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We theoretically investigate the behavior of Andreev levels in a single-orbital interacting quantum dot in
contact with superconducting leads, focusing on the effect of electrostatic gating and applied magnetic field, as
relevant for recent experimental spectroscopic studies. In order to account reliably for spin-polarization effects
in the presence of correlations, we extend here two simple and complementary approaches that are tailored
to capture effective Andreev levels: the static functional renormalization group (fRG) and the self-consistent
Andreev bound states (SCABS) theory. We provide benchmarks against the exact large-gap solution as well as
renormalization group (NRG) calculations and find good quantitative agreement in the range of validity. The
large flexibility of the implemented approaches then allows us to analyze a sizable parameter space, allowing us
to get a deeper physical understanding into the Zeeman field, electrostatic gate, and flux dependence of Andreev
levels in interacting nanostructures.
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I. INTRODUCTION

Andreev bound states (ABS) in quantum dots connected
to superconducting electrodes have been a subject of active
research in recent years, both theoretically [1–50] and ex-
perimentally [51–84]. The understanding of ABS formation
is not only of great interest for their potential use in
quantum information devices, but also because they constitute
a testbed for microscopic theories of nanostructures. Indeed,
transport measurements in the normal state (obtained under the
application of a sufficiently strong magnetic field to suppress
the superconductivity in the leads) allow to extract in prin-
ciple the basic parameters governing the quantum dot (local
Coulomb interaction U , tunneling rate �, level position ε).
These in turn determine the dispersion of the ABS in the
superconducting state as a function of electrical gating, the
superconducting phase difference φ, or with respect to a
moderate magnetic field B. Several attempts for a precise
description of ABS in quantum dots have been recently made in
this direction [69,70,77], but only qualitative agreement could
be obtained. In particular, microscopic calculations based on
the widely used self-consistent Hartree-Fock approximation
are not trustworthy except for the case of weak Coulomb
interaction or large applied magnetic fields [40,49].

Alternative theories to mean-field approaches offer a trade-
off between simplicity and accuracy. The simplest techniques
are based on static renormalization group ideas, and have
been formulated both within a perturbative expansion in
the effective Coulomb interaction in the framework of the
functional renormalization group (fRG) [48,85–88], or around
the large gap limit by a self-consistent Andreev bound
state picture (SCABS) [32,73,89]. Both techniques achieve
surprisingly good agreement (in their range of validity) with
full-scale numerical renormalization group (NRG) computa-

tions [90–100], while their low numerical cost allows us to
efficiently explore the effective Andreev levels over the whole
parameter space. While previous analytical renormalization
group calculations have mainly focused on the particle-hole
symmetric case (i.e., at the center of the odd charge Coulomb
blockade diamond) and for zero magnetic field, we aim here at
extending both the fRG and SCABS techniques to account for
the full electric and magnetic tuning available in quantum
dot devices. We will not consider here full second-order
perturbation theory in the Coulomb repulsion U . Although
this technique provides excellent results at particle-hole
symmetry and zero magnetic field, once self-consistency on
the effective pairing amplitude is properly taken into account
[49,89], its accuracy is expected to degrade away from these
two limits (in addition, a proliferation of diagrams makes
the technique more cumbersome to use in absence of any
symmetry).

The paper is organized as follows. In Sec. II we introduce
the basic model of superconducting quantum dots, and
describe how to obtain the position and weights of ABS from
Green’s function techniques in the presence of a Coulomb
repulsion. The model is then solved mathematically in the
special limit of infinite gap in the presence of both an external
gate voltage and an applied magnetic field, which allows for a
qualitative discussion of the physics. In Sec. III we briefly
review the static functional renormalization group and the
self-consistent Andreev bound state theory extensions to the
case of finite magnetic field. Finally, we discuss our results
in Sec. IV, starting with the case of zero magnetic field
before considering the complete magnetoelectric spectroscopy
of the Andreev levels. The various methods are tested against
previous NRG results [93], in order to assess their validity
range and possible breakdowns.
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FIG. 1. Setup considered in this work. A quantum dot subject to
a magnetic field B and an electrical gate ε is tunnel coupled to two
superconducting BCS electrodes.

II. SUPERCONDUCTING QUANTUM DOT MODEL

A. The superconducting Anderson Hamiltonian

Due to strong electronic confinement in quantum dots,
it is legitimate to base our study on a single-orbital level
(exceptions arise however in ultraclean carbon nanotube
systems, where chirality and spin-orbit physics can play
an important role). We assume here for simplicity that the
magnetic field has no orbital effect on the quantum dot (this
applies for instance to the case of carbon nanotubes that are
perpendicular to the field axis) and only lifts the degeneracy
between spin up and spin down states through the Zeeman
effect. In the metallic leads, the Zeeman effect is usually
negligible, but a sufficiently strong orbital effect can suppress
the superconducting gap. We will thus consider here relatively
weak magnetic fields, such that the superconducting order
parameter (gap amplitude) � can be assumed constant. The
possibility to tune the superconducting phase difference via
the magnetic field in a SQUID geometry will be accounted for
via the independent phase difference φ across the junction. We
thus investigate the model depicted in Fig. 1 that is described
by the Hamiltonian

H =
∑

α=L,R

Hα + H dot +
∑

α=L,R

H T
α , (1)

where

Hα =
∑
�k,σ

ε�k c
†
�k,σ,α

c�k,σ,α
−

∑
�k

(�α c
†
�k,↑,α

c
†
−�k,↓,α

+ H.c.),

(2a)

H dot =
∑

σ

(ε d†
σ dσ + σB d†

σ dσ ) + U

(
n↑ − 1

2

)(
n↓ − 1

2

)
,

(2b)

H T
α =

∑
�k,σ

(tα d†
σ c�k,σ,α

+ H.c.). (2c)

In the above equations α = L,R denotes the left and right
lead, respectively, while σ = ↑, ↓ denotes the spin degree of
freedom. The leads are modeled by BCS Hamiltonians Hα

with a lead-independent dispersion ε�k and superconducting

gaps �α = |�| eiφα that differ only in the complex phase φα .
Note that only the phase difference φ = φL − φR is of physical
importance. We furthermore assume the leads to have a flat
density of states of amplitude ρ0 = 1/(2D), where 2D is the
total bandwidth. The leads are tunnel coupled to the quantum

dot by tunneling amplitudes tα , which we assume to be
momentum independent. The dot, finally, is characterized
by a level energy ε, an on-site Coulomb repulsion U , and
a Zeeman energy B. Note that the single-particle energy
was shifted, such that ε = 0 corresponds to the particle-hole
symmetric case. As discussed above, the lead parameters (such
as the superconducting gap � and the phase difference φ) are
considered to be effective parameters for a given magnetic
field.

B. Green’s functions in superconducting dots

For practical reasons we will work in the following with
the Nambu operator basis

	 =
(

d↑

d
†
↓

)
(3)

for the dot degrees of freedom. This allows us to introduce
a matrix structure for all one-particle correlation functions
(defined below on the Matsubara imaginary axis), such that
the off-diagonal terms capture the anomalous components,
while the diagonal terms can be directly related to the normal
spin-resolved ones:

G(iω) =
(

G11(iω) G12(iω)

G21(iω) G22(iω)

)
=

(
〈d↑d

†
↑〉iω 〈d↑d↓〉iω

〈d†
↓d

†
↑〉iω 〈d†

↓d↓〉iω

)
.

(4)

We first consider the situation of a noninteracting quantum dot
(U = 0). In the wide band limit, i.e., D → ∞ while keeping
the ratio D/t2 constant, the Green’s function of the dot level
is given by

G0(iω) =
(

iω̃ − ε − B �̃

�̃∗ iω̃ + ε − B

)−1

= 1

D0(iω)

(
iω̃ + ε − B −�̃

−�̃∗ iω̃ − ε − B

)
, (5)

with the determinant

D0(iω) = (iω̃ − ε − B)(iω̃ + ε − B) − |�̃|2.
We also introduced the compact notations

iω̃ = iω

(
1 + �√

ω2 + �2

)
, (6)

�̃ = �√
ω2 + �2

∑
α=L,R

�αeiφα , (7)

with a total hybridization � = ∑
α=L,R �α , and �α = πρ0t

2
α .

Note that � will in the following be used as our unit of energy.
At the one-particle level, the effects of the local Coulomb

interaction U can be fully accounted for by a frequency-
dependent self-energy, so that the interacting Green’s function
of the dot reads

G(iω) = (
G−1

0 (iω) − �(iω)
)−1 = 1

D(iω)

(
iω̃ + ε − B − �2(iω) −�̃ + ��(iω)
−�̃∗ + ��

∗(−iω) iω̃ − ε − B − �1(iω)

)
, (8)
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with the determinant

D(iω) = [iω̃ − ε − B − �1(iω)][iω̃ + ε − B − �2(iω)]

− |�̃ − ��(iω)|2. (9)

C. Andreev bound states, spectral weights,
and Josephson current

The density of states of the quantum dot features discrete
ABS inside the superconducting gap. They correspond to poles
in the total electronic density of states

ρ(ω) = − 1

π
lim

η→0+
Im[G11(ω + iη) − G22(−ω − iη)] (10)

that can be determined by finding all roots Ebs ∈ {±a,±b} of
the determinant D(ω) on the real frequency axis. Note that
ABS poles will always appear in pairs symmetrically posi-
tioned around the chemical potential, while their respective
spectral weights are calculated from their residuals

w(Ebs) = lim
η→0+

iη [G11(Ebs + iη) − G22(−Ebs − iη)]. (11)

In addition, we will consider the weight of the anomalous
component of the Nambu Green’s function

w�(Ebs) = lim
η→0+

iη G21(Ebs + iη), (12)

which contains information on the supercurrent carried by the
ABS. As we will see in the following, the ABS are responsible
for a substantial part of the total Josephson current [101,102]
that can flow through the device in the presence of a finite
superconducting phase difference φ. To illustrate this, let us
define the Josephson current operator as the time derivative
of the particle number operator Nα for the left and right lead,
respectively,

Jα = ∂tNα = i[H,Nα]. (13)

In the absence an applied bias and at T = 0, the expectation
value reads

〈Jα〉 = 2�α

π

∫
dω Im

[
�eiφα

√
ω2 + �2

G21(iω)

]
. (14)

This formula is valid also in the presence of interaction,
provided the exact anomalous Green’s function is known.
To determine the contribution of the different ABS to the
current, we split the Green’s function G21 into a part containing
the poles, and another part carrying the contribution of the
spectrum corresponding to branch cuts in the complex plane,
which is associated with the continuum above the gap:

G21(iω) = Gcont.
21 (iω) +

∑
{±Ebs}

w(Ebs)

iω − Ebs
. (15)

Plugging this into Eq. (14) we obtain

〈JL〉 =
∑

{±Ebs}
〈JEbs〉 + 〈Jcont.〉, (16)

with

〈JEbs〉 = 2�L

π

∫
dω Im

[
�eiφ/2

√
ω2 + �2

w(Ebs)

iω − Ebs

]
(17)

and

〈Jcont.〉 = 2�L

π

∫
dω Im

[
�eiφ/2

√
ω2 + �2

Gcont.
21 (iω)

]
. (18)

Evaluating the integral (17) gives

〈
JEbs

〉 = −2�L f

(∣∣∣∣Ebs

�

∣∣∣∣
)

sgn(Ebs)Im[eiφ/2w�(Ebs)], (19)

where f (x) = [π − 2 arcsin(x)]/(π
√

1 − x2). Note that the
explicit dependence of 〈JEbs〉 on the relative bound state
position |Ebs/�| is weak, so that the current amplitude is
mainly determined by the sign and weight of the ABS.

D. The large gap limit

A simple physical picture of the ABS can be obtained
from the limit [103] � → ∞. In this case, the noninteracting
Green’s function simplifies as

G0(iω)−1 �→∞−−−→ iω −
(

B + ε −�φ

−�∗
φ B − ε

)
, (20)

where �φ = ∑
α �αeiφα , which, for the case of a symmetric

coupling to the leads �L = �R = �/2, takes the simple form

�φ = �∗
φ = � cos

φ

2
. (21)

The key point is that the noninteracting Green function (20)
coincides with the one of a system with an effective local
Hamiltonian

H 0
eff = 	†

(
B + ε −�φ

−�∗
φ B − ε

)
	, (22)

where 	 is the previously introduced Nambu spinor. This
Hamiltonian can be diagonalized by means of a Bogoliubov
basis transformation

	 ′ =
(

d+
d
†
−

)
=

(
u −v

v∗ u∗

)
	, (23)

where u and v are defined up to an arbitrary phase factor by

u∗v = �φ/(2Eφ), (24a)

|u|2 = (1 + ε/Eφ)/2, (24b)

|v|2 = (1 − ε/Eφ)/2, (24c)

and

Eφ =
√

ε2 + |�φ|2. (25)

The possibility to reduce the problem to a local one allows
us to deal with the Coulomb interaction in a simple way. In the
new basis {|00〉,|01〉,|10〉,|11〉}, labeled by (n+,n−), the full
effective Hamiltonian takes the diagonal form

Heff = Eφ(n+ − n−) + B(n+ + n− − 1) + U

2
(n+ − n−)2,

(26)
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TABLE I. Relations of the electronic dot basis to the eigenbasis
of the effective interacting Hamiltonian.

Eigenvalue Eigenbasis Dot basis

E↑ |11〉 |↑〉
E↓ |00〉 |↓〉
E+ |01〉 |+〉 = u |0〉 + v |↑↓〉
E− |10〉 |−〉 = v∗|0〉 − u∗|↑↓〉

with the eigenvalues

E00 = −B, E01 = Eφ + U

2
, (27a)

E10 = −Eφ + U

2
, E11 = B. (27b)

The relations to the electronic dot basis are shown in Table I.
Here we have introduced the shorthands

Eσ = σB, E± = U/2 ± Eφ. (28)

Clearly (for positive B and U , which we assume from
now on), the system can assume only two possible ground
states, either the nonmagnetic 0-phase state |10〉, or the
spin polarized π -phase state |00〉. A phase transition (level
crossing) will occur under the condition E↓ = E−, which reads
explicitly

(U + 2B)2 = 4

[
(�R − �L)2 + 4�L�R cos2 φ

2

]
+ 4ε2.

This indicates the similar role of U and B in determining
the phase boundary that is an increase of either parameters
will induce a transition to the π phase. However, an increase
of U alone will tend in addition to renormalize strongly the
electronic states on a wide energy range.

Using Lehmann’s representation, one can reconstruct the
exact Green’s function in the large gap limit (see Appendix A),
and hence the corresponding self-energies for finite magnetic
fields B = 0,

� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U
2Eφ

(
−ε �φ

�∗
φ ε

)
0 phase

(
U
2 0

0 U
2

)
π phase

. (29)

Note that, in this exactly solvable limit, the self-energy is found
to be frequency independent, which is a strong argument for
approaches that make the assumption of a static self-energy.
On the other hand, the self-energy is completely independent
from the magnitude of the magnetic field, while being purely
linear in U in both phases. For finite magnetic field, this is a
strong argument in favor of approaches that are perturbative in
U (such as the static fRG or Hartree-Fock theory).

The situation changes drastically when we consider the
case of vanishing magnetic field. While the self-energy in the
0 phase remains unchanged, the twofold degeneracy of the
ground state in the π phase results in a frequency dependence

TABLE II. Spectral weights and anomalous weights of the
Andreev bound states evaluated for the 0 phase and for the π phase,
with the associated transitions.

0 phase

Ebs Transition w w�

±a↑ |↑〉 ↔ |−〉 |v|2,|u|2 0,−u∗v
±a↓ |↓〉 ↔ |−〉 |v|2,|u|2 u∗v,0
±b↑ |↑〉 ↔ |+〉 0 0
±b↓ |↓〉 ↔ |+〉 0 0

π phase

Ebs Transition w w�

±a↑ |↑〉 ↔ |−〉 0 0
±a↓ |↓〉 ↔ |−〉 |v|2,|u|2 u∗v,0
±b↑ |↑〉 ↔ |+〉 0 0
±b↓ |↓〉 ↔ |+〉 |u|2,|v|2 −u∗v,0

as well as a U 2 scaling. At B = 0 we find

� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U
2Eφ

(
−ε �φ

�∗
φ ε

)
0 phase

U 2

4
1

(iω)2−E2
φ

(
iω + ε −�φ

−�∗
φ iω − ε

)
π phase

. (30)

The situation at zero magnetic fields is thus more complex for
perturbative methods.

To get a more physical understanding of the Andreev bound
state energies, we refer again to the Lehmann representation
of the Green’s function in the atomic limit. Here the poles
can be identified as one-electron transitions between the
eigenstates {|−〉,|+〉} ↔ {|↑〉,|↓〉}. The possible transition
energies are thus

aσ = E− − σB, (31a)

bσ = E+ − σB, (31b)

and their negative values, respectively. The corresponding
weights of the Andreev bound states are summarized in Table II
(see Appendix A for details) for both phases in the case of
finite magnetic field B > 0. The expressions aσ and bσ are
plotted in Fig. 2 as a function of the on-site energy ε and
for U = 2�, B = 0.7�, and φ = π/2. Here solid lines were
chosen whenever the corresponding weight is nonvanishing,
and dashed lines are associated with zero weight, thus to a
nonvisible transition.

Let us now clarify a few important points that will allow
for a deeper understanding of the ABS even for the case of
finite gap. First we want to point out that at finite magnetic
field exactly two bound states (four, including their symmetric
partners) have a nonvanishing weight, independent of whether
the ground state is magnetic or not. The energies of the
inner bound state pair are given by ±a↓ in both phases, and
can thus be tracked continuously across the phase transition.
Furthermore, as the requirement for the level crossing phase
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FIG. 2. The Andreev transition energies a↑, a↓, b↑, and b↓
(bottom to top) for the large-gap limit as a function of the on-site
energy ε and U = 2�, B = 0.7�, φ = π/2, and �L = �R = �/2.
Solid lines correspond to regions of nonvanishing weight, while
dotted lines denote a vanishing weight. Note that the contributions
−a↑, −a↓, −b↑, and −b↓ from the symmetric ABS have not been
drawn here for clarity.

transition is given by E↓ = E− and thus a↓ = 0, the inner
bound state will always cross the chemical potential at the
point of the phase transition, while the outer bound state pair
experiences a jump in energy. While in the 0 phase the outer
bound-state pair has energies ±a↑, their energies change to
±b↓ in the π phase. This behavior is depicted in Fig. 3 for the
case of a varying level position ε. Here and in the following we
show the inner bound states ±a↓ in red, while ±a↑ is shown
in green and ±b↓ in blue.

We finally consider the Josephson current in the large gap
limit for a nonvanishing magnetic field. The total current
is most straightforwardly calculated by the derivative of the
ground state energy EGS(φ),

J = 2∂φEGS(φ). (32)

In the π phase, the ground state energy does not exhibit any φ

dependence, leading to a vanishing Josephson current. In the
0 phase, the current is given by

J = −2∂φEφ = 2�L�R

sin φ

Eφ

. (33)

It is instructive to determine the contribution of each bound
state to the total Josephson current. In the limit � → ∞
Eq. (19) yields〈

JEbs

〉 = −2�LIm[eiφ/2w�(Ebs)
∗]sgn(Ebs), (34)

FIG. 3. The visible Andreev bound states and the corresponding
transitions in and out of the ground states in the 0 and π phase for
U = 2�, B = 0.7�, φ = π/2, and �L = �R = �/2.

Since the spectrum on the dot consists only of the bound
states, we get no continuum contribution to the total Josephson
current. Recalling that u∗v = �φ/(2Eφ), the result for the 0
phase is

〈J−a↑ 〉 = 〈Ja↓〉 = �L�R

sin φ

Eφ

, (35)

adding up to the total Josephson current (33). In the π phase
the contributions are

〈Jb↓〉 = −〈Ja↓〉 = �L�R

sin φ

Eφ

, (36)

leading to a vanishing Josephson current, as expected. Having
identified the transitions associated with the different bound
state energies (see Table II), we can interpret the corresponding
Josephson current contribution as a measure for the relevance
of the virtual intermediate state in the Cooper pair transport
process. It is also interesting to note that the magnitude of the
current in the 0 phase does not depend on the magnetic field
at large gap, an artifact of this limit.

III. METHODS

We here briefly review two complementary approaches that
are able to tackle the problem of superconducting quantum
dots in the presence of both a finite Coulomb interaction and a
finite gap: the static fRG and the SCABS approximation. In the
description of their implementation, we focus on the aspects
specific to the extension to finite magnetic fields.

A. Static functional renormalization group

The fRG [104,105] is based on Wilson’s general RG idea
for interacting many-body systems. By introducing a scale
dependence into the noninteracting Green’s function one can
derive an exact functional flow equation that describes the
gradual evolution of the effective action, that is, the generating
functional of the one-particle irreducible vertex functions, as
the scale is changed. While the action at the final scale is the
one of the systems in question, we only require the initial
action to be exactly solvable, giving rise to a large freedom
in the choice of the initial conditions [106]. Expanding this
functional flow equation in powers of the external sources
yields an exact but infinite hierarchy of flow equations for
the n-particle vertex functions. In practical implementations,
however, this hierarchy has to be truncated at a given order.
This truncation is commonly performed at the two-particle
level, and yields a set of flow equations for the self-energy and
the two-particle vertex functions.

We here use the fRG implementation for superconducting
quantum dots formulated on the Matsubara axis [104,107]
(see Ref. [48] for the extension to real-time Keldysh space)
assuming that the self-energy and the two-particle vertex
are both static. The underlying approximations are devised
for weak to intermediate Coulomb interaction strengths and
arbitrary gap, and have been checked by comparing with NRG
data.

At zero temperature we use a frequency cutoff of the form

G�
0 = �(|ω| − �)G0, (37)
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while the Green function at a given scale is determined by
means of the Dyson equation G� = [(G�

0 )−1 − ��]
−1

. In the
static approximation, the self-energy contains three frequency-
independent elements

��(iω) =
(

��
1 ��

�

��
�

∗
��

2

)
, (38)

while the static two-particle vertex is determined by a single
renormalized Coulomb interaction U�. Note that the static
terms ��

1 and ��
2 effectively renormalize the on-site energy

and magnetic field. Introducing flowing effective physical
parameters

ε� = ε + 1
2

(
��

1 − ��
2

)
, B� = B + 1

2

(
��

1 + ��
2

)
, (39)

the Green’s function reads

G�(iω) = 1

D(iω)

(
iω̃ + ε� − B� −�̃ + ��

�

−�̃∗ + ��
�

∗
iω̃ − ε� − B�

)
,

(40)

with the determinant

D(iω) = (iω̃ − ε� − B�)(iω̃ + ε� − B�) − ∣∣�̃ − ��
�

∣∣2
.

(41)

The explicit flow equations for the effective parameters read

∂�ε� = U�ε�

π |D(i�)|2
[
ω̃2 + (ε�)2 − (B�)2 + ∣∣�̃−��

�

∣∣2]
ω=�

,

(42a)

∂�B� = U�B�

π |D(i�)|2
[
ω̃2 − (ε�)2+(B�)2+∣∣�̃−��

�

∣∣2]
ω=�

,

(42b)

∂���
� = U�

(
��

� − �̃
)

π |D(i�)|2
[
ω̃2+(ε�)2−(B�)2+∣∣�̃−��

�

∣∣2]
ω=�

,

(42c)

and

∂�U� = 2π
[
(∂�B�)2 − (∂�ε�)2 + ∣∣∂���

�

∣∣2]
ω=�

(43)

for the two-particle vertex, with the initial conditions

ε�=∞ = ε, B�=∞ = B, (44a)

��=∞
� = 0, U�=∞ = U. (44b)

This set of ordinary differential equations is then integrated
numerically from �/� = 106 to �/� = 10−6 using a Runge-
Kutta solver. An example for the evolution of the renormalized
parameters during the flow is shown in Fig. 4.

Introducing the notation

ε�=0 = εr , B�=0 = Br, (45a)

��=0
� = ��, U�=0 = Ur (45b)

FIG. 4. Flow of the renormalized on-site energy ε� and the
effective interaction U� for � = �, ε = �, B = �, φ = π/2,
�L = �R = �/2, and different values of U . U = 0.6� is close to
the phase transition and the flow converges at a lower energy scale.
Note that the interaction is effectively reduced in the 0 phase, while
an enhancement is observed in the π phase.

for the renormalized values at the end of the flow, the poles of
the Green’s function are determined by finding the roots of its
determinant (41), e.g., by solving

(ω̃ − εr − Br )(ω̃ + εr − Br ) − |�̃ − ��|2 = 0. (46)

The spectral weights of the associated ABS are then calculated
according to Eqs. (11) and (12).

B. Self-consistent Andreev bound state theory

This alternative approach focuses again on effective An-
dreev levels, but, instead of a scheme based on a renormalized
perturbative expansion in the Coulomb interaction, rather con-
siders the infinite gap limit as a starting point for a perturbative
treatment. The clear advantage here is that the 0 to π transition
is already captured at � = ∞, and thus the method should be
able to describe both phases on an equal footing. For � = ∞,
we have previously calculated the one-particle energy levels
E0

σ = σB and the BCS-like levels E0
± = U/2 ± √

ε2 + |�φ|2.
Note that we have added an additional superscript 0 to
denote that these are the uncorrected energies at infinite gap.
Furthermore, all following derivations will be considering
the general case of a finite bandwidth 2D, which requires
the introduction of the generalized hybridization function
�φ(iω) = 2

π
arctan ( D√

�2−(iω)2
)
∑

α �αeiφα . In the following,

�φ = �φ(0).
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Straightforward calculations detailed in Appendix B give the perturbative correction at lowest order

δEσ = −t2
∑

�k

[
1

E�k + (
E0+ − E0

σ

) + 1

E�k + (
E0− − E0

σ

) + 2�

E�k
uv

∣∣∣∣cos
φ

2

∣∣∣∣
(

1

E�k + (
E0+ − E0

σ

) − 1

E�k + (
E0− − E0

σ

)
)]

,

(47a)

δE+ = −t2
∑
�k,σ

(
1

E�k − (
E0+ − E0

σ

) − 2�

E�k
uv

∣∣∣∣cos
φ

2

∣∣∣∣ 1

E�k − (
E0+ − E0

σ

)
)

− 2|�φ|uv, (47b)

δE− = −t2
∑
�k,σ

(
1

E�k − (
E0− − E0

σ

) + 2�

E�k
uv

∣∣∣∣cos
φ

2

∣∣∣∣ 1

E�k − (
E0− − E0

σ

)
)

+ 2|�φ|uv, (47c)

with the quasiparticle energy E�k = √
ε�k2 + �2. These expressions generalize the results of Ref. [32] to the case of finite magnetic

field.
At finite �, the self-consistent perturbative approach considered in Ref. [32] can be generalized to the spinful case. In

order to write self-consistent equations for the corrections to the Andreev transitions, δaσ = δE− − δEσ = aσ − a0
σ and δbσ =

δE+ − δEσ = bσ − b0
σ , one must analyze carefully the singularities appearing in their respective expressions:

δaσ = −�

π

∫ D

0
dε

[∑
σ ′

1

E − a0
σ ′

− 1

E + b0
σ

− 1

E + a0
σ

+ 2�

E
uv

∣∣∣∣cos
φ

2

∣∣∣∣
(∑

σ ′

1

E − a0
σ ′

− 1

E + b0
σ

+ 1

E + a0
σ

)]
+ 2|�φ|uv,

(48a)

δbσ = −�

π

∫ D

0
dε

[ ∑
σ ′

1

E − b0
σ ′

− 1

E + b0
σ

− 1

E + a0
σ

+ 2�

E
uv

∣∣∣∣cos
φ

2

∣∣∣∣
( ∑

σ ′

−1

E − b0
σ ′

− 1

E + b0
σ

+ 1

E + a0
σ

)]
− 2|�φ|uv.

(48b)

Recall that E = √
ε2 + �2, such that singularities appear indeed whenever a one-particle transition on the dot becomes

comparable to the minimum quasiparticle energy given by the gap �. A first important observation is that the singularities tend
to cancel out together for the outer bound state correction δbσ , which implies that these states become part of the continuum for
small enough �. One can thus focus on analyzing the singularities related to the inner bound states aσ , which originate from the
denominators in 1/(E ± a0

σ ). The physics here is simply an effect of level repulsion from the continuum whenever the bound
state approaches the gap edges. In the case a0

σ > 0, which occurs typically in the regime of strong correlations U � �, only
the denominators in 1/(E − a0

σ ) are singular. This leads to a downward renormalization of the bound state energy aσ compared
to the bare value a0

σ . Conversely, an upward renormalization of the bound state occurs when a0
σ < 0, since the denominators

1/(E + a0
σ ) provide then the main contribution. We can thus renormalize in a self-consistent way the inner Andreev bound states

according to

δaσ = − �

π

∫ D

0
dε

[ ∑
σ ′

1

E − a0
σ ′ − �[−δaσ ′]δaσ ′

− 1

E + b0
σ

− 1

E + a0
σ

+ 2�

E
uv

∣∣∣∣cos
φ

2

∣∣∣∣
( ∑

σ ′

1

E − a0
σ ′ − �[−δaσ ′]δaσ ′

− 1

E + b0
σ

+ 1

E + a0
σ + �[δaσ ′]δaσ ′

)]
+ 2|�φ|uv, (49)

and correspondingly for b. Note the presence here of �

functions that account for respective downward and upward
renormalization, as discussed above. We thus find that δaσ

depends on both δa↑ and δa↓, such that one has to solve a
coupled set of self-consistent equations for δaσ (and similarly
for δbσ ). These equations can, however, be decoupled, since
δa↑ − δa↓ is a constant that does not depend on either δaσ

(and again similarly for δbσ , which is not written here).
This simple procedure does not provide any information on
the weights of the ABS, in contrast to the fRG approach
of the previous section. The understanding of the allowed

transitions can nevertheless be gathered from the atomic
limit.

IV. RESULTS

For the results in the following we will focus on the case
of symmetric coupling �L = �R as the physics of the system
does not differ from the general case. We will first describe
how the case of finite gap is linked to the solution in the
large-gap limit in order to understand in more detail the
effect of a local magnetic field on the spectrum. This will

085151-7



WENTZELL, FLORENS, MENG, MEDEN, AND ANDERGASSEN PHYSICAL REVIEW B 94, 085151 (2016)

be followed by a detailed comparison between the fRG and
the SCABS approximation, and further by a brief benchmark
against available NRG results [93]. To conclude our study, we
will give a small outlook towards transport calculations that
are closer to actual spectroscopic experimental setups.

A. From large to small gaps using fRG

While the previously introduced SCABS approximation
includes the exact large-gap limit solution by construction, this
does not hold for the fRG. This allows us to benchmark fRG
calculations of the Andreev bound states performed for a large
gap value (e.g., 106�) against the exact expressions presented
previously. This comparison is shown in the left panel of Fig. 5,
which shows the Andreev bound state energies (upper panels),
the corresponding spectral weights (middle panels), as well as
the bound-state resolved Josephson current (lower panels) as
a function of the level-position ε for U = 2�, φ = π/2. The
dashed line indicates the exact solution in the large-gap limit,
while solid lines denote the corresponding fRG data. Bound
state colors are chosen as previously introduced. We find an
excellent agreement of the fRG data with the exact solution,
not only for the ABS, but also for their weights as well as the
Josephson currents. Small deviations can be found in the π

-6
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Δ = ∞

E
bs

/Γ
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fRG
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 0.6

 0.8
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-0.2

-0.1

 0

 0.1

 0.2
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ε/Γ

FIG. 5. Bound state energies (upper panels), the corresponding
weights (middle panels), as well as the bound-state resolved Joseph-
son currents (lower panels) defined in Eq. (19) as a function of the
on-site energy ε. The calculation is shown for the large-gap situation
(left column) and a finite gap � = � (right column), with U = 2�,
φ = π/2, and B = 0.7� in all cases. Solid lines show fRG results,
while dotted lines denote the exact expressions for � = ∞. The
weights shown here correspond to the bound state energies a↑, a↓,
and −b↓ associated with their respective colors (compare Fig. 2). The
gray lines denote the total Josephson current.

phase for the outer bound states ±b↓ (blue), specifically close
to the phase transition.

The corresponding fRG data for the same set of parameters
but now a finite gap � = � is shown in the right panels of
Fig. 5. While the qualitative behavior of the ABS is similar,
we find that, due to the repulsion from the gap edge, the overall
structure is squeezed in the process of closing the gap from
large to small values. In particular, the outer bound states are
strongly deformed due to this process. This is also mirrored
in the change of the spectral weight, as the ABS tend to loose
more weight the closer they are to the gap edge. In fact,
for sufficiently small gap, the outer bound state pair can be
absorbed completely into the continuum part of the spectrum.
As the gap is lowered, we also find a nonvanishing Josephson
current (gray) in π phase. Further it is interesting to note
that the bound-state contributions no longer add up to the
total Josephson current (which we will study in what follows),
as the continuous part of the DOS now has a nonvanishing
contribution to the Josephson current.

B. Magnetic field effects

We here discuss how the magnetic field alters the ABS in
the 0 phase and by this drives the phase transition. Figure 6
shows the ABS (left) and Josephson current (right) obtained
from fRG as a function of the phase-difference φ for ε = �,
� = �, U = �, and different values of B. In the absence of
a magnetic field (upper panel), the system is in the 0 phase
for the whole φ range, and the visible ABS a↑ and a↓ are
equal. Accordingly, the Josephson current shows the typical
sinusoidal behavior without a jump.

FIG. 6. Evolution of the Andreev bound states and Josephson
current with φ as obtained from fRG for ε = �, � = �, U = �, and
different values of B.
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For a small magnetic field (B = 0.4�) the 0 phase is still the
most stable, but the bound states a↑ and a↓ can now be clearly
distinguished due to the Zeeman splitting. The corresponding
Josephson is just mildly reduced as a consequence.

When increasing the magnetic field further (B = 0.8�), the
inner bound states ±a↓ will cross the chemical potential for
φ close to π , thus inducing the phase transition for a finite φ

range. In this window, the visible outer bound state changes
to ±b↓. A Zeeman splitting is thus no longer directly visible
in this part of the spectrum. As expected, the change of the
ground state is accompanied by a sign reversal in the Josephson
current.

For even larger values of the magnetic field (B = 1.2�),
the inner bound states will completely cross the chemical
potential, inducing the π phase for the whole φ range.
Accordingly, the Josephson current completely inverts its sign.

C. Comparison between fRG and the SCABS approximation

In this subsection we provide a detailed comparison be-
tween the fRG and the SCABS approximation. While the fRG,
being a perturbative approach, is expected to perform better
for smaller values of U/�, the SCABS will by construction
perform better for larger �/�. We have thus chosen U ∈
{0.5π�,π�} and � ∈ {0.5π�,π�} for our comparison, in
order to span different ranges of validity of these approaches.
For the other parameters we chose ε = 0, φ = 0, and B = 0,
and then varied one of these at a time. The corresponding plots
can be found in Figs. 7–9, respectively.

Overall we find a very good quantitative agreement of the
results between the two methods. As expected, the largest
deviations can be found for � = 0.5π� and U = π�, since
both methods are then pushed away from their clear regime of
applicability. Varying ε, we see an almost perfect agreement
for U = 0.5π�. Small deviations arise close to the gap
edge, which is a trend that continues throughout the whole
comparison. This is tied to a weaker repulsion of the outer
ABS from the gap edge in the SCABS approximation. We
also note that for the choice of parameters U = π� and
� = π� we are very close to the 0-π transition. While the fRG
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FIG. 7. Bound state energies calculated with fRG (full lines) and
SCABS approximation (dashed lines) as a function of ε for B = 0,
φ = 0, and different values of U and �.
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FIG. 8. Bound state energies calculated with fRG (full lines) and
SCABS approximation (dashed lines) as a function of φ for B = 0,
ε = 0, and different values of U and �.

approximation predicts the system to still be in the 0 phase,
SCABS approximation results are already in the π phase. This
tendency of the SCABS approximation towards the π phase is
also observed throughout the whole comparison.

The data with varying φ show an artifact of the static fRG
calculations that arise in the absence of a magnetic field. The
ABS in the π phase for B = 0 are not described correctly,
but remain pinned at the chemical potential as they cross the
chemical potential at the phase transition, in disagreement
with the SCABS and the previous findings in the atomic limit.
This can most likely be attributed to the static approximation,
as in the large-gap limit the exact self-energy is found to be
frequency dependent at zero field in the π phase. Otherwise
the previously described trends hold, and a good quantitative
agreement is achieved in the 0 phase.

As Fig. 9 shows, increasing the magnetic field B induces the
π phase rather quickly, as could already be inferred from the
large-gap phase boundary defined by Eq. (29). The tendency
of the SCABS approximation towards the π phase is clearly
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FIG. 9. Bound state energies calculated with fRG (full lines) and
SCABS approximation (dashed lines) as a function of B for φ = 0,
ε = 0, and different values of U and �.
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FIG. 10. Phase diagram as a function of U and � as obtained
from the fRG at ε = 0 and φ = π/2 for different values of B. The
lines separate the 0 phase on the left side from the π phase on the
right.

visible in the B-dependent data, while the fRG shows a
bending of the outer bound states in the π phase close to
the phase transition. This latter behavior was also observed in
Sec. II D in the comparison to the exact large-gap expressions,
and was there identified as the main deviation. This effect is
dominant for small values of the magnetic field B, where
the renormalized interaction was found to diverge. In this
limit the truncation of the hierarchy is no longer justified,
as it corresponds to an expansion in the effective interaction.
Similar problems using the static fRG have been found in
Ref. [108], as the investigated two-level quantum dot setup
was close to degeneracy.

D. Phase diagram at finite B

A detailed phase diagram for the 0-π transition determined
with fRG is shown in Fig. 10, as a function of Coulomb
interaction, gap amplitude, and several values of the magnetic
field (for a choice of phase difference φ = π/2). The general
expected trend is a stabilization of the π phase for increasing
values of U and B, which both lead to local moment formation.
The π state is also favored for increasing values of �, as
this removes the quasiparticles and thus weakens the Kondo
effect responsible for the possible presence of the 0 phase at
large U .

In experimental setups the magnetic field can be expected
to extend beyond the quantum dot. This effect can lead to a
reduction of the superconducting gap in the leads, which would
stabilize the 0 phase.

E. Comparison with NRG

Figure 11 shows a comparison of fRG data (solid lines)
and NRG data [93] (symbols) for the ABS and the cor-
responding weights for ε = 0, B = 0, φ = 0, and �/� =
0.0157,0.157,0.9425 (red, green, blue). We find a good
quantitative agreement with the NRG data up to interaction
values of U = π�. For larger U values, frequency dependent
self-energy effects become prominent [89], so that the static
fRG cannot be expected to be precise.
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FIG. 11. Comparison with NRG data from Ref. [93] for the bound
state energy and the corresponding weights as a function of the
interaction strength. The parameters are ε = 0, B = 0, φ = 0, and
�/� = 0.0157,0.157,0.9425 (red, green, blue).

F. Spectroscopy

The density of states in experimental setups like the ones
reported in Refs. [70,80,84] is probed by measuring the differ-
ential conductance using a weakly coupled normal lead. This
has the effect that the Andreev bound states are broadened by
an energy scale �N , which is the corresponding hybridization
to the normal contact. This effect can be easily accounted for
during the fRG flow by considering the additional self-energy

�N (iω) =
(−i�N sgn(ω) 0

0 −i�N sgn(ω)

)
(50)

in the Dyson-equation G� = [(G�
0 )−1 − �� − �N ]

−1
. We

can then straightforwardly calculate the density of states using
Eq. (10). One such calculation for a varying on-site energy ε

and �N = 0.1�, � = �, U = 3.5�, and B = 0.5� is shown
in Fig. 12. As expected, the bound states acquire a broadening
due to the presence of the normal lead, and the data compare
qualitatively with measurements from Ref. [84]. Note that
the outer bound states in the π phase close to ε = 0 have
already been been absorbed into the continuum, as it can be
also observed in Fig. 9. In view of the experimental observation
we point out that the fRG can be easily extended to multilevel
quantum dot systems.

V. CONCLUSION

We have investigated electrostatic gating and magnetic field
effects on the ABS of an interacting quantum dot coupled
to superconducting leads by extending the static functional
renormalization group and the self-consistent Andreev bound
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FIG. 12. fRG results for the density of states as a function of
the on-site energy ε, for �N = 0.1�, φ = 0, � = �, U = 3.5�, and
B = 0.5�. The transition from the π to the 0 phase is induced at
ε = ±1.5�.

states theory to include finite magnetic fields. These com-
plementary approaches allow us to capture the rich physical
behavior in the large parameter space with a reduced numerical
effort. According to the range of validity we found a good
quantitative agreement not only between the methods, but
also with NRG and the exact solution in the large-gap limit.
The latter was discussed in detail for the case of a finite
magnetic field, allowing for a deeper understanding of the
generic finite-gap situation. We further showed how a local
magnetic field induces a splitting of the ABS whenever the
system is 0 phase, while this effect is absent in the π phase,
and provided examples of the tunneling density of states that
is typically measured in experiments.
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APPENDIX A: GREEN’S FUNCTION IN
THE LARGE GAP LIMIT

To calculate the full Green function in the large-gap limit
we use the Lehmann representation for diagonal correlation
functions, which reads

GAA†(iω) =
∑
mn

|〈n|A|m〉|2
En − Em + iω

(ρn + ρm). (A1)

Using the eigenbasis Eq. (27b) of the effective Hamiltonian,
we find

G
b+b

†
+
(iω) = ρ00 + ρ01

iω − Eφ − B − U
2

+ ρ10 + ρ11

iω − Eφ − B + U
2

(A2)

and

G
b−b

†
−
(iω) = ρ00 + ρ10

iω + Eφ − B − U
2

+ ρ11 + ρ01

iω + Eφ − B + U
2

.

(A3)

The off-diagonal elements evaluate to G
b+b

†
−

= G
b−b

†
+

= 0. We
now aim at calculating the exact self-energy expressions. For
B = 0, the ground state energy is either E00 or E10, resulting
in

G−1
bb†

(iω) = iω −
(

B + Eφ 0

0 B − Eφ

)

−
(

∓U
2 0

0 U
2

)
, E00 ≷ E10. (A4)

Using the Dyson equation G−1 = iω − H 0 − �, we hence
obtain

�bb† =
(

∓U
2 0

0 U
2

)
, E00 ≷ E10, (A5)

for the self-energy. For B = 0, the 0-phase calculation results
in the same self-energy. For the π phase we get

G−1
bb†

(iω)

= 2

( 1
iω−Eφ− U

2
+ 1

iω−Eφ+ U
2

0

0 1
iω+Eφ− U

2
+ 1

iω+Eφ+ U
2

)−1

= iω −
(

Eφ 0

0 −Eφ

)
− U 2

4

(
1

iω−Eφ
0

0 1
iω+Eφ

)
. (A6)

The resulting self-energy

�bb† (iω) = U 2

4

(
1

iω−Eφ
0

0 1
iω+Eφ

)
(A7)

is solely quadratic in the interaction U . The corresponding
expressions for self-energy and Green functions in the Nambu
basis can now be easily acquired by rotating back to the old
basis. Executing this for the self-energy results in Eqs. (29) and
(30). The Green function in the Nambu basis can be calculated
straightforwardly by the Dyson equation. It will prove more
useful though to write

Gϕϕ† =
(

u −v

v∗ u∗

)
Gbb†

(
u∗ v

−v∗ u

)

= G
b+b

†
+

( |u|2 −u∗v
−uv∗ |v|2

)
+ G

b−b
†
−

(|v|2 u∗v
uv∗ |u|2

)
,

(A8)

since in this representation we can easily read off the bound
state weights.
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APPENDIX B: DERIVATION OF THE SCABS EQUATIONS

Here we want to summarize, in accordance with Ref. [32],
the derivation of the SCABS equations presented in Sec. III B.
Let us begin by considering the hybridization function of the
leads for the case of a finite bandwidth 2D,

�φ(iω) = 2

π
arctan

(
D√

�2 − (iω)2

) ∑
α

�αeiφα . (B1)

The noninteracting Green function of the dot then generalizes
to

G0(iω) =
(

iω̃ − ε − B �̃

�̃∗ iω̃ + ε − B

)−1

, (B2)

with

iω̃ = iω

(
1 + �0(iω)√

ω2 + �2

)
, (B3)

�̃ = �√
ω2 + �2

�φ(iω). (B4)

The system is then fully described by the action

S = S0 + Sint, (B5)

with

S0 = − 1

2π

∫
dω 	̄(iω)G0(iω)−1	(iω) (B6)

and

Sint = − U

2π

∫
dωi

(
	̄1(ω1)	1(ω2) − 1

2

)

×
(

	̄2(ω3)	2(ω4) − 1

2

)
δ(ω1 − ω2 + ω3 − ω4) (B7)

in accordance with Eq. (2b). Here 	(iω) and 	̄(iω) denote
the frequency dependent Grassmann fields corresponding to
the previously introduced Nambu spinors.

We can now decompose the action into a effective part,
corresponding to the limit � → ∞, and all other terms
(compare Ref. [32])

S = Seff + Spert, (B8)

with

Seff = − 1

2π

∫
dω 	̄(iω)Geff

0 (iω)−1	(iω) + Sint,

(B9a)

Geff
0 (iω) = lim

�→∞
G0(iω), (B9b)

as well as

Spert = − 1

2π

∫
dω 	̄(iω)(G0(iω)−1 − Geff

0 (iω)−1)	(iω).

(B10)

Expanding to lowest order in Spert allows us to compute
straightforwardly the corrections to the atomic levels [32].
Note that this formulation in principle also allows us to set
up a functional renormalization group flow starting from the
exact atomic limit solution, following the ideas of Ref. [106].
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Bruder, and C. Schönenberger, Phys. Rev. Lett. 91, 057005
(2003).

[56] A. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Guéron,
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and M. Monthioux, Nat. Nanotechnol. 1, 53 (2006).

[59] P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven,
Nature (London) 439, 953 (2006).

[60] H. I. Jørgensen, K. Grove-Rasmussen, T. Novotný, K.
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[78] L. Bretheau, Ç. Ö. Girit, H. Pothier, D. Esteve, and C. Urbina,
Nature (London) 499, 312 (2013).

[79] B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-S. Choi, M.-H. Bae, K.
Kang, J. S. Lim, R. López, and N. Kim, Phys. Rev. Lett. 110,
076803 (2013).

[80] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygård, and
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