry breakings, especially
since it is widely assumed that both can have a common cause,
a large on-site Coulomb interaction [12,13]. This question
is especially relevant for the high-Tc cuprates, as in the
optimal doping regime both orderings were reported [2] (in
different parameter ranges), as were also other microscopic
orders. The coexistence of a number of them has led to the
notion of intertwined orders [2,4]. Here we demonstrate the
coexistence of the SC and N orderings in the minimal model
for the description of strongly correlated/high-Tc systems, the
single-band Hubbard model.

Superconductivity and nematic order (in the form of an
electronic Pomeranchuk instability [14–18]) have frequently
been considered as competing phenomena [17–20]. Conse-
quently, the coexisting (N+SC) phase was studied usually for
anisotropic models, where its description is much easier, as the
rotational symmetry is broken already in the starting Hamil-
tonian [17,19–24]. On the other hand, for isotropic models
a N+SC phase was studied only in rather specific situations
using (i) the perturbation expansion method [25], applicable
only in the weak-coupling limit, and (ii) a phenomenological
model where interactions leading to both orderings were
postulated separately [26].

The current state-of-the-art methods for strongly cor-
related electron systems are generally not well suited to
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capture the subtle effects of the correlation-induced Fermi
surface deformations related to a N phase, let alone those
of a N+SC phase. The limitations stem mostly from fi-
nite system sizes [20,22,23,27–30], which translate to a
low momentum space (k-space) resolution.1 For example,
in dynamical mean-field theory [22] and dynamic cluster
approximation [22,23,27] the system size is up to2 4 × 4
and in variational Monte Carlo (VMC) [20,28,29] up to
24 × 24. Consequently, finite-size errors can be significant
even for anisotropic models3 and may even lead to qualitatively
different results depending on the system size [23]. Hence, it is
an entirely open question in correlated-electron theory whether
the SC and the N phase are generically competing or tend to
stabilize each other [31–34].

In this work, we overcome the difficulties in describing a
N+SC phase and show that N and SC orderings can coexist
in the Hubbard model. To this end, we use a variational
method based on Gutzwiller wave functions (GWF) [35]
combined with a recently developed diagrammatic expansion
(DE) technique [13,36], which enables one to evaluate expec-
tation values for GWF without any additional uncontrolled
approximations. This DE-GWF method has been applied
successfully to study Fermi-surface deformations, d-wave
superconductivity, and quasiparticle band structures in the
Hubbard [13,37–39], t-J [40], Anderson lattice [41,42], and
multiband [43] models. The method works in the thermody-
namic limit, i.e., with no finite-size limitations, which enables
us to properly investigate the stability of a N+SC phase. In the
single-band Hubbard model the dominant nematic order has
a d-wave form [13,15], meaning that the Fermi surfaces are
stretched along one lattice axis and compressed along the other.
Combined with a d-wave superconducting pairing, symmetry

1cf., e.g., Fig. 2(b) of Ref. [20].
2These methods suffer also from the sign problem, which can

significantly restrict the temperature and parameter range and, as
a result, can render the analysis of stabilities of considered phases
difficult or impossible (cf. the discussion in Refs. [23,27]).

3cf., e.g., Fig. 7 of Ref. [20] or Fig. 1 of Ref. [28].
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requires that there is an additional induced s-wave component
of the SC gap with both on-site and long-range contributions
(the on-site contribution is often neglected [17,20]). This leads
to a nontrivial gap structure with features such as shifted nodal
points and modified zero-gap regions, see below.

II. MODEL AND METHOD

Our starting point is the Hubbard model on a two-
dimensional, infinite square lattice, as given by the Hamil-
tonian

Ĥ =
∑

i,j,σ

ti,jĉ
†
i,σ ĉj,σ + U

∑

i

d̂i, d̂i ≡ n̂i,↑n̂i,↓, (1)

where i = (ix,iy) is the two-dimensional site-index, tij = −t

and t ′ are the hopping integrals for the nearest and next-nearest
neighbors, respectively, U is the Coulomb interaction, and
σ = ↑ , ↓ is the spin quantum number.

To account for electronic correlations, the strength of which
is determined by the ratio of U/|t |, a Jastrow correlator is
used |�G〉 = P̂G|�0〉, where |�0〉 is a single-particle-product
wave function (Slater determinant) to be defined later. We
work with the Gutzwiller correlator P̂G = ∏

i P̂i, in which the
local correlators can be expressed as P̂i = ∑

� λ�|�〉i i〈�| +
λB(|d〉i i〈∅| + H.c.). The parameters λ� control occupancies
of the four local states |�〉i, whereas λB is related to the
on-site pairing component [44]. The principal task is the
evaluation of the expectation value EG of the Hamiltonian
Ĥ with respect to the Gutzwiller wave function |�G〉. This
evaluation remains a difficult many-particle problem. It has
been shown in Refs. [13,36] that an efficient diagram-
matic expansion scheme can be formulated for this purpose
if the local correlator is chosen such that it fulfils the
condition

P̂ †
i P̂i = P̂ 2

i = 1 + x d̂HF
i , (2)

where x ∈ [−4,0] is a variational parameter and the Hartree-
Fock (HF) operators are defined by

d̂HF
i = d̂i − n0(n̂i,↑ + n̂i,↓) − �0(�̂i + �̂†

i ) + n2
0 + �2

0. (3)

Here n0 ≡ 〈n̂i,σ 〉0 and we already allow for a breaking of the
C4 symmetry, which, as mentioned above, leads to a finite
on-site pairing4 �0 ≡ 〈�̂i〉0 = 〈ĉi,↓ĉi,↑〉0. In the following,
we use the notation 〈. . .〉0,G for expectation values with
respect to |�0〉 and |�G〉. With our choice of a correlator
that satisfies (2) we eliminate on-site terms (the so-called
Hartree bubbles) from the resulting diagrammatic expansion
of expectation values. As a consequence, the results of the
DE-GWF method converge rapidly with an increasing order
of the expansion parameter x, as was demonstrated for one-
dimensional systems [13]. Note that with the condition (2),
the parameters λ� , λB in our Gutzwiller correlator are (for a
given |�0〉) all determined as a function of x, which serves
as our only remaining variational parameter. The DE-GWF
method is systematic in the sense that in the zeroth order of

4It also leads to nonzero double occupancies, 〈d̂G〉 
= 0, and
makes the analysis of a N+SC phase within the t-J model [17,20]
inconsistent with the zero double occupancy condition.

the expansion it reproduces [40,41] the nontrivial results of the
Gutzwiller approximation whereas, with an increasing order,
the exact GWF solution is approached. For two-dimensional
systems DE-GWF gives results in agreement with VMC but
with better accuracy [37,40].

Within the DE-GWF method we obtain all expectation
values, for example EG, as a power series in x,

EG(|�0〉,x) ≈
kc∑

k=0

ẽk

xk

k!
. (4)

The explicit form of EG for states with a finite on-site pairing
�0 is given in Ref. [39]. The coefficients ẽk depend on the wave
function |�0〉 or, more precisely, on the expectation values

P σ
l,l′ ≡ Pl,l′ ≡ 〈ĉ†l,σ ĉl′,σ 〉0, Sl,l′ ≡ 〈ĉl,↓ĉl′,↑〉0. (5)

The intersite expectation values serve as lines in our diagram-
matic expansion. The number of lines in the diagrams grows
with the order k. Instead of terminating the expansion (4) with
some finite value of kc, it turns out to be more accurate to
include all diagrams up to a certain maximum number of lines
lc. We further need to introduce a real-space cutoff, i.e., we
only include lines up to the maximum distance, here |l − l′|2 ≡
(lx − l′x)2 + (ly − l′y)2 = 16 (measured in lattice constants).

In the presence of superconductivity we minimize the
functional F ≡ EG − 2μG〈n̂σ 〉G instead of EG [37,40], where
μG is the chemical potential. The minimization with respect
to |�0〉 leads to the effective single-particle equation (cf.
Appendix A of Ref. [45] and Ref. [46])

Ĥ eff
0 |�0〉 = E|�0〉, (6)

where the effective Hamiltonian is given as

Ĥ eff
0 =

∑

i,j,σ

teff
i,j ĉ†i,σ ĉj,σ +

∑

i,j

(
�eff

i,j ĉ
†
i,↑ĉ

†
j,↓ + H.c.

)
. (7)

Here we introduced the effective hopping and pairing param-
eters

teff
i,j = ∂F(|�0〉,x)

∂Pi,j
, �eff

i,j = ∂F(|�0〉,x)

∂Si,j
. (8)

Let us underline that these parameters contain long-range
components, with the same cutoff as for the lines (i.e., up
to |i − j|2 = 16). Such long-range components are usually
neglected in other methods, but they turn out to be important
for a proper description of the nematic phases. The remaining
task is the self-consistent solution of Eqs. (6)–(8) in k space,
together with the minimization condition ∂F/∂x = 0 (see
Refs. [38–40] for details on the numerical procedures). From
the final self-consistent solution we can calculate the effective
dispersion εeff

k and gap �eff
k as Fourier transforms of teff

i,j and
�eff

i,j , as well as the ground-state energy EG labeled EN, ESC,
and EN+SC for the three considered phases. Here, N labels
a d-wave nematic phase, as in Ref. [13], SC is a d-wave
superconducting phase, as in Ref. [37], whereas the N+SC
phase exhibits coexisting orderings, which also leads to an
induced s-wave component of the gap (with on-site and
intersite contributions).

Let us note that both microscopic orderings are enabled in
our method by allowing for breaking of a relevant symmetry in
the wave function |�0〉. For the superconducting phase this is

085152-2



COEXISTENCE OF NEMATIC ORDER AND . . . PHYSICAL REVIEW B 94, 085152 (2016)

obtained by allowing for nonzero Sl,l′ lines in Eq. (5), whereas
for the nematic phase it is obtained by allowing for different
Pl,l′ lines in the x and y directions. The latter condition leads
directly to different effective hopping values in the x and
y directions and, thereby, to breaking of the C4 symmetry.
Of course, whether a symmetry is broken or not in the final
solution is determined via the minimization procedure.

III. RESULTS

We select the magnitude of the nearest-neighbor hopping,
t , as the energy unit and choose the values of other parameters
reflecting the cuprate high-Tc superconductors, U = 10 (i.e.,
U/t = 10) and t ′ = 0.25 (unless stated otherwise). Physical
energies (in Kelvin) are obtained by assuming t = 350 meV,
the typical energy in cuprate superconductors. The diagram-
matic expansion was carried out up to terms with lc = 13 lines
in the diagrams.

In Fig. 1 we compare the condensation energies Ec
N,SC,N+SC

(energy gain relative to the phase without broken symmetry)
of the three studied phases. We find the best conditions for
a N+SC phase when Ec

N ≈ Ec
SC as, e.g., for δ ≈ 0.07 in

Fig. 1(a) (marked with dot-dashed lines in this and some of
the following figures). When Ec

SC is significantly higher than
Ec

N the coexisting phase becomes unstable, as for δ � 0.05. In
the regime of larger doping, where Ec

N > Ec
SC, an additional

SC ordering on top of the N phase is stable even when the
pure SC phase has a significantly lower condensation energy,
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FIG. 1. (a) Condensation energies of the considered phases: N,
nematic; SC, superconducting; and a N+SC phase with coexisting
orders. The insets show the same quantities for U = 12 and U = 8.
(b) The energy gain from developing the second order on top of the
optimal one-order phase (N or SC): min(ESC,EN) − EN+SC. (c) Phase
diagram as a function of doping and the Coulomb interaction.

as is the case for δ > 0.1. In fact, for the optimally doped
case the SC phase is higher in energy than the N (or N+SC)
phase by ∼ 10–12 K independent of the expansion cutoff (as
verified for lc = 13,11,9). The energy gain from developing
additional order on top of the optimal one-order phase (SC
or N) is similar for U = 8,10, and 12 and maximally equal to
2–3 K in the vicinity of the crossing of the SC and N phase
energies, as visualized in Fig. 1(b). We have verified that there
is no phase separation for the considered phases and doping
values. Figure 1(c) shows how the boundary between the SC
and N+SC phases evolves with U , which is closely related to
the crossing of the N and SC phases [cf. Fig. 1(a)]. This picture
would be changed if the spin-exchange term was introduced
into the starting Hamiltonian (i.e., in the t-J -U model) to
make up for the underestimation of spin-exchange effects by
GWF. Such term favors the SC phase and we find that a N+SC
phase is stable up to J ≈ 0.15, above which the pure SC phase
dominates. On the other hand, the N phase induces a distortion
of the underlying lattice of ions [1], which should favor the N
and N+SC phases. To account for such effects the inclusion of
electron-phonon coupling is required [47,48], which is beyond
the scope of the present paper.

In Fig. 2 we elucidate the nonstandard gap structure in
a N+SC phase. Breaking of the C4 symmetry induces an
additional s-wave component of the SC gap. In Fig. 2(a) we
show the integral of the magnitude of the s- and d-wave gap
components, defined as |�eff

(kx ,ky ) ± �eff
(ky ,kx )| along the Fermi

surface. The s-wave contribution curve shows the ratio of the
s-wave integral to the sum of the two integrals to quantify
the s-wave input to the pairing. It is equal to 0 (1) for a pure
d (s)-wave state. Strikingly, although the energy gain from
developing a SC gap on top of the N phase is rather small
(maximally ∼3 K), the value of the effective gap can be of
the same order of magnitude as that in the pure SC phase.
The deviation of the gap from the standard dx2−y2 behavior
along the Fermi surface is shown in Fig. 2(b). Such deviation
is present even for the SC phase [37,40], as also observed
experimentally [49–51]. For a N+SC phase additionally the
nodal point is slightly shifted away from the diagonal direction
(as marked with an arrow), in contrast to previous results [23]
for an anisotropic model, and the effect increases with doping.
The inset shows the polar plots of the gap for N+SC and
SC phases. In the former case the Fermi surface is open
in the vertical and closed in the horizontal direction. To
quantify the nematicity of the system we plot in Fig. 2(c) the
dispersion relation along high-symmetry lines for δ = 0.13.
For the case without nematicity, the dispersions at the X and
X′ points would be equal. The difference in the values of
dispersion at these two points divided by the bandwidth is
shown in Fig. 2(d) as a measure of the dispersion asymmetry
for N+SC and N phases. This difference can be interpreted as
the order parameter for the nematic ordering. Note also that
the definition of a nematic order parameter is ambiguous (cf.
the discussion in Ref. [1], Sec. 2.2). The SC order does not
modify the dispersion asymmetry significantly (nor the Fermi
surface), unless the SC phase has lower energy than the N
phase.

In Fig. 3 we show the effective gap in the Brillouin
zone obtained from the DE-GWF method (with long-range
contributions up to �eff

4,0) for the SC phase in Fig. 3(a) and
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FIG. 2. (a) Gap components integrated over the Fermi surface
(see the main text for details). (b) Gap magnitude (normalized) along
the Fermi surface (dashed line shows the dx2−y2 gap). The shifted
nodal point is marked by an arrow. Inset: polar plots of the s + d-wave
gap of a N+SC phase and the d-wave gap of the SC phase, both
at δ = 0.13. (c) Dispersion along two paths in the Brillouin zone,
with the points � = (0,0), X = (0,π ), X′ = (π,0), and M = (π,π ).
(d) Dispersion asymmetry defined in the main text.

N+SC phase in Fig. 3(b), as well as the corresponding gap
structures with contributions only up to nearest neighbors for
both phases in Figs. 3(c)–3(d), as usually assumed in other
methods (e.g., in VMC). It can be seen from Fig. 3 that such
an assumption does not reflect all principal features of the
optimal variational solutions. For example, the longer-range
components of the gap are mostly opposite to the dominant
�eff

1,0 component and this leads to circles with zero gap around
the � = (0,0) and M = (π,π ) points of the Brillouin zone in
Fig. 3(a). For a N+SC phase the gap structure is significantly
modified with respect to the pure SC phase: (i) the magnitudes
of the gap values at X = (0,π ) and X′ = (π,0) are different;
(ii) the zero-gap direction is no longer a straight line along
the diagonal but an irregular line along one of the axes
(coinciding with the direction, in which the Fermi surface
is open); (iii) a larger part of the Brillouin zone contributes to
pairing.
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FIG. 3. Gap value in the Brillouin zone (a)–(b) from the DE-GWF
method for the (a) SC and (b) N+SC phases at the doping of δ = 0.04
and δ = 0.13, respectively; (c)–(d) for the gap with contributions up to
nearest neighbors, namely (c) a pure dx2−y2 gap, and (d) a gap with the
on-site component and the nearest-neighbor s+d-wave components.
The solid black lines show the Fermi surface in (a)–(b). The thin
lines (dashed, dotted, and dashed-dotted) are isolines and show, in
particular, the regions with zero gap (white color in all graphs).

IV. CONCLUSIONS

The coexistence of the nematic and superconducting orders
has been demonstrated in the Hubbard model by using the
full Gutzwiller wave function (GWF). Application of the
diagrammatic expansion (DE) technique has enabled us to
investigate the properties of the system without finite-size
limitations, a condition crucial for the description of the
nematic phases. We have shown that the superconducting and
nematic orders coexist in the Hubbard model unless the pure
superconducting phase is significantly lower in energy than
the pure nematic phase. We have obtained the phase diagram,
the energies and other properties of the investigated pure and
coexisting phases. The gap structure in the coexisting phase is
unconventional due to the breaking of the C4 symmetry: the
induced s-wave gap component shifts the nodal point away
from the diagonal direction and modifies the zero-gap region
to form in the direction of open Fermi surface.

In the optimal doping regime pure superconductivity turns
out not to be the dominating phenomenon as it is unstable
against a d-wave nematic instability with (as well as without)
an additional superconducting order. This observation may be
related to the fact that the cuprate high-Tc superconductors
develop additional orders in this regime. Namely, the investi-
gated phase can be viewed as a precursor to more complicated
orders including stripes and phases with charge density wave
order involving more complex patterns of symmetry breaking.

The developed formalism can also be applied to other situ-
ations including dipolar Fermi gases in optical lattices where
the anisotropy of dipolar interactions leads to appearance of
the N phase [10,11] and superconductivity can be induced by
an attractive on-site interaction U .
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