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Interpolation across a muffin-tin interstitial using localized linear combinations of spherical waves
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A method for 3D interpolation between hard spheres is described. The function to be interpolated could be
the charge density between atoms in condensed matter. Its electrostatic potential is found analytically, and so
are various integrals. Periodicity is not required. The interpolation functions are localized structure-adapted
linear combinations of spherical waves, the so-called unitary spherical waves (USWs), ψRL(ε,r), centered at the
spheres R, where they have cubic-harmonic character L. Input to the interpolation are the coefficients in the
cubic-harmonic expansions of the target function at and slightly outside the spheres; specifically, the values and
the three first radial derivatives labeled by d = 0 (value) and 1–3 (derivatives). To fit this, we use USWs with four
negative energies, ε = ε1,ε2,ε3, and ε4. Each interpolation function, �dRL(r), is actually a linear combination
of these four sets of USWs with the following properties. (1) It is centered at a specific sphere where it has a
specific cubic-harmonic character and radial derivative. (2) Its value and the first three radial derivatives vanish
at all other spheres and for all other cubic-harmonic characters, and is therefore highly localized, essentially
inside its Voronoi cell. Value-and-derivative (v&d) functions were originally introduced and used by Methfessel
[Phys. Rev. B 38, 1537 (1988)], but only for the first radial derivative. Explicit expressions are given for the
v&d functions and their Coulomb potentials in terms of the USWs at the four energies, plus ε0 ≡ 0 for the
potentials. The coefficients, as well as integrals over the interstitial such as the electrostatic energy, are given
entirely in terms of the structure matrix, SRL,R′L′ (εn), describing the slopes of the USWs at the five energies
and their expansions in Hankel functions. For open structures, additional constraints are installed to pinpoint
the interpolated function deep in the interstitial. The strong localization of the v&d functions makes the method
uniquely suited for complicated structures. Use of point- and space-group symmetries can significantly reduce
matrix sizes and the number of v&d functions. As simple examples, we consider a constant density and the
valence-electron densities in zinc-blende structured Si, ZnSe, and CuBr.
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I. INTRODUCTION

An often-met problem in computational physics, chemistry,
and biology, and a key one in electronic density-functional
calculations, is to express a smooth, global function, ρ(r),
say the charge density, in the region between the atoms in
a form suitable for finding its electrostatic potential V (r)
and for evaluating integrals such as the electrostatic energy∫

ρ(r)V (r)d3r.

It has been found useful to expand

ρ(r) =
∑
mn

ψm(εn,r)cmn,

in solutions of the wave equation

(� + ε)ψ(ε,r) = 0, (1)

because then, the solution of Poisson’s equation

−�V (r) = 8πρ(r) (2)

(in atomic Ry units) is simply

V (r) = 8π

[
ψ(0,r) +

∑
nm

ψm(εn,r)cmn/εn

]
. (3)

The expansion functions ψm(εn,r) need only be defined in the
region of interest, while the particular solution, ψ(0,r), of the
Laplace equation extends in all space.
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A common choice of expansion functions is wave-equation
solutions which transform according to an irreducible rep-
resentation (k) of the crystal or supercell, i.e., plane waves,
ei(k+Gn)·r, with |k + Gn|2 = ε � 0 and Gn running over the
vectors of the reciprocal lattice. For expanding a periodic
function like the charge density, k = 0. The plane-wave
set is complete and orthonormal in the primitive cell, but
is overcomplete and nonorthogonal in the interstitial, say
between muffin-tin (MT) spheres surrounding the atoms and
voids. Electronic-structure methods give the charge density as
the sum of products of the electronic basis functions, and using
plane waves for the latter, yields also the charge density as a
sum of plane waves:

∑
ei(Gm−Gn)·rcmc∗

n. With pseudopotential
methods, this density is a smooth part of the true density
and extends in all space, whereas with augmented plane-wave
methods, it is the true density in the MT interstitial [1,2]. Even
in cases where the electronic basis functions are not plane
waves, plane-wave expansion of the charge density is often
used. With a small basis set of MT orbitals, for instance, a
smooth part of the orbitals is either Fourier transformed and
then multiplied together [4–6] or multiplied together directly
on a mesh and then Fourier transformed [7,8].

In this paper, we shall not expand in plane waves because
they are extended, but in MT-centered, decaying spherical
waves, h

(1)
l (κrR)YL(r̂R), the natural choice for dealing with

local point symmetries. Here and in the following, rR ≡
|r − R|, r̂R ≡ ̂r − R, L ≡ lm, and κ2 = ε � 0. Actually, we
shall combine linearly the RL set of spherical waves for a
given energy and structure, as specified by its centers R and
radii aR into a set of even more localized, structure-adapted
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unitary spherical waves (USWs) [10], each of which is a
cubic harmonic, YL(r̂R), on its own sphere and vanishes on
all other spheres. Because of this requirement, the spheres
cannot overlap. Moreover, the USWs are defined to vanish
inside all spheres, which we shall therefore call hard- rather
than MT spheres [11]. A set of USWs is thus a set of
localized, structure-adapted spherical waves with a given
energy. Localization is essential if the computational effort
is to increase merely proportional to the size of the system
(or the number of inequivalent sites) [12]. The USW set,
ψRL(ε,r), is specified by a structure or slope matrix whose
element, SRL,R′L′(ε), equals the radial derivative (slope) of the
R′L′ projection of ψRL(ε,r), and also gives the coefficient to
h

(1)
l′ (κrR′)YL′(r̂R′ ) in the expansion of ψRL(ε,r).

When ρ(r) is better known—or simpler to evaluate—near
the surfaces of the spheres than throughout the topologically
complicated interstitial, it is advantageous to interpolate
ρ(r) across the interstitial rather than to project it onto the
interstitial. This is the case for the electronic density: near
the surface of any sphere surrounding an atom, this density
is essentially the sum of products of occupied atomic orbitals
and therefore has a cubic-harmonic expansion with lmax about
twice the highest l of an occupied atomic orbital. Near
each sphere, one can therefore easily project ρ(r) onto cubic
harmonics obtaining the radial functions, P̂RL(r)ρ(r), and then
search an expansion:

ρ(r) =
dmax+1∑
n=1

∑
RL

ψRL(εn,r)cnRL, (4)

in USWs with dmax + 1 different energies, which fits the values
and first dmax radial derivatives at aR for all RL. It is obvious
that if we fit only values (dmax = 0), the unitary property of
ψRL(ε1,r) leads to the simple result c1RL = P̂RL(aR)ρ(r). In
order to fit also slopes (dmax = 1), we must solve NRNL linear
equations where NR is the number of sites within the range of
an USW and NL is the number of L values. In case we need to
interpolate the charge density many times for a given structure,
as is the case in charge-self-consistent electronic-structure
calculations, we would invert the corresponding matrix for
the linear equations once and for all. This matrix is the first
energy-divided difference:

S(ε1) − S(ε2)

ε1 − ε2
≡ S12, (5)

of the slope matrix [10]. In fact, aS12 equals the integral
〈ψ(ε1)|ψ(ε2)〉 over the interstitial.

For general dmax, the dimension of the matrix to be inverted
would be dmax + 1 times as large. Considering the fact that
changing the energy or the structure requires another inversion,
this could be computationally demanding. In the present paper,
we shall therefore derive explicit expressions involving merely
the first dmax + 1 energy-divided differences of the slope
matrix. This is achieved by exploiting the radial wave equation,

[rψl(ε,r)]′′ = −[ε − l(l + 1)/r2]rψl(ε,r), (6)

with the two unitary boundary conditions: rψl(ε,r)|a = 1 or
0. The simplest way to think about this approach is that for
a given structure and symmetry, but independently of the
function to be interpolated, we find those linear combinations,

�dRL(r), of the USW sets for the energies ε1, ε2, . . . , εdmax

each of which has the “superunitary” property that its d ′th
radial derivative [rP̂R′L′(r)�dRL(r)]

(d ′)
at aR′ , for all R′,L′,

and d ′ = 0, . . . ,dmax, vanish, except its own derivative (d)
of its own cubic-harmonics projection (L) at its own sphere
(R). In terms of these value-and-derivative (v&d) functions,
which are even more localized than the USWs, the density
interpolated from its radial derivatives,

R(d)
RL(aR) ≡ [rP̂RL(r)ρ(r)](d)

aR
, (7)

at the spheres is then

ρ(r) =
dmax∑
d=0

∑
RL

�dRL(r)R(d)
RL(aR). (8)

The v&d functions are localized essentially inside the Voronoi
(Wigner-Seitz) cells and the expansion (8) is therefore similar
to, but more general and efficient, than the one-center, cubic-
harmonic expansion of the cell-truncated density [13] used in
KKR [14] and LMTO [15] Green-function methods to treat
molecules, crystals, impurities, random alloys, amorphous
systems, surfaces, interfaces, etc., when going beyond the
atomic-spheres approximation (ASA) [16–33].

For each v&d function, �dRL(r), we can solve Poisson’s
equation (2) and find the localized potential ϕloc

dRL(r) and the
multipoles, which have been subtracted in order to make
it localized. This potential and its multipole moments are
expressed in terms of energy-divided differences [34] of
the USWs and the slope matrix over the energy mesh,
ε0, ε1, . . . , εdmax+1, to which the energy ε0 ≡ 0 has been added.
The latter takes care of the particular solution in Eq. (3),
which picks the localized part of the potential. In terms of
these potentials from the v&d charge densities, the localized
Coulomb potential from ρ(r) is then

V loc(r) =
dmax∑
d=0

∑
RL

ϕloc
dRL(r)R(d)

RL(aR). (9)

At the end of a calculation, the localizing multipoles are added
to those from the remaining charge density in the system and
the resulting Laplace potential is expanded in zero-energy
USWs, ψRL(0,r).

With the charge density and the Coulomb potential in the
interstitial expressed in terms of USWs and their slope matrix,
and with the integral of a product of USWs over the interstitial
expressed in terms of the slope matrix (5), so is the electrostatic
energy of the interstitial charge density. Also one-center cubic-
harmonic expansions, such as

ϕloc
dRL(r) ≈

∑
L′

YL′(r̂R′ )P̂R′L′(r)ϕloc
dRL(r), (10)

are given in terms of the slope matrix and two radial wave-
equation solutions (6). The spherically symmetric averages
(L′ = 0) are, for instance, used to generate the potential in
the overlapping MT approximation (OMTA) [35,36], which
defines the third generation LMTO [10,35,37] and NMTO
[38–41] basis sets.

The present paper reformulates and extends beyond first
radial derivatives an approach proposed nearly 30 years ago
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by Methfessel [42] for use in charge-self-consistent electronic-
structure calculations in which the smooth part of the electronic
wave functions are expanded in relatively few LMTOs [43],
rather than in many plane waves or many Gaussians [1,2].
In the latter methods, also the charge density—being wave-
function products—is a sum of plane waves or Gaussians,
for which Poisson’s equation has an analytical solution. This
is the main reason for the popularity of those methods.
Unfortunately, products of spherical waves (LMTO envelopes)
are not sums of spherical waves, except in the (warped [44])
ASA [16–20], but Methfessel noted that this product is easily
formed near the surfaces of the spheres, and then interpolated
across the interstitial using spherical waves. Hence he saw
interpolation across the interstitial as an approximate way to
reduce the product to a sum: ψψ ≈ ∑

cψ . Moreover, since
the integral over the interstitial of a product of spherical waves
is a surface integral over the spheres, and thus analytical,
Methfessel’s interpolation approach also serves to compute
multicenter integrals over the interstitial, a task that had been
solved analytically [45], but with an impractically complicated
result.

Systems of current interest often have interstitials so
complex that insertion of interstitial, so-called “empty” (E)
spheres in the voids [18] can be insufficient for achieving the
accuracy needed for interpolating the charge density across
the interstitial. Moreover, in molecular-dynamics calculations
empty spheres are useless because they are not “conserved.”
These are reasons why fitting to higher radial derivatives has
become necessary. Whereas Andersen et al. [10,35] fitted
values and first radial derivatives exactly with USWs and
their first energy derivatives, ψ(ε1,r) and ψ̇(ε1,r), Tank and
Arcangeli [37] added ψ̈(ε1,r) and could then least-squares
fit also at selected points in the interstitial. Since forming
high-order energy derivatives is numerically troublesome,
energy-divided differences were used in Ref. [39].

In this paper, we give the details of the v&d formalism for
dmax = 3 and test it on the charge density in some diamond-
structured sp3-bonded and ionic semiconductors. This tech-
nique has been developed for solving Poisson’s equation in
our newly developed full-potential NMTO electronic-structure
method [41] used in Ref. [46]. Obviously, the technique could
be useful for any electronic-structure method that does not
use a plane-wave or Gaussian basis set, and—actually—for
interpolating any 3D function across a hard-sphere inter-
stitial from the cubic harmonic projections at and closely
outside the spheres. The purpose could be decomposition
into atom-centered, strongly localized functions, evaluation
of integrals over the interstitial, or solving Poisson’s equation;
but not evaluation of differential properties like the kinetic
energy. The v&d technique should be particularly useful
for treating Coulomb effects beyond the ASA in systems
without translational symmetry, such as liquids, amorphous
and disordered systems, systems with impurities, interfaces,
surfaces, and biological molecules. In the latter cases, it will be
necessary to constrain the charge density as described towards
the end of the paper.

Although uniquely suited for interpolating functions with-
out symmetry, point symmetry can significantly reduce the
number of cubic harmonics needed when generating the slope
matrix by inversion, and space-group symmetry can reduce the

number of sites needed when generating the v&d functions. For
the charge density in diamond-structured Si, for example, we
need 4 rather than 25 cubic harmonics, and a cluster of ∼150
sites to generate the slope matrix in real space. To subsequently
form the v&d functions, we need only two sites after the slope
matrix has been Bloch summed with k = 0, and merely 1 site
using the space group symmetry.

The paper is organized as follows. Section II gives prelim-
inaries for the derivation of the v&d functions. Section II A
specifies the input for the interpolation and the boundary
conditions for the v&d functions. Section II B reviews the
transformation from Hankel functions to USWs, in fair detail
because we shall use it in a following paper [41]. Section II C
expands the two radial wave functions in energy-dependent
Taylor series in r − a, and Sec. II D forms their energy-divided
differences. In Sec. III, we derive the v&d functions with
dmax = 3 as linear combinations of USWs. In Sec. IV, we
solve Poisson’s equation for the v&d functions, obtaining
potentials that are either localized, or regular and long-ranged.
Analytical expressions for the integral over the interstitial of
a single USW, a product of USWs, or of their energy-divided
differences—and herewith of the electrostatic energy—are
given in Sec. V. Section VI discusses how to set the parameters,
Sec. VI A the size of the cluster used to generate the slope
matrix, Sec. VI B how to use symmetry to reduce matrix sizes,
and Sec. VI C how to choose the energy mesh. Here we use
the examples of bcc and diamond-structured interstitials, first
with a constant density, and then with the valence densities
in sp3-bonded and ionic semiconductors obtained from FP
NMTO calculations. Section VII deals with extra constraints
needed in open structures. Finally, in Sec. VIII, we conclude.
One-center expansions of the v&d functions and their localized
potentials are derived in the Appendix.

II. PRELIMINARIES

A. Input to the interpolation

The method derived in this paper interpolates a 3D function,
ρ(r), across a hard-sphere interstitial from the value and first
dmax = 3 radial derivatives of each L projection at and outside
each sphere, R:

rP̂RL(r)ρ(r)

≡ r

∫
d3r δ(rR − r)Y ∗

L(r̂R)ρ(r) (11)

≡ RRL(r) = RRL(aR) + r − aR

1!
R′

RL(aR)

+ (r − aR)2

2!
R′′

RL(aR) + (r − aR)3

3!
R′′′

RL(aR) + o

≡
3∑

d=0

(r − aR)d

d!
R(d)

RL(aR) + o. (12)

Here and in the following, YL(r̂) denotes a real, cubic harmonic
[47], and a global coordinate system is assumed for simplicity.
Moreover, terms of order higher than third in r − a, i.e.,
smaller than (r − a)3, are denoted

o ≡ o((r − a)3). (13)
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Input to the interpolation is thus the vector R(d)
RL(aR) with

components dRL. It could be output from an electronic-
structure calculation.

We shall construct a set of v&d functions, �dRL(r), that
satisfies the following superunitary boundary condition on the
hard spheres:

rP̂R′L′(r)�dRL(r) = δR′RδL′L
(r − aR)d

d!
+ o, (14)

for l′ � lmax, in terms of which, the interpolation is given
by Eq. (8). We shall also find the localized Coulomb potential,
ϕloc

dRL(r), from �dRL(r) in terms of which the localized potential
from �(r) is as given by Eq. (9). Similarly for the regular
potential.

Note that we have defined the value and derivatives as those
of r times the L projection. This has been done in order to
simplify the derivation of the v&d functions through use of
the radial wave equation (6).

The v&d functions will be constructed from four sets of
USWs with four different energies, ε = ε1, ε2, ε3, and ε4.

However, first, we consider a single energy.

B. USWs and their slope matrix

A unitary spherical wave (USW), ψRL(ε,r), is a wave-
equation solution (1) in the interstitial and satisfies the
boundary condition on the spheres that, for l′ � lmax,

P̂R′L′(a)ψRL(ε,r) = δR′RδL′LYL(r̂R). (15)

That is, the projection onto the cubic harmonic, YL′(r̂R′), on the
sphere centered at R′ with radius aR′ vanishes, unless R′ = R
and L′ = L, in which case the projection is unity. Since
this holds for any R′ and L′, ψRL(ε,r) has cubic-harmonic
character L on its “own” sphere R, while on all other
spheres, it has vanishing L′ projections for all l′ � lmax. As
a consequence, the USW is localized in the interstitial close to
its own sphere (but its analytical continuation diverges at the
sphere centers).

While the USW is defined to vanish inside all spheres, its
projection at and outside any sphere is [10,35]

P̂R′L′(r)ψRL(ε,r)

= fR′l′(ε,r)δR′RδL′L + gR′l′(ε,r)SR′L′,RL(ε), (16)

where f and g are the two linearly independent, dimensionless
solutions of the radial wave equation (6), defined by the
boundary conditions:

fRl(ε,aR) = 1, f ′
Rl(ε,aR) = 0 (17)

and

gRl(ε,aR) = 0, g′
Rl(ε,aR) = 1/aR. (18)

S(ε) is the dimensionless slope matrix for the USW set. Its
on-site diagonal element, SRL,RL(ε), is the radial logarithmic
derivative, aR∂/∂r|aR

, of the L projection of ψRL(ε,r) at its
own sphere, while the off-site element, SRL,R′L′(ε), is the
dimensionless slope, aR′∂/∂rR′ |aR′ , of the L′ projection at
the R′ sphere. The on-site off-diagonal element, SRL,RL′(ε),
gives the dimensionless slope at its own sphere of another L′
projection.

We need to generate the slope matrix from analytically
known functions. For this purpose, we first express the set of
USWs as superpositions of the decaying solutions of the wave
equation:

ψRL(ε,r) =
∑
R′L′

hl′(ε,rR′ )YL′(r̂R′)MR′L′,RL(ε). (19)

valid in the interstitial. Here, the radial function,

hl(ε,r) ≡ −iκl+1h
(1)
l (κr) = κl+1[nl(κr) − ijl(κr)]

≡ nl(ε,r) − iκεljl(ε,r), (20)

is the spherical Hankel function of the first kind, renormalized
so that it is an analytical function of ε ≡ κ2 (for 0 � ∠ε < 2π )
and a decaying function of r (when 0 < ∠ε < 2π ). It is real
for real, nonpositive energy and r > 0. In the second line of
Eq. (20), we have expressed the Hankel function in terms of
spherical Neumann and Bessel functions, renormalized such
that they are real for all real ε:

nl(ε,r) ≡ κl+1nl(κr) and jl(ε,r) ≡ κ−ljl(κr). (21)

The Bessel function is regular and the Neumann function
irregular at the origin. As examples, for ε = 0,

hl(0,r) = nl(0,r) = − (2l − 1)!!

rl+1

and jl(0,r) = rl

(2l + 1)!!
, (22)

where (2l + 1)!! ≡ (2l + 1)(2l − 1) . . . 1 and (−1)!! ≡ 1. For
l = 0,

h0(ε,r) = −exp(−√−εr)

r

= −cosh(
√−εr)

r
+ sinh(

√−εr)

r

= n0(ε,r) + √−εj0(ε,r) = −exp(iκr)

r

= −cos(κr)

r
− i sin(κr)

r
= n0(ε,r) − iκj0(ε,r).

In analogy with Eq. (16), the L′ projection around site R′
of a Hankel function times a cubic harmonic is

P̂R′L′(r)hl(ε,rR)YL(r̂R)

= nl′ (ε,r)δR′RδL′L + jl′(ε,r)BR′L′,RL(ε), (23)

where B(ε) is the bare structure matrix with the analytically
known elements [48–50]:

BRL′,RL(ε) = √−εεlδLL′ = −iκεlδLL′ (24)

and for R′ 
= R,

BR′L′,RL(ε) ≡
∑
L′′

4πi−l+l′−l′′κl+l′−l′′CLL′L′′

× hl′′(ε,|R′−R|)Y ∗
L′′(̂R′−R). (25)

The Gaunt coefficients,

CLL′L′′ ≡
∫

YL(r̂)Y ∗
L′(r̂)YL′′(r̂)d r̂,
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for the cubic harmonics are real and the L′′ sum includes
only the terms with l′′ = |l′ − l|,|l′ − l| + 2, . . . , and l′ + l,

for which the factor i−l+l′−l′′κl+l′−l′′ is (−)l times respectively
(−ε)min {l,l′}, (−ε)min {l,l′}−1, . . . , and 1. Hence the bare struc-
ture matrix is real and symmetric for ε � 0. For ε = 0, it
reduces to

BR′L′,RL(0) ≡ 4π (−)l+1
∑
m′′

CLL′L′′
(2l′′ − 1)!!

|R′−R|l′′+1
Y ∗

L′′(̂R′−R),

(26)

with l′′ = l + l′, and the projection (23) becomes that of
the potential from an electrostatic multipole. Apart from
normalizations, B(0) is also the structure matrix used in
canonical band theory [17]. For ε > 0, the real and imaginary
parts of B(ε) are symmetric, i.e., B(ε) is not Hermitian for
ε > 0.

The imaginary part of the Hankel function is according
to (20) the free-electron solution in all space with angular-
momentum L and energy ε of Schrödinger’s equation while
the real part is the solution which is irregular at the origin and
decaying. Applied to the projection (23), this means that only
when the bare structure matrix has an imaginary part free-
electron solutions exist, otherwise the solutions are localized.

We now relate to the hard-sphere solutions, the USWs. First,
we express the Bessel-Neumann set of linearly independent
solutions of the radial wave equation in terms of the value-slope
set: {

nl(ε,r)
jl(ε,r)

}
=

[
nl(ε,aR) aRn′

l(ε,aR)
jl(ε,aR) aRj ′

l (ε,aR)

]{
fRl(ε,r)
gRl(ε,r)

}
, (27)

where we have used Eqs. (17) and (18). Here, the values and
radial derivatives are related by the Wronskian:

r2[jl(ε,r)n′
l(ε,r) − nl(ε,r)j ′

l (ε,r)] = 1.

The inverse transformation is seen to be{
f (ε,r)
g(ε,r)

}
= a

[−aj ′(ε,a) an′(ε,a)
j (ε,a) −n(ε,a)

]{
n(ε,r)
j (ε,r)

}
, (28)

where we have used the Wronskian and have dropped the
subscripts R and l.

Next, we proceed with expanding the set of USWs (19) in
terms of the set of decaying Hankel functions. It is, however,
simpler to derive the inverse expansion:∑

R′L′
ψR′L′(ε,r)[M(ε)]−1

R′L′,RL = hl(ε,rR)YL(r̂R), (29)

because for this, we can exploit the unitary properties (16)–(18)
of the USWs together with the projections (23) of the Hankel
function. Projection onto values, P̂R′L′(aR′), immediately
yields

[M(ε)]−1
R′L′,RL = nl′(ε,aR′ )δR′RδL′L + jl′(ε,aR′ )BR′L′,RL(ε),

so that the solution is

M(ε) = [n(ε,a) + j (ε,a)B(ε)]−1

=
[
n(ε,a)

j (ε,a)
+ B(ε)

]−1 1

j (ε,a)
. (30)

Here, and often in the following, we use matrix notation
where n(ε,a)/j (ε,a) and 1/j (ε,a) are diagonal matrices with
the respective elements nl(ε,aR)/jl(ε,aR) and 1/jl(ε,aR). The
matrix in the square parenthesis in (30) is symmetric, with
nl(ε,aR)/jl(ε,aR) = κ2l+1[cot ηRl(ε) − i] and ηRl(ε) the hard-
sphere phase shifts.

The slope matrix is derived by projecting the multicenter
expansion (29) onto slopes. Application of P̂R′L′(r) first yields

[f (ε,r) + g(ε,r)S(ε)]M(ε)−1 = n(ε,r) + j (ε,r)B(ε)

in matrix notation. Its right-hand side, after applying transfor-
mation (27) to the {f,g} set, becomes

f (ε,r)n(ε,a) + g(ε,r)an′(ε,a)

+ [f (ε,r)j (ε,a) + g(ε,r)aj ′(ε,a)]B(ε).

Equating now the coefficients to f (ε,r) of course yields
expression (30), while equating those to g(ε,r) yields

S(ε)M(ε)−1 = an′(ε,a) + aj ′(ε,a)B(ε)

= a

j (ε,a)
[n′(ε,a)j (ε,a) − j ′(ε,a)n(ε,a)]

+ aj ′(ε,a)

[
n(ε,a)

j (ε,a)
+ B(ε)

]
= 1

aj (ε,a)
+ aj ′(ε,a)

[
n(ε,a)

j (ε,a)
+ B(ε)

]
= 1

aj (ε,a)
+ aj ′(ε,a)

j (ε,a)
M(ε)−1.

In order to simplify the solution for S(ε), we have on the
right-hand side separated a term proportional to M(ε)−1 and
used the Wronskian. As a result, we obtain the most important
relation

S(ε) = 1

aj (ε,a)
M(ε) + aj ′(ε,a)

j (ε,a)

= aj ′(ε,a)

j (ε,a)
+ 1

aj (ε,a)

[
n(ε,a)

j (ε,a)
+ B(ε)

]−1 1

j (ε,a)
(31)

between the dimensionless slope matrix S(ε) and the bare
structure matrix B(ε). In (31), all quantities other than S,
M , and B are diagonal matrices. Specifically, the elements
aRj ′

l (ε,aR)/jl(ε,aR) are the radial logarithmic derivatives of
the Bessel functions. The dimensionless slope matrix is not
symmetric, but aS(ε) with the elements aRSRL,R′L′(ε), the
so-called screened structure matrix [1,2,10,35,37,38,51–53],
is seen to be symmetric and real. This holds not only for
ε � 0, but for all energies where no solution of the Schrödinger
equation exists for the hard-sphere interstitial, that is, where no
wave-equation solution exists that satisfies the homogeneous
boundary condition that the solution vanishes at all spheres
for all l � lmax. As seen from expansion (16), such solutions
are given by the imaginary part of the slope matrix. It is by
forbidding the space region inside spheres, i.e., by insertion of
hard spheres, that the lowest energy, εhom, for which solutions
of the homogeneous problem exist, is pushed above zero. εhom

is the highest energy for which the USW set is localized. With
ε < εhom, the matrix inversion in Eq. (31) can be done in real
space for a local cluster with the range of the USWs (rather
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than that of the Hankel functions), which contains at the order
of 100 sites [51–53] (see Sec. VI A).

For application to charge densities in condensed matter
[54], we need lmax ∼ 4 and ε � 0.

It may be noted that the spheres are hard only for the low
angular momenta, l � lmax, but transparent for the high ones,
l > lmax. This means that the USWs have high-l tails from the
Hankel functions surviving inside the spheres. Specifically,
the set of USWs, ψRL(ε,r), with R being any site and L low,
is given by the superpositions (19) of Hankel functions times
cubic harmonics with R′ running over all sites and L′ over all
low angular momenta. The low-l components of the Hankel
functions (23) are truncated inside all spheres while the high-l
ones remain. Those high-l parts of the Hankel-function tails
contribute

∞∑
l′′>l max

l′′∑
m′′=−l′′

jl′′ (ε,r)YR′′L′′(r̂R′′ )

×
∑

R′ 
=R′′

∑
L′

BR′′L′′,R′L′(ε)MR′L′,RL(ε), (32)

to the RL USW inside the R′′ sphere. We usually avoid
evaluating this contribution. Rather, we use the multicenter
expansion (19) in all space and subtract the low-l components
inside the spheres. When finally adding to the interpolation
the proper function inside the spheres, we only add its
low-l components and let the high-l ones be those of the
interpolation. This makes the final function smooth, but
approximate as regards the high-l components inside the
spheres.

USWs look like the ones shown in Fig. 1. Here we have
chosen L = 0, which is the most appropriate for expanding
charge densities. In the two first panels, we show the s-USW
for six different USW sets, specifically sets with three different
energies and for two different hard-sphere structures. The
latter are body-centered cubic (bcc), which is closely packed,
and diamond (dia), which is open and can be viewed as
bcc with every second sphere removed to be part of the
interstitial. In both structures, all spheres are equivalent. We
see that the USW for the higher energies spreads into the
voids but, nevertheless, stays essentially inside its Voronoi
(Wigner-Seitz) cell. Because they are solutions of the wave
equation (1), the USWs are invariant to a uniform scaling (t)
of the structure, provided that they are considered as functions
of a dimensionless space variable r/t and the dimensionless
energy variable εt2.

C. Taylor series in r − a of the radial functions

In order to combine USW sets with different energies
linearly into a set of v&d functions, �dRL(r), with the
superunitary property (14), we need to expand the radial
functions f and g defined in (17) and (18) in ε-dependent
Taylor series in r − a. Since the radial wave equation (6) is
simplest when expressed in terms of r times the radial function,
it is convenient instead of f and g to use

U (ε,r) ≡ ru(ε,r) ≡ r[f (ε,r) − g(ε,r)] (33)

bcc ε=-1.54Ry

bcc ε=-15.7Ry

dia ε=-1.54Ry

dia ε=-15.7Ry

dia ε=-1.54Ry

dia ε=-15.7Ry

bcc ε=0Ry dia ε=0Ry dia ε=0Ry

s s s

s s s

s s s

FIG. 1. USW with L = 0 from six different sets: εt2 = 0 (top),
−7.6 (middle), or −77 (bottom) and the bcc structure (left) or
the diamond structure (middle and right). Here, t is the radius
of touching spheres, i.e., half the nearest-neighbor distance. For
diamond-structured silicon, t = 2.22 Bohr radii and, for this case,
the energies are therefore ε = 0 (top), −1.54 (middle), or −15.7
Ry (bottom). The contours of the USW are in the (110) diagonal
plane and range from 0 to Y00 = 1/

√
4π ≈ 0.28 in steps of 0.01.

The (red) dots indicate the hard spheres whose radius was taken
to be a = 0.8t . In the bcc structure, the spheres are at the corners
and body centers of cubes. The diamond structure follows from bcc
structure by deleting every second sphere, i.e., by including it in the
interstitial. In both structures, all sites are equivalent (translationally
in bcc, and with every second site inverted in dia), so that for a
given structure and energy there is only one s-USW shape, ψs . It was
generated from Eqs. (19) and (30) by screening the bare spherical s

wave, e−r
√−ε/r, with all waves centered at the 51 (bcc) or 87 (dia)

nearest sites and having l � lmax = 9. This high value of lmax was
chosen so that the lowest contour displays the hard spheres. The
last panel shows the s-USW symmetrized with respect to the identity
representation of the diamond space group (Fd3m). The symmetrized
USW with the lowest energy decays rapidly into the interstitial, the
one with intermediate energy decays moderately fast, and the one
with zero energy stays constant [see Eq. (80) and Sec.VI C 1]. For the
symmetrized s-USW, lmax = 3 suffices. See Secs. II B and VI B.
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and

G(ε,r) ≡ rg(ε,r), (34)

because they satisfy the boundary conditions

U (ε,a) = a, U ′(ε,a) = 0 (35)

and

G(ε,a) = 0, G′(ε,a) = 1. (36)

Here again, the subscripts R and l have been dropped for
simplicity. The projection (16) of the USWs, expressed in the
form needed for the definition of the v&d functions, is then

rP̂R′L′(r)ψRL(ε,r)

= ruR′l′ (ε,r)δR′RδL′L + rgR′l′(ε,r)SR′L′,RL(ε) (37)

= UR′l′(ε,r)δR′RδL′L + GR′l′ (ε,r)SR′L′,RL(ε), (38)

where the script slope matrix is the one appropriate for
rP̂R′L′(r)ψRL(ε,r):

SR′L′,RL(ε) ≡ SR′L′,RL(ε) + δR′RδL′L. (39)

We now expand the r dependence of the radial functions
entering the projection (38) in an ε-dependent Taylor series in
r − a using the radial wave equation (6). For a radial solution,
�(ε,r) ≡ rψ(ε,r), with boundary conditions �(a) and �

′
(a)

chosen to be independent of energy, the second and third radial
derivatives are simply

� ′′(ε,r) = [w(r) − ε]�(ε,r) and

� ′′′(ε,r) = w′(r)�(ε,r) + [w(r) − ε]� ′(ε,r),

where w(r) ≡ l(l + 1)/r2 is the centrifugal potential. Using
these derivatives for the functions with the boundary condi-
tions (35) and (36), yield the following Taylor series:

U (ε,r) = a + a(w − ε)
(r − a)2

2!
+ aw′ (r − a)3

3!
+ o (40)

and

G(ε,r) = (r − a) + (w − ε)
(r − a)3

3!
+ o, (41)

with o as defined in (13). Moreover,

w ≡ l(l + 1)

a2
and aw′ ≡ −2l(l + 1)

a2
(42)

are, respectively, the value and a times the first derivative of
the centrifugal potential at the hard sphere.

As an example, for l = 0, w = 0, so that Us(ε,r)/a is
a function of (r − a)2ε and Gs(ε,r) is an odd function
of (r − a)

√−ε. In fact, Us(ε,r) = a cosh [(r − a)
√−ε] and

Gs(ε,r) = √−ε
−1

sinh [(r − a)
√−ε].

D. Energy-divided differences

Next, we must form linear combinations with zero value,
first, second, and third radial derivatives in all noneigenchan-
nels of the USW sets with four different energies. This means:
the projections formed from (38) of those linear combinations
must have all terms with R′ 
= R or L′ 
= L smaller than
(r − a)3. From Eqs. (40) and (41), we see that the second

and higher energy derivatives of U (ε,r) and G(ε,r) are smaller
than (r − a)3, and differentiation of the USWs in Eq. (38) with
respect to energy can therefore be used to single out functions,
which satisfy equations (14).

Rather than using derivatives at one energy, it is far more
flexible and accurate to use energy-divided differences for
discrete sets of energies. From the theory of polynomial
approximation (Newton-Lagrange), remember that if we ap-
proximate a function of energy, ψ(ε), by the polynomial of dth
order, which coincides with ψ(ε) at the energies ε1,..,εd+1,

then the highest nonvanishing energy derivative—the dth—of
this polynomial is d! times the dth divided difference.The latter
can be written in many ways, but the most general and compact
is [34]

d+1∑
n=1

ψ(εn)

�d+1
m=1,
=n(εn − εm)

≡ ψ1..d+1 . (43)

On the right-hand side, we have introduced a notation
according to which the value (the 0th divided difference),
ψ(εn), at εn is denoted ψn. The first divided difference

ψ(εm) − ψ(εn)

εm − εn

= ψm − ψn

εm − εn

,

taken at the two energy points, εm and εn, is denoted ψmn like
in Eq. (5). The second divided difference

ψ(εl )−ψ(εm)
εl−εm

− ψ(εm)−ψ(εn)
εm−εn

εl − εn

= ψlm − ψmn

εl − εn

,

taken at the three energy points, εl, εm, and εn, is denoted
ψlmn. Hence the general notation is

ψm m+1...n − ψm+1...n n+1

εm − εn+1
≡ ψmm+1...n n+1.

Note that a divided difference (43) depends on the energy
points at which it is formed, but not on their order, e.g.,
ψlmn = ψnlm.

If ψ(ε) itself is a polynomial of order d, then all divided
differences formed for more than d + 1 energies, i.e., of order
higher than d, vanish. From Eqs. (40) and (41), therefore,
all the second and higher energy-divided differences of the
functions U (ε,r) and G(ε,r) are smaller than (r − a)3. The
energy-divided differences of increasing order are seen to be

Un(r) = a − a(εn − w)
(r − a)2

2!
+ aw′ (r − a)3

3!
+ o,

(44)

Umn(r) = −a
(r − a)2

2!
+ o, (45)

Ulmn...(r) = o, (46)

with o defined in (13), and

Gn(r) = (r − a) − (εn − w)
(r − a)3

3!
+ o, (47)

Gmn(r) = − (r − a)3

3!
+ o, (48)

Glmn...(r) = o. (49)
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In the following, e.g., in Eq. (51) below, we shall be using
that the dth-order divided difference of a product is given by
the binomial rule [34]:

(GS)1...d+1 =
d+1∑
m=1

G1..m Sm.d+1. (50)

III. V&D FUNCTIONS

After these preliminaries, we are finally in a position to
form the set of v&d functions, �dRL(r), with the superunitary
property (14) from the four sets of USWs, ψRL(εn,r) with
n = 1,2,3,4, or—more conveniently—from the set of four
energy-divided differences: ψ1;RL(r), ψ12;RL(r), ψ123;RL(r),
and ψ1234;RL(r).

Since energy-divided differences are formed for a given
element of a vector or a matrix, we can avoid the R′L′
and R′L′,RL subscripts by using a matrix notation in which
the projection (38) is written as rP̂(r)ψ(ε,r) = U (ε,r)1 +
G(ε,r)S(ε). Forming energy-divided differences of increasing
order—from zeroth to third—by use of the binomial formula
(50) then yields

rP̂(r)ψ1(r) = U1(r)1 + G1(r)S1,

rP̂(r)ψ12(r) = U12(r)1 + G1(r)S12 + G12(r)S2,
(51)

rP̂(r)ψ123(r) = G1(r)S123 + G12(r)S23 + o,

rP̂(r)ψ1234(r) = G1(r)S1234 + G12(r)S234 + o.

Here, we have chosen to use the energy point with the lower
index first, e.g., ε1 before ε2. Moreover, we have used that
the energy-divided differences, except the zeroth, of the slope
matrices S(ε) and S(ε) are identical because they differ by
merely a constant [see Eq. (39)]. Most importantly, we have
made use of Eqs. (46) and (49).

The set of third-derivative functions �3(r) is seen from
Eqs. (14) and (48) to have the projection −G12(r)1. We
therefore eliminate G1(r) from the last two equations (51):

rP̂(r)ψ1234(r)(S1234)−1 − rP̂(r)ψ123(r)(S123)−1

= G12(r)[S234(S1234)−1 − S23(S123)−1] + o (52)

and find that

�3(r) = −ψ123(r)[S23 − S234(S1234)−1S123]−1

− ψ1234(r)[S234 − S23(S123)−1S1234]−1

≡ ψ123(r)D3,3 + ψ1234(r)D4,3. (53)

Here we have used that in the matrix notation, the projection of
a linear combination

∑
RL ψ1..n;RL(r)cRL equals the projection

of ψ1..n;RL(r) right-multiplied by cRL. In Eq. (52) and in the
following, functions like ψ123(r) and �3(r) are row vectors with
the respective components �3;R′L′(r) and ψ123;RL(r), while

constants like [S23 − S234(S1234)−1S123]
−1

are square matrices
with RL,R′L′ elements. Hence the subscripts RL are summed
over, and the square parentheses in Eq. (53) contain matrix
products and inversions. In the last line of Eq. (53) and in the
following, a matrix Dn,d with elements DnR′L′,dRL is defined
to be the coefficient to ψ1..n(r) in the expansion of �d (r).

Remember that we have chosen to number the energy points,
n = 1, . . . ,4, and the radial derivatives, d = 0, . . . , 3.

In order to find the set of first-derivative functions,
we eliminate G12(r) from the last two equations (51) and
subsequently insert expression (47) for G1(r):

rP̂(r)[ψ1234(r)(S234)−1 − ψ123(r)(S23)−1]

= G1(r)[S1234(S234)−1 − S123(S23)−1] + o

=
[

(r − a) − (r − a)3

3!
(ε1 − w)

]
× [S1234(S234)−1 − S123(S23)−1] + o. (54)

As a result

�1(r) = �3(r)(ε1 − w)

+ [ψ1234(r)(S234)−1 − ψ123(r)(S23)−1]

× [S1234(S234)−1 − S123(S23)−1]−1

= ψ123(r)D3,3[S234(S1234)−1 + ε1 − w]

+ ψ1234(r)D4,3[S23(S123)−1 + ε1 − w]. (55)

As usual, quantities like ε1 − w are diagonal matrices.
The set of second-derivative functions, �2(r), is seen from

Eqs. (14) and (45) to have the projection −U12(r) 1
a
. From

the second equation (51) and from expressions (52) and (54),
therefore, we get

�2(r)a = − ψ12(r) − ψ123(r)

×
{

(S23)−1[S1234(S234)−1 − S123(S23)−1]−1S12

+(S123)−1[S234(S1234)−1 − S23(S123)−1]−1S2

}
+ ψ1234(r)

×
{

(S234)−1[S1234(S234)−1 − S123(S23)−1]−1S12

+(S1234)−1[S234(S1234)−1 − S23(S123)−1]−1S2

}
,

which reduces to

�2(r)a = −ψ12(r) − ψ123(r)D3,3[S2 − S234(S1234)−1S12]

−ψ1234(r)D4,3[S2 − S23(S123)−1S12]. (56)

Of the divided-difference functions, ψ1..d+1(r), only the
zeroth does not vanish at all spheres, and it must therefore be
included in the value functions �0(r). From the first Eq. (51)
and Eq. (44),

rP̂(r)ψ1(r) = a − (r − a)2

2!
a(ε1 − w)

+ (r − a)3

3!
aw′ + G1(r)S1 + o,

so that with the help of the first lines of expressions (54) and
(55), we get

ψ1(r) = �0(r)a − �2(r)a(ε1 − w) + �3(r)aw′

+ [�1(r) − �3(r)(ε1 − w)]S1.
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As a result, the set of value functions is given by

�0(r)a = ψ1(r) − ψ12(r)(ε1 − w) + ψ123(r)

×

⎧⎪⎪⎨⎪⎪⎩
[S23 − S234(S1234)−1S123]−1

×[S2 − S234(S1234)−1S12](ε1 − w)
+[S23 − S234(S1234)−1S123]−1aw′

−[S123 − S1234(S234)−1S23]−1S1

⎫⎪⎪⎬⎪⎪⎭
+ ψ1234(r)

×

⎧⎪⎪⎨⎪⎪⎩
[S234 − S23(S123)−1S1234]−1

×[S2 − S23(S123)−1S12](ε1 − w)
+[S234 − S23(S123)−1S1234]−1aw′

−[S1234 − S123(S23)−1S234]−1S1

⎫⎪⎪⎬⎪⎪⎭,

which simplifies to

�0(r)a = ψ1(r) − ψ12(r)(ε1 − w)

− ψ123(r)D3,3

{
aw′ + S2(ε1 − w)+

S234(S1234)−1[S1 − S12(ε1 − w)]

}
− ψ1234(r)D4,3

{
aw′ + S2(ε1 − w)+

S23(S123)−1[S1 − S12(ε1 − w)]

}
.

(57)

Hence, for use in the interpolation (8), we have succeeded
in forming a set of four v&d functions, �d (r) with d = 0 to 3,
from the USW-sets at four different energies, ψn(r) ≡ ψ(εn,r)
with n = 1 to 4. The result is

�dRL(r) =
4∑

n=1

∑
R′L′

n∑
n′=1

ψn′R′L′(r)

�n
m=1,
=n′ (εn′ − εm)

DnR′L′,dRL

=
4∑

n=1

∑
R′L′

ψ1..n;R′L′(r) DnR′L′,dRL. (58)

The similarity transformation, Dn,d, from the four energy-
divided differences (43) of USWs, ψ1..n(r), to the v&d
functions, �d (r), is given by the coefficients found in Eqs. (53),
(55), (56), and (57) in terms of energy-divided differences S1..n

of the screened structure matrix (39). For the odd and even
derivatives’ functions they are, respectively,

D1,3 = D2,3 = 0,

D3,3 = −[S23 − S234(S1234)−1S123]−1,

D4,3 = −[S234 − S23(S123)−1S1234]−1

= −(S1234)−1S123D3,3,
(59)

D1,1 = D2,1 = 0,

D3,1 = D3,3[S234(S1234)−1 + ε1 − w],

D4,1 = D4,3[S23(S123)−1 + ε1 − w]

= A − (S1234)−1S123D3,3(ε1 − w),

and

D1,2a = 0,

D2,2a = − 1,

D3,2a = − D3,3[S2 − S234(S1234)−1S12],

D4,2a = − D4,3[S2 − S23(S123)−1S12] = −D4,3S2 + AS12,

D1,0a = 1,

D2,0a = − (ε1 − w),

D3,0a = − D3,3

{
aw′ + S2(ε1 − w)+

S234(S1234)−1[S1 − S12(ε1 − w)]

}
,

D4,0a = − D4,3

{
aw′ + S2(ε1 − w)+

S23(S123)−1[S1 − S12(ε1 − w)]

}
= − D4,3{aw′ + S2(ε1 − w)} − A{S1 − S12(ε1 − w)}.

(60)

Here, we have defined the matrix

A ≡ D4,3S23(S123)−1 = [S1234 − S123(S23)−1S234]−1 (61)

and ε1 − w and aw′ are diagonal matrices with the respective
components ε1 − l(l + 1)(aR)−2 and −2l(l + 1)(aR)−2. Ex-
pressions involving inversion of the second divided difference,
S123, which may not be positive definite, have been rewritten
in terms of inverted first and third divided differences, S23

and S1234. The latter are likely to be positive-definite because,
as seen from Eq. (79) in Sec.V, their elements are overlap
integrals over nearly identical functions. It should be noted,
that the v&d functions are invariant to the numbering of the
four energies.

Here, we have chosen to express the v&d functions in terms
of the dimensionless slope matrix S(ε) given by Eqs. (39) and
(31), because it has a simple physical interpretation. To rewrite
Eqs. (59) and (60) in terms of the symmetric matrix aS is a
trivial matter.

In order to generate all 16 submatrices (59) and (60),
one thus needs to invert four matrices, e.g., S1234, S23 −
S234(S1234)−1S123, S23, and S1234 − S123(S23)−1S234, in addi-
tion to the four matrices B(εn) + n(εn,a)/j (εn,a) in Eq. (31).
The remaining matrix operations in Eqs. (59) and (60) are
merely products and sums. The dimensions of the matrices
will be discussed in Secs. VI A and VI B.

This value-and-first-three-derives’ formalism achieves to
invert four slope matrices instead of one, four times larger
matrix. Apart from this, the four v&d functions of a given
RL are more localized than the four USWs of the same RL

because any v&d function has vanishing values and first three
radial derivatives at all spheres other than its own. Moreover,
with increasing derivative order d, the v&d function �dRL(r)
extends further and further into the interstitial around site R

while at the same time remains localized inside the Voronoi
cell, approximately. This can clearly be seen in the top row
of Figs. 2 and 3, where we show the value-, first-, second-,
and third-derivative s functions for bcc- and dia-structured
interstitials.

The interpolation (8) is local, that is, to the density at
point r, essentially only the v&d functions centered at the
cell containing r contribute. However, the generation of the
v&d functions is not local. They are multicentered linear com-
binations (58) of USWs which themselves are multicentered
linear combinations (19) of Hankel functions. This generation
of short-range functions from long-range ones—and even in
two stages—was used to produce the contour plots in Figs. 2
and 3. For the purpose of simplifying the plotting of ρ(r) from
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0,s 1,s 2,s 3,s

0,s
loc

1,s
loc

2,s
loc

3,s
loc

0,s 1,s 2,s 3,s

FIG. 2. Bcc structure as in the left-hand panel of Fig. 1. (Top row) Value-, first-, second-, and third-derivative s-like functions, �ds(r)/〈�ds〉,
normalized over the interstitial. See Sec. III. (Middle row) Their localized potentials, ϕloc

ds (r)/〈�ds〉. (Bottom row) Their regular potentials,
ϕds(r)/〈�ds〉. See Sec. IV B. The localized potentials are screened by multipoles at the centers of the hard spheres and therefore diverge there.
The regular potentials have these multipoles subtracted out. For r large, all four regular potentials become that of a point charge, −2/r . The
values of the normalization integrals are 〈�ds〉 = 5.82, 2.05, 0.358, and 0.0256 (Bohr radii)d−2 for d = 0, 1, 2, and 3, respectively. The contours
for the normalized v&d functions go from 0 to 0.03 in steps of 0.002 (Bohr radii)−3, those for the localized potentials from −0.06 upwards in
steps of 0.012 Ry, the zero-potential contour being the one following the hard spheres most closely, and those for the regular potentials from 0
to 0.99 in steps of 0.03 Ry. The energy mesh is exponential [Eq. (91)] with the highest and lowest energies the same as those used in Fig. 1,
i.e., ε1 = −1.54 and ε4 = −15.7 Ry.
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0,s
loc

1,s
loc

2,s
loc

3,s
loc

0,s 1,s 2,s 3,s

0,s 1,s 2,s 3,s

FIG. 3. Same as Fig. 2, but for the diamond structure with the same nearest-neighbor distance as in Fig. 2. 〈�ds〉 = 11.25, 6.94, 1.89, and
0.188 (Bohr radii)d−2 for d = 0, 1, 2, and 3, respectively.
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Eq. (8), one might use v&d functions tabulated on a mesh
spanning their own cell and its near neighborhood. Faster, but
less accurate, it is to approximate the v&d functions in the
interstitial near an arbitrary site R′ by their cubic-harmonic
expansion around that site:

ρ(r) ≈
∑
L′

YL′(r̂R′ )
∑
dL

P̂R′L′(rR′)�dRL(r)R(d)
RL. (62)

This one-center expansion (62) is less useful for open
than for close-packed structures because it is strictly valid
only for aR′ � rR′ � minR′′ (dR′′R′ − aR′ ), where the lat-
ter is the distance to the nearest-neighbor sphere. For
minR′′ (dR′′R′ − aR′ ) � rR′ < minR′′ dR′′R′ , the expansion con-
verges to the superposition of Hankel functions. Approxi-
mating the v&d functions by the cubic-harmonic expansion
around the own site, i.e., choosing R′ = R, brings great
simplification, but only for close-packed structures, does
the expansion hold throughout the Voronoi cell. The radial
functions, P̂R′L′(r)�dRL(r), will be derived in the Appendix.

The alert reader will have noted that �d=0 s(r) in Figs. 2
and 3 does not start out flat from the central sphere, but like
1/r. This is because we have chosen to carry the prefactor r

in the boundary condition (14) for the v&d functions in order
to simplify the formalism leading to Eqs. (58)–(61). So what
starts out flat, is r times the spherical average of �d=0 s(r).
Having found these v&d functions, we may of course form
those, �̄dRL(r), that satisfy the boundary conditions without
the prefactor r:

P̂R′L′(r)�̄dRL(r) = (r − aR)d

d!
δR′RδL′L + o. (63)

The result, most easily obtained by using the interpolation
formalism (7) and (8) with ρ(r) = �̄dRL(r) is

�̄dRL(r) = �dRL(r)aR + (d + 1)�(d+1)RL(r), (64)

with �d>dmax RL(r) ≡ 0.

The v&d functions are independent of the scale (t) of the
structure, provided that spatial derivatives are defined with
respect to the dimensionless variable r/t and that the energy
mesh times t2 is kept constant. This follows from the fact
that USWs solve the wave equation (1). The main use of
expressions (58)–(61) for the v&d functions as multicentered
linear combinations of USWs is for solving Poisson’s equation
and for forming integrals, as we shall see in Secs. IV and V.

IV. SOLVING POISSON’S EQUATION

A. Potentials from energy-divided differences of USWs

Poisson’s equation (2) for a charge density that is a
spherical wave, ρ(r) = ψ(ε,r), has the particular solution
V (r) = 8πψ(ε,r)/ε. For a charge density, which is the dth
energy-divided difference (43) of an USW, Poisson’s equation
therefore has the solution

− 8π�−1ψ1..d+1;RL(r)

=
d+1∑
n=1

8πψnRL(r)/εn

�d+1
m=1,
=n(εn − εm)

=
d+1∑
n=0

8πψnRL(r)

�d+1
m=0,
=n(εn − εm)

− 8πψRL(0,r)

�d+1
m=1(−εm)

= 8πψ0...d+1;RL(r) − 8πψRL(0,r)

�d+1
m=1(−εm)

(65)

in the interstitial between the spheres. In the first term on the
right-hand side, we have defined

ε0 ≡ 0, (66)

and have used this energy point to take the divided difference
for the potential one order higher than for the charge density.
Inside the spheres, the solution (65) is joined smoothly to a
solution of the Laplace equation.

1. The localized potential

The second term, −8πψRL(0,r)/(−ε1)..(−εd+1), in ex-
pression (65) satisfies the Laplace equation. We can therefore
choose merely the first term:

8πψ0...d+1;RL(r) ≡ φloc
1..d+1;RL(r), (67)

as the particular solution [55] of interest in the interstitial.
This choice makes the potential localized to the neighborhood
of its own sphere because ψ0...d+1;RL(r) is an energy-divided
difference of at least first order and therefore has vanishingL′
averages at all spheres for all l′ � lmax. This holds also for the
eigenprojection of ψ0...d+1;RL(r) because the eigen-projection
of ψRL(ε,r) is YL(r̂R), independently of the energy. Near the
own sphere, the localized potential has pure L character.

The localized potential may be expanded around any site
R′ in cubic-harmonics times radial functions:

φloc
1..d+1;RL(r) ≈ 8π

∑
L′

YL′(r̂R′ )P̂R′L′(r)ψ0...d+1;RL(r). (68)

This expansion is valid in the interstitial at and outside the
R-sphere. Since R′L′ projection and forming energy-divided
differences commute, we can reverse the order and use the
binomial rule (50) to form the differences of the projections
(37) expressed as P̂(r)ψ(ε,r) = u(ε,r) + g(ε,r)S(ε). The
resulting projections are for d = 0 to 3:

P̂(r)ψ01(r) = u01(r) + g0(r)S01 + g01(r)S1,

P̂(r)ψ012(r) = u012(r) + g0(r)S012

+ g01(r)S12 + g012(r)S2,

P̂(r)ψ0123(r) = u0123(r) + g0(r)S0123 + g01(r)S123 (69)

+ g012(r)S23 + g0123(r)S3,

P̂(r)ψ01234(r) = u01234(r) + g0(r)S01234

+ g01(r)S1234 + g012(r)S234

+ g0123(r)S34 + g01234(r)S4.

Inside any sphere, the localized potential is the solution of
the Laplace equation that matches 8πψ0...d+1;RL(r) smoothly at
the sphere. Of the radial functions in expressions (69), the only
one that does not vanish smoothly at the sphere, and therefore
can provide a slope, is g0(r). This follows from Eqs. (45)–(49)
together with definitions (33) and (34). According to Eq. (18),
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this slope is g′
0(a) = 1/a. Since g0(r) ≡ g(ε0,r) ≡ g(0,r) is a

solution of the radial Laplace equation, the localized potential
inside the R′ sphere is simply

φloc
1..d+1;RL(r)

=
∑
L′

YL′(r̂R′)P̂R′L′(r)φloc
1..d+1;RL(r)

= 8π
∑
L′

g0;R′l′(rR′)YL′(r̂R′ )S0...d+1;R′L′,RL

= 8π
∑
L′

{nl′ (0,rR′ )jl′(0,aR′ ) − jl′(0,rR′ )nl′ (0,aR′ )}

× aR′YL′(r̂R′ )S0...d+1;R′L′,RL

≡ −
∑
L′

(−)l
′ 8π

2l′ + 1

{
1 −

(
rR′

aR′

)2l′+1
}

YL′(r̂R′ )

rl′+1
R′

× Q1..d+1;R′L′,RL, (70)

where we have used Eqs. (28) and (22). We emphasize that
going from outside to inside a sphere, only the g0(r) terms
in the one-center expansion (68) based on projections (69)
survive. Their irregular parts ∝ −1/rl′+1

R′ , clearly seen in the
middle rows of Figs. 2 and 3, can be interpreted as due to
multipole moments

Q1..d+1;R′L′,RL = (−)l
′
al′+1

R′ S0...d+1;R′L′,RL (71)

of order l′ at the sites R′ that have been subtracted from the
interstitial charge density, ψ1..d+1;RL(r), in order to make its
potential, φloc

1..d+1;RL(r), localized. We remark that the sum over
all monopole moments,

∑
R′ Q1..d+1;R′0,RL, is the total charge,

〈ψ1..d+1;RL〉, divided by
√

4π. This follows formally from
Eqs. (71) and (82).

2. The regular potential

The Coulomb potential, φ1..d+1;RL(r), which is everywhere
regular must have the irregular part of the localized potential
inside the spheres (70) canceled out. This regular potential,
examples of which are shown in the bottom rows of Figs. 2 and
3, is therefore the localized one, plus the multipole potential
extending in all space:

φ1..d+1;RL(r) = φloc
1..d+1;RL(r) − 8π

∑
R′L′

nl′ (0,rR′ )YL′(r̂R′ )

× jl′(0,aR′ )aR′S0...d+1;R′L′,RL. (72)

In the interstitial,this potential may be expressed entirely
in terms of localized USWs, because the first term is given by
Eq. (67) and the expansion of nl′(0,rR′ )YL′(r̂R′) in USWs is
given by Eqs. (22) and (29). As a result,

φ1..d+1;RL(r)

= 8πψ0...d+1;RL(r) − 8π
∑
R′′L′′

ψR′′L′′(0,r)jl′′ (0,aR′′ )

×
∑
R′L′

(
nl′(0,aR′ )

jl′(0,aR′ )
δR′′R′δL′′L′ + BR′′L′′,R′L′(0)

)
× jl′(0,aR′ )aR′S0...d+1;R′L′,RL. (73)

Here, the R′ sum is long range and for crystals it may be
computed with the Ewald method.

Inside a sphere, say the one at R′, the regular potential is
the regular part of φloc

1..d+1;RL(r), as given by Eq. (70), minus
the tails from the multipoles at all other sites R′′. This means
that its cubic-harmonic projection around site R′ is given by

1

8π
P̂R′L′(r)φ1..d+1;RL(r)

= −jl′(0,r)nl′(0,aR′ )aR′S0...d+1;R′L′,RL

− P̂R′L′(r)
∑

R′′ 
=R′

∑
L′′

nl′′ (0,rR′′ )YL′′(r̂R′′ )

× jl′′ (0,aR′′ )aR′′S0...d+1;R′′L′′,RL

= −jl′(0,r)
∑
R′′L′′

(
nl′ (0,aR′ )
jl′ (0,aR′ ) δR′R′′δL′L′′

+BR′L′,R′′L′′(0)

)
× jl′′ (0,aR′′ )aR′′S0...d+1;R′′L′′,RL, (74)

where we have used the projection (23), and that BRL′,RL(0) =
0 according to Eq. (24). The long-ranged sum over R′′ is the
same as the one over R′ in expression (73).

B. Potentials from value-and-derivative functions

A v&d function, �dRL(r), is the nR′L′ superposition of
energy-divided differences of USWs, ψ1..n;R′L′(r), given by
(58)–(61). The localized and regular potentials, ϕloc

dRL(r) and
ϕdRL(r), from the v&d function �dRL(r) are therefore the same
superposition of the potentials φloc

1..n;R′L′(r) and φ1..n;R′L′(r)
from the energy-divided differences of USWs, ψ0...n;R′L′(r),
given by, respectively, Eqs. (67) and (72). In the interstitial,
that is,

ϕloc
dRL(r) =

∑
nR′L′

φloc
1..n;R′L′(r)DnR′L′,dRL

= 8π
∑
nR′L′

ψ0...n;R′L′(r)DnR′L′,dRL (75)

for the localized potential and

ϕdRL(r) = ϕloc
dRL(r) − 8π

∑
R′L′

nl′ (0,rR′ )YL′(r̂R′)jl′(0,aR′ )aR′

×
∑

nR′′L′′
S0...n;R′L′,R′′L′′DnR′′L′′,dRL (76)

for the regular potential. This means that after right-
multiplication by D (including the n sum going from 1 to 4) all
expressions given in the previous Sec. IV A for the localized
and regular potentials hold also for the potentials, ϕloc(r) and
ϕ(r), from the v&d functions. Specifically, the moments of the
R′L′ multipoles, which when added to the localized potential
make it regular, are

QR′L′,dRL =
∑

nR′′L′′
Q1..n;R′L′,R′′L′′DnR′′L′′,dRL, (77)

where Q1..n;R′L′,R′′L′′ was given in Eq. (71).
Usually, we do not want to solve Poisson’s equation for

merely the interstitial charge density, but also for the remaining
charge density in the system, such as the one, ρrest

R (r), inside
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the sphere at R. This adds to QR′L′ = ∑
dRL QR′L′,dRLR(d)

RL

the (compensating) multipoles

Qrest
R′L′ ≡

∫
ρrest

R′ (r) rl′Y ∗
L′(r̂)d3r. (78)

Like the localized potentials (67) from energy-divided
differences of USWs, those (75) from the v&d functions vanish
at all hard spheres because they are superpositions of the
former. In the middle rows of Figs. 2 (bcc) and 3 (dia), we
show the localized potentials, ϕloc

ds (r), from the normalized
s-like v&d functions, �ds(r)/〈�ds〉, for which �ds(r) with
d = 0,1,2,3 are shown directly above, in the top row. The
zero-potential contours are seen to closely follow the hard
spheres, which are indicated by (red) dots. Inside the spheres,
ϕloc

ds (r) becomes a multipole potential, like φloc
ds (r) in (70),

whose multipole moments are seen to be dominated by the
negative point charge at the center. Due to the normalization
with 〈�ds〉, the sum over all monopoles is −1. The potentials
are cut off below −0.06 Ry. In the interstitial, ϕloc

ds (r) is positive
and localized near the central sphere, around which it oscillates
between maxima and saddlepoints. For ϕloc

0s (r), this oscillation
is 0.10, 0.04, and 0.08 Ry in the bcc interstitial and 0.14, 0.03,
and 0.11 Ry in the diamond interstitial. As expected, ϕloc

0s (r)
is more isotropic for the closely packed bcc than for the open
diamond interstitial. Moreover, the oscillations increase with
d. The regular potentials are dominated by the second term in
(76), i.e., the multipole potential extending in all space. And
this, itself, is dominated by the potential −2/r from the total
charge placed at its center.

The projections, P̂R′L′(r)ϕloc
dRL(r), to be used in the cubic-

harmonic expansion like (68) are given in at the end of the
Appendix. Specifically, the spherical averages around all sites
form the input to constructing the potential in the so-called
overlapping MT approximation (OMTA) [35,36], which is
used to define the third generation LMTO and NMTO basis
sets.

Provided that it is considered a function of a dimensionless
r/t, the potential from a v&d function times t2 is invariant to a
uniform scaling of the structure. This follows from Poisson’s
equation (2).

V. INTEGRALS OVER THE INTERSTITIAL

The integral of the product of two USWs over the interstitial
region may be calculated as a surface integral over the spheres
and by use of Green’s second theorem. The result is simply
[10]

〈ψR′L′(ε1)|ψRL(ε2)〉 = aR′
SR′L′,RL(ε1) − SR′L′,RL(ε2)

ε1 − ε2
, (79)

i.e., the first energy-divided difference of the corresponding
element of the structure matrix. In our divided-difference
notation, this is, 〈ψ1;R′L′ |ψ2;RL〉 = aS12;R′L′,RL. Expression
(79) actually includes the integrals over the Bessel functions
with l > lmax, which survive inside the spheres, but since
jl(κr) ≈ rl and lmax � 4, this contribution is small. Besides,
it is usually counterbalanced by neglecting the high-l compo-
nents of the target function as explained after Eq. (32).

The integral of a single USW over the MT interstitial is

〈ψRL(ε)〉 =
√

4π

ε

∑
R′

aR′SR′0,RL(ε),

as obtained by noting that 〈ψRL(ε)〉 = 〈1|ψRL(ε)〉 with 〈1|
being a solution of the Laplace equation, and by using Green’s
second theorem. An expression with better R′ convergence
may be obtained by first expanding |1〉 in the set of USWs
with ε = 0, as done in the upper right-hand part of Fig. 1.
Since P̂RL(aR)|1〉 = √

4πδL,0 for any R, only the s-USWs
contribute, i.e.,

|1〉 =
√

4π
∑
R

|ψR0(0)〉 ≡
√

4π
∑
R

|ψ0;R0〉, (80)

and Eq. (79) then leads to the result

〈ψnRL〉 = 〈1|ψnRL〉 =
√

4π
∑
R′

〈ψ0R′0|ψnRL〉

=
√

4π
∑
R′

aR′S0n;R′0,RL . (81)

Compared with the slower converging result, this implies that∑
R′ aR′SR′0,RL(0) = 0, which requires that the inversion (31)

of the bare structure matrix is converged with respect to cluster
size (see Sec. VI A).

The integral of an energy-divided difference of a single
USW follows from expression (81),

〈ψ1..n;RL〉 =
√

4π
∑
R′

aR′S0...n;R′0,RL , (82)

because taking an energy-divided difference (43) is a linear
operation. The integral of a single v&d function is therefore
obtained by inserting expression (82) in (58), yielding

〈�dRL〉 =
√

4π
∑
R′′

aR′′

4∑
n=1

∑
R′L′

S0...n;R′′0,R′L′DnR′L′,dRL.

(83)
This enables us to find the interstitial charge as 〈ρ(r)〉 =∑

dRL 〈�dRL〉R(d)
RL(aR). This could of course also have been

obtained as the sum over the monopole moments at all centers
from expressions (71) and (77) for the general multipole
moments.

Since our formalism expresses the interstitial density, ρ(r),
its regular potential, φ(r), and the potential from site-centered
multipoles in terms of energy-divided differences of USWs
[see Eqs. (8), (14), (9), and (73)], the electrostatic energies
of the interstitial charge density are integrals of products of
energy-divided differences of USWs. Expressions (79) and
(43) thus reduce such an integral to the double sum:

〈ψ1..m|ψ0...n〉

= a

m∑
μ=1

n∑
ν=0

Sμν

�m
σ=1,
=μ(εμ − εσ )�n

τ=0,
=ν(εν − ετ )

≡ aS0[1.. min (m,n)].. max(m,n), (84)

where we have returned to matrix notation, i.e., have dropped
the RL subscripts. The common energy points, i.e., those used
in both divided differences, ψ1..m and ψ0...n, give rise to the
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terms with μ = ν and are seen to involve Ṡν, the first energy
derivative of S(ε) at εν. In fact [34], the double sum (84) is
the highest nonvanishing derivative—the (2 + m + n)th—of
that polynomial in ε that coincides with S(ε) at all the mesh
points, ε0, . . . , εmax (m,n), and whose first derivative coincides
with Ṡ(ε) at the common mesh points, ε1, . . . εmin (m,n). This is
the Hermite polynomial approximation and the reduction of
(84) to the usual single sum in terms of S(ε) evaluated at all the
mesh points and Ṡ(ε) evaluated at the common mesh points is
given in Ref. [34]. For Ṡ(ε), we use the analytical expression
derived from expressions (31) and (25).

The local part of the electrostatic self-energy of the
interstitial charge density is then

1

2

∫
ρ(r)φ(r)d3r

= 1

2

∑
d ′R′L′

∑
dRL

R(d ′)
R′L′(aR′ )〈�d ′R′L′ |ϕdRL〉R(d)

RL(aR).

Splitting the potential in the interstitial into localized and long-
ranged parts according to (73), the localized part gives

1

2

∫
ρ(r)φloc(r)d3r = 4π

∑
n′d ′

∑
nd

(Dn′d ′R(d ′))†

× aS0[1.. min (n′,n)].. max (n′,n)DndR(d),

(85)

using matrix notation in the RL subscripts. The long-ranged
part gives

1

2

∫
ρ(r)φlong(r)d3r

= −4π
∑
n′d ′

∑
nd

(Dn′d ′R(d ′))†aS0...n′ j0(a)

×
(

n0(a)

j0(a)
+ B0

)
j0(a)aS0...nDndR(d). (86)

since 〈ψ0...n|ψ0〉 = aS0...n.

The charge densities inside the spheres from the rest of the
system,

∑
R ρrest

R (r) in Eq. (78), produce a multipole potential
in the interstitial which like in (73) may be expanded in USWs:∑

RL

(−)l
8π

2l + 1

YL(r̂R)

rl+1
R

Qrest
RL

= −8πψ(0,r) j (0,a)

(
n(0,a)

j (0,a)
+ B(0)

)
(−1)lQrest

(2l + 1)!!
,

where matrix notation has been used in the last line. The
electrostatic interaction between the charge densities inside
ρrest and outside ρ the spheres is thus∫

ρ(r′)
2
∑

R ρrest
R (r)

|r′ − r| d3r

= −8π
∑
nd

(DndR(d))†aS0...n j (0,a)

×
(

n(0,a)

j (0,a)
+ B(0)

)
(−1)lQrest

(2l + 1)!!
. (87)

TABLE I. Relative error ×103 of the interstitial volume computed
as Eq. (88). lmax = 4.

NR a = 0.9t a = 0.8t

bcc Int.vol.=50% Int.vol.=65%
27 −0.45 −5.38
51 2.54 0.14
89 0.11 −0.01

169 0.00 0.00

dia Int.vol.=75% Int.vol.=83%
35 −44.80 −86.40
87 −3.27 −9.65

159 −0.25 −1.17
191 −0.13 −0.65

VI. HOW TO SET THE PARAMETERS

In this section, we shall first examine how many sites NR

are needed to screen the bare spherical waves to USWs using
the formalism of Sec. II B. Then we shall explain how matrix
sizes may be reduced by use of symmetry, and finally shall
discuss how to choose the energy mesh.

A. Number of screening sites NR

As derived in Sec. II B, screening the bare spherical waves
(19) in such a way that their averages for all l � lmax vanish
at all hard spheres except the own, amounts to inverting the
symmetric matrix in the square parenthesis in Eqs. (30) and
(31). We do this by letting R and R′ be the sites of a cluster
of size NR, centered around one of the sites in question. The
inversion is done for all inequivalent sites in the structure.

As illustrated in Fig. 1, for increasing energy the extent of
the USWs increases and herewith the size of the cluster needed
for their generation. For energies above a certain threshold,
εhom > 0, delocalized USWs exist and this threshold increases
with the close-packing of the interstitial; for instance, εhomt2 ∼
2.5 for the diamond and 15 for the bcc structure. In order to
interpolate by means of localized USWs, we must use ε <

εhom. In the following, we simply take NR as the number of
sites needed to screen for ε = 0; this is also the energy needed
to describe the Laplace potentials.

In order to monitor the NR convergence, we expand the
function |1〉 in USWs with ε = 0. The result (80) is exact, and
was illustrated for the diamond structured interstitial in the
upper right-hand part of Fig. 1. As a measure of convergence,
we take

〈1|1〉 = 4π
∑
R

NR∑
R′=1

aRṠRs,R′s(0), (88)

as follows from Eq. (79) with ε1 = ε2 = 0. Here, R′ runs over
all sites in the cluster and R over all sites in the primitive cell.
For increasing lmax and NR, this measure tends to the volume
of the interstitial [56].

Table I gives the relative error for lmax = 4 as a function
of NR for the bcc and diamond structures and with two hard-
sphere radii: a = 0.9t and 0.8t. As usual, t is the radius of
touching spheres, i.e., half the nearest-neighbor distance. The
closely packed bcc structure has π

√
3/8 ≈ 68% of its volume
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inside touching spheres whereas the open diamond structure
has only half this amount inside. Conversely, the hard-sphere
interstitial with a = t, 0.9t, or 0.8t covers, respectively, 32%,

50%, or 65% of the volume in the bcc structure and as much
as 66%, 75%, or 83% in the diamond structure.

The table shows that in order to have the interstitial volume
computed to better than 10−2, it suffices to screen with 27
sites, i.e., the three first shells, in the bcc structure and with
87 sites (7 first shells) in the diamond structure. Computing
the volume to better than 10−3, requires 59 sites in the bcc
and 159 sites in the diamond structure. The accuracy is seen
to be somewhat better for the larger hard sphere. However, the
lmax convergence deteriorates when the spheres nearly touch,
and this is the reason for the anomalously large 2.54 × 10−3

relative error for the bcc structure with a = 0.9t and NR =
51. Whereas for a = 0.8t, the volumes are essentially [57]
converged with lmax = 4, as also needed for the purpose of
charge interpolation, those for a = 0.9t require lmax = 5 or
NR > 51.

B. Reduction of matrix sizes by use of symmetry

1. Use of local point symmetry in the screening inversion

In the previous section, we considered the number NR of
screening sites needed when generating each column RL of
the slope matrix SR′L′,RL(ε) by inversion in real space for
a cluster centered on site R. This number depends on the
hard-sphere packing, but is not influenced by symmetry. The
only saving brought about by translational symmetry is that
the matrix needs to be inverted merely for the translationally
inequivalent sites.

The number NL of cubic-harmonics needed in the screening
inversion is (lmax + 1)2 ∼ 25 when no use is made of sym-
metry, whereby the linear dimension NRNL of the matrix to
be inverted is of order 2500. Point symmetry may, however,
reduce this significantly. If we let NL(R) be the number of
cubic harmonics with l � lmax in the appropriate irreducible
representation of the local point group at site R of the intersti-
tial function ρ(r), then the matrix dimension is

∑NR

R NL(R),
i.e., NL is now the average of NL(R) over the NR sites in
the cluster. In case ρ(r) is the charge density, the appropriate
irreducible representation is the identity representation. Taking
as examples the charge density of diamond- or zinc-blende-
structured binary compounds (see Sec. VI C 2), merely

s, 3z2 − 1, xyz, 35z4 − 30z2 + 3, and x4 + y4 − 6x2y2,

(89)
of the cubic harmonics with l � 4 transform according to the
identity representation of the tetrahedral point group. In this
case, use of point symmetry thus reduces the linear dimension
of the matrix to be inverted by a factor 5, i.e., to about 500.

Said in another way, we only want to construct those USWs
(19), which are needed to fit the cubic-harmonic projections
(11) of the target function, and its point symmetries can be used
to significantly reduce the matrix dimension. In the above-
mentioned examples, it so happens that not only the projection
of the density onto the 25 − 5 = 20 cubic harmonics other
than those in (89) vanish, but even the projection onto 3z2 − 1
is negligible; so in these cases the linear matrix dimension is
reduced to about 400.

One might feel that this site-dependent reduction of the
number of screening multipoles will reduce the screening
and thus require a larger NR for convergence. However, as
long as the reduction is symmetry dictated, this does not
matter for the relevant USWs and the relevant elements of
the slope matrix after they are symmetrized with respect to the
space-group symmetry as explained below, because only the
symmetry-allowed L channels will survive the symmetrization
process. Even without this symmetrization, use of the possibly
unconverged quantities in Eqs. (58) and (59)–(61) for the v&d
functions needed for the interpolation (8), i.e., those with
nonvanishing RRL coefficients, will be correct. This means
that the reduction due to point-group symmetry is valid even
without space-group symmetrization.

2. Use of translational or space-group symmetry

In order to form the v&d functions in case the interstitial
has translational symmetry and ρ(r) has Bloch symmetry, we
merely need Bloch summed USWs,

ψk
RL(ε,r) =

∑
T

ψRL(ε,r − T)eik·T,

and the corresponding slope matrix,

Sk
R′L′,RL(ε) =

∑
T

SR′L′,(R−T )L(ε)eik·T,

where R and R′ are now merely in the primitive cell. After
short range has been achieved through screening, the sum
over all translations T converges fast. For periodic functions
like charge densities, k = 0. The slope matrix entering the
matrix expressions (59)–(61) for the Bloch symmetrized v&d
functions in terms of the Bloch symmetrized USWs (58),
has the number of sites, NR, reduced from what was used
in the screening inversion (Sec. VI A), to the number of
translationally inequivalent sites.

In the rightmost panel of Fig. 1, we show symmetrized
s-USWs for the diamond structure. Here, symmetrization was
done by summing not only over the translationally equivalent
sites forming an fcc lattice, but also over the two equivalent
sites per primitive cell which are related by inversion, so
that NR = 1. Hence the slope matrix entering Eqs. (59)–(61)
has linear dimension 4. This of course requires inverting the
axes of the cubic harmonics at every other site. Had the
slope matrix been symmetrized with respect to merely the
translational symmetry, its linear dimension would have been
8, in which case the proper point symmetry would be installed
only after the v&d functions have been multiplied with the
proper input coefficients to form the interpolated function
(8). These 8 × 4 coefficients satisfy: R(d)

1L = (−)lR(d)
2L, which

means that the sign is flipped on every second site for the
xyz projections, but not for the remaining projections in (89).
In order to profit from space-group symmetry in general, the
cubic harmonics, both in Eqs. (11) and (25), must be defined
with respect to a coordinate system which follows the local
symmetry.

Had one only been interested in periodic structures with
a few sites per cell, one could, alternatively, start by Bloch-
summing the bare structure matrix,

∑
T BR′L′,(R−T )L(ε)eik·T,

using Ewald’s method, and then screen (31) and form v&d
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functions (59)–(61) in the Bloch representation. Knowing the
local point symmetries, e.g., from the RRL input, it is possible
to sort out the relevant LL′ block of BR′L′,(R−T )L(ε) from the
onset.

C. Energy mesh

Here we shall study the influence of the energy mesh on the
interpolated function, as a function of the structure exemplified
by the bcc and dia interstitials, and of the target exemplified by
the |1〉 function and the valence charge densities in diamond-
structured semiconductors.

As said at the end of Sec. III, the v&d functions are
independent of the scale (t) of the structure, provided that
spatial derivatives are defined with respect to the dimensionless
variable r/t and that the energy mesh times t2 is kept
constant.

Our interpolation is three-dimensional with RL spanning
the two-dimensional surfaces of the hard-sphere interstitial
and the energy mesh spanning the perpendicular direction. We
shall see that using a four-point energy mesh to match the
value and first three radial derivatives at the surface, suffices
to make the interpolated function insensitive to the choice of
mesh if the structure is closely packed (bcc), but not if it is
open (dia).

In the latter case, the highest energies, i.e., the smallest
decay constants, will determine the behavior of the interpolated
function deepest in the interstitial and must therefore be
determined by the behavior of the target function there.
Information about this, such as the value of the integral
over (number of electrons in) the interstitial and/or the value
of the target function at one or more points deep in the
interstitial, may conveniently be included as constraints on the
interpolation by adding a higher, fifth energy and using it to
form an additional four-point mesh with its v&d functions.
The linear combination of the two sets of v&d functions
that satisfies the constraints and the three-times differentiable
matching at the spheres is then easily found. This will be the
subject of the following Sec. VII.

1. Constant charge density

As a first test of our v&d technique for interpolation across
an interstitial, we return to the function |1〉 considered in
Sec. VI A. This function can be expanded exactly in a single
set of USWs, provided that this set has zero energy, as was
illustrated in the top right part of Fig. 1. We now use USW
sets with four different energies and fit to the value and first
three radial derivatives at the spheres. Hence input (12) to the
interpolation is

R(0)
RL = a

√
4πδL,0, R(1)

RL =
√

4πδL,0, and R(d>1)
RL = 0.

The result is given by Eq. (8) in terms of v&d functions like
the ones shown in the top rows of Figs. 2 and 3.

Like in Sec. VI A, we use the examples of bcc and
diamond-structured interstitials, and take a = 0.8t, lmax = 4,

and NR = 51 for bcc and 159 for dia. We trace the interpolated
function along the line from the center of a sphere to that
of the most distant nearest-neighbor void. For a crystal, this
is the line from the center of the Wigner-Seitz cell to its
farthest corner, i.e., the [210] line for the bcc and the [111]

 0.8
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5 Bohr radii

 0 to -16 Ry
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FIG. 4. Interpolation of the function |1〉 across the bcc (top, note
that the vertical scale starts at 0.8) and dia (bottom) interstitials using
10 different energy meshes. The results of these v&d interpolations
are traced along the violet part of the [210] (bcc) and [111] (dia)
lines indicated in the insets. t = 2.22 Bohr radii, a = 0.8t, lmax = 4,

NR = 51 (bcc), and 159 (dia). See Sec. VI C 1.

line for the diamond structure. These paths leading deep into
the respective interstitials are sketched in the insets of Fig. 4,
which has bcc in the top- and dia in the bottom panels.

Figure 4 now exhibits the interpolated functions for 10
different equidistant four-point meshes, ε4 < ε3 < ε2 < ε1,

with ε1 stepping from 0 to −4 Ry (ε1t
2 from 0 to −20) and

ε4 stepping from −4 to −8 Ry (ε4t
2 from −20 to −40) in the

left-hand panel and from −16 to −20 Ry (ε4t
2 from −80 to

−100) in the right-hand panel. We notice, first of all, that the
result is exact in all cases where ε1 = 0 (thin red full lines),
as is expected. Secondly, all interpolated functions posses the
required value (= 1) and first three derivatives (= 0) at the
spheres. This is strictly true only when ε1 = 0, but when ε1 �
−3 Ry this does not hold along the part of the line where the
spheres come close (see dia). The reason is that correct values
and derivatives are only ensured for the angular-momentum
averages over a sphere with l � lmax, and not along a single
direction [see also the discussion around Eq. (32)].

Further into the interstitial, the interpolated functions are
seen to deviate from 1, a deviation which increases not only
with ε1 decreasing below zero, but also with the other energies
decreasing below ε1. As illustrated by comparison of the left-
and right hand panels, the role of ε4 (the fastest decay) is
to modify the behavior close to the spheres, given the first,
second, and third radial derivatives. Further away from a sphere
than 1/

√−ε1 and along the radial line far away from any
other sphere, one might have expected the decay to be like
that of the bare s-Hankel function with the longest range, i.e.,
like (a/r) exp [−(r − a)

√−ε1]. However, the decays seen in
the figure are more gradual. This is connected with the fact
seen in Fig. 1, that the screened s-Hankel function, i.e., the
s-USW, is a structure-adapted s-like wave, which decays grad-
ually towards the voids and steeply towards the neighboring
spheres.

Most striking is the dramatic increase in the sensitivity to
the mesh when going from the closely packed bcc to the open
diamond structure where the void and hard-sphere structures
are identical and interpolation across the former is therefore
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FIG. 5. Valence charge density of diamond-structured Si resulting
from a FP NMTO calculation for 2(SiE), plotted in the (110) plane
through the sp3 bonds. Like in Eq. (90), the right-, middle, and
left-hand panels show, respectively, the MT density, the ψ�ψ density
interpolated over the bcc (top) and dia (bottom) interstitials, and the
sum of the two. The contours go from 0 to 0.3 in steps of 0.01 electrons
per (Bohr radii)3. The energy mesh was the same as in Figs. 2 and 3,
and the remaining parameters were like in Fig. 4. See Sec. VI C 2.

difficult. Whereas interpolation of the function |1〉 can be seen
to work for bcc as long as −2 � ε1 � 0 Ry and −6 Ry � ε4 <

ε1, for diamond the requirement is something like −0.4 �
ε1 � 0 Ry and −1 � ε4 < ε1; unless ε1 = 0, in which case
the interpolation is exact, regardless of the values of the other
energies.

2. Charge densities of diamond-structured sp3-bonded and ionic
semiconductors from FP NMTO calculations

Figure 5 illustrates a realistic example: the valence-electron
density in diamond-structured Si. This charge density, here
plotted in the (110) plane through the sp3 bonds, is the result
of a density-functional calculation with the full-potential N th-
order MTO method [40,41]. In this method, the density has
the form

ρ(r) =
∑
RL

∑
R′L′

∑
nn′

ψ∗
RL(εn,rR)�nRL,n′R′L′ψR′L′(εn′ ,rR′ )

+
∑
R

∑
LL′

Y ∗
RL(r̂R)YRL′(r̂R)

∑
nn′

�nRL,n′RL′

× [ϕl(εn,rR)ϕl′(εn′ ,rR) − ϕo
l (εn,rR)ϕo

l′(εn′ ,rR)],
(90)

where εn are the energies chosen for solving Schrödinger’s
equation; they spread far less that those used for the interpo-
lation and include positive values. � is the density matrix and

ψ is a screened spherical wave, basically a USW. ϕ is not the
potential from a v&d function like in Sec. IV B, but a solution
of the radial Scrödinger equation for the overlapping MT
potential [11] which defines the NMTO basis set, and ϕo is the
solution back-integrated over the MT zero, from the MT sphere
to the hard sphere, inside which it is truncated. Hence the
function ϕϕ − ϕoϕo vanishes smoothly outside the MT sphere
and jumps to ϕϕ inside the hard sphere. This discontinuity is
cancelled by the ψ�ψ term in expression (90) which matches
the ϕoϕo term and its first 2N radial derivatives; here N is the
order of the MTOs (N = 2 in the present calculations). The last
term in (90) is a single-center sum over MT densities, each of
which may be reduced to the simple warped-ASA form [44],∑

L′′ YL′′(r̂)fL′′ (r), for which Poisson’s equation is trivially
solved. The ψ�ψ term, however, is a complicated multicenter
sum occurring in all LCAO-like electronic-structure methods.
This is the one we approximate by interpolation across
the interstitial, matching to the ϕoϕo functions at the hard
spheres when using the NMTO method. The result of this
interpolation is shown in the middle panel of Fig. 5, while
the right-hand panel shows the last term of expression (90),
the MT part. The sum of the two is shown in the left-hand
panel.

In the top row of Fig. 5, the voids in the diamond structure
were filled with empty spheres such that the structure of
the interstitial becomes bcc. The basis set for the electronic-
structure calculation had MTOs on the two silicon as well as
on the two empty spheres in the primitive cell and, hence,
the density-functional calculation was one for 2(SiE) [18].
The same calculation delivered the input for the charge
densities shown in the bottom row, but the E contributions
were neglected, i.e., the R sums in expression (90) were
over the diamond rather than the bcc lattice. The bottom
(dia) right-hand figure shows the density from the Si MTs,
which is the same as in the top row. The density from
the E MTs, present in the top (bcc) right-hand figure and
missing in the bottom (dia) right-hand figure, is included in
the bottom middle figure where it is taken into account by
the interpolation across the dia interstitial matching to the
ϕoϕo term at the Si hard spheres only. Adding the MT and
interpolated contributions yields the charge densities shown
in the left-hand panel. The ones in the top (bcc) and bottom
(dia) rows are almost indistinguishable, but the densities deep
in the diamond interstitial, below the lowest contour used in
the figure [0.01 electrons/(Bohr radius)3], are not accurately
interpolated, as we shall see in Fig. 7.

We remark that the purpose of the above-mentioned
construction of the Si charge density without empty spheres is
to compare bcc and dia interpolations for the same Si input.
Of course, we could have performed an entire selfconsistent
FP NMTO calculation for Si without empty spheres [41].

Quite a different charge density is that of the zinc-blende
structured I-VII compound CuBr shown in Fig. 6. Rather than
being covalent, it is ionic (Cu+Br− = Cu 3d10 Br 4p8) and has
a full Cu 3d shell. Despite this difference, the interstitial ψ�ψ

charge density, which is the one we interpolate, is not that
different from the one in Si, albeit more concentrated around
the atoms. The calculation leading to Fig. 6 was done exactly
like the one leading to the top (bcc) row in Fig. 5 for Si. We
shall return to CuBr in Sec. VII.
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FIG. 6. As in the top (bcc) row of Fig. 5, but for zinc-blende
structured CuBr calculated as CuBrEE’ with aCu = aE = 1.72 and
aBr = aE′ = 2.00 Bohr radii, whereby t = 2.33 Bohr radii. See
Sec. VI C 2.

Like Fig. 4, but now for silicon, Fig. 7 shows charge densi-
ties along the open [210] and [111] directions in respectively
the bcc and dia interstitials using different energy meshes for
the interpolation. The upper figure to the left shows the ψ�ψ

density interpolated across the bcc interstitial, from a Si to an E
sphere along [210], using six different exponential four-point
meshes,

εn = ε1(ε4/ε1)(n−1)/3, (91)

with the highest energy: ε1 = −3.0, −2.5, −2.0, −1.5, −1.0,

or −0.5 Ry and the lowest energy: ε4 = −15.7 Ry. Only near
the local maximum of the density where the [210] line passes
closely between a Si and an E sphere, deviations are detectable.
The results for 24 other meshes with the same values of ε1,
but with ε4 = −3.3, −5.0, − 7.2, or −10.0 Ry, deviate even
less from each other, and have therefore not been shown. So
for sp3-bonded silicon, interpolation across the bcc interstitial
is accurate and robust when using a four-point mesh with
energies distributed between −16 and −2 Ry.

In the remaining five parts of Fig. 7, the E spheres have
been neglected and the interpolation is across the diamond-
structured interstitial using the above-mentioned 30 different
energy meshes. In this case, and like for the constant density in
Fig. 4, the dependence on the energy mesh is strong. In order
to be able to compare with the accurate result (solid black
line) of the SiE calculation, we plot the total rather than the
interpolated density. This we do along the violet [111] line,
from slightly before the point inside a hard Si sphere where
the density has fallen to a deep minimum and all densities are
identical, then going into the interstitial, and finally ending
at the midpoint between the two voids along [111] (see also
Fig. 5). Each of the five figures shows (in color) the density
obtained using six different exponential energy meshes with
the same ε4, and with ε1 running through the above-mentioned
values.

We see that all total densities match with value and first
three derivatives at the hard Si sphere, as they are designed
to. However, they deviate as we go deeper and deeper into the
void. It seems that getting the correct fourth derivative requires
−20 � ε4 � −10 Ry. In order to prevent the interpolated
function from behaving too wildly deep in the interstitial, we
must take the highest energy ε1 � −1 Ry (ε1t

2 � −5). While
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FIG. 7. As in Fig. 5, but plotted along the [210] line for the bcc
and along the [111] line for the diamond-structured interstitial, like
in Fig. 4. The first figure shows the SiE ψ�ψ density interpolated
across the bcc interstitial, while the remaining figures show the total
density for SiE (full black line) and for Si (broken, colored lines) with
the ψ�ψ part interpolated across the dia interstitial using 30 different
exponential energy meshes. See Sec. VI C 2 and Eq. (91).

acceptable interpolation is achieved with −3.5 � ε1 � −2.5
and −5 � ε4 � −16 Ry, the best is for the exponential mesh
with ε1 = −3.0 and ε4 = −15.7 Ry (thick brown dot-dashed
density in the bottom right-hand panel). This mesh actually
reproduces the low densities in the voids better than does
the one with ε1 = −1.54 Ry and ε4 = −15.7 Ry (thin blue
dot-dashed density in the bottom right-hand panel) used for
the charge-density contours in the bottom panel of Fig. 5. Of
the 4 Si valence electrons, 1.19 are in the Si MT density, and
2.81 are in the interstitial, and this is exactly what interpolation
with the best mesh yields. The mesh with ε1 = −1.54 Ry and
the same ε4, giving an electron density along [111] about
0.002 electrons per (Bohr radius)3 higher in the void, yields
2.90 interstitial electrons, which is barely tolerable.

It is obvious from Fig. 7 that a four-point mesh exists
(the one with ε1 ∼ −3.0 Ry and ε4 ∼ −15.7), which makes
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the interpolation across the open interstitial almost perfect.
Moreover, as long as one starts from a mesh with fixed −20 �
ε4 � −10 Ry and ε4 < ε3 < ε2 ∼ −5 Ry, iterating merely
the value of ε1 until the value of some additional constraint
like the density at the center of the void or the integral over
the interstitial has the correct value, the interpolation will
converge to this almost perfect density. However, iteration
of ε1 is hardly practical because computation of the screened
structure matrix (Secs. VI A and VI B) is the most expensive
part of an interpolation. Moreover, this method is not a general
one for treating additional constraints, so in the following
section we shall devise a different scheme.

VII. EXTRA CONSTRAINTS IN OPEN STRUCTURES

Our examples of the closely-packed bcc- and the open
diamond structures have clearly demonstrated (Figs. 4 and
7) that whereas the energy mesh hardly matters for the former,
whereby the interpolation across the narrow interstitial is
robust, there is a strong dependence for the latter. This means
that in order to interpolate across a bulky interstitial, more
information is needed than the values and first three radial
derivatives at its boundaries.

In density-functional calculations, one basic piece of
information is the total number of valence electrons. It is fixed
by the number of occupied bands (for metals, the occupied
part of the Brillouin zone) and the density must integrate
up to this number. Referring now to expression (90) and the
corresponding Figs. 5 and 6 as examples, the MT density is
trivial to integrate accurately, and subtracting this from the
number of valence electrons gives what the integral over the
interstitial of the interpolated density, should be; this is 〈�〉R
from Eqs. (12), (8), and (83). For Si, this number was 2.81
electrons in the dia interstitial.

An often used option in MTO calculations is to fill the
voids with E spheres whereby the interstitial becomes closely
packed [33]. This is what we did in the previous subsections to
make the diamond structure bcc. The additional information
provided herewith is the cubic-harmonic projections (11) at
the E spheres. For some structures, however, it takes numerous
small spheres to fill the voids; melting silicon is one example,
solid C60 another.

In such cases, it is more practical to evaluate the density
at a few selected points, rc, deep in the interstitial and
then constrain the interpolated density to those values. In
LCAO-type calculations the evaluation is via the multi-centre
expansion ψ(rc)�ψ(rc), which is possible for a few points,
but cumbersome for many.

An economic and general implementation of such extra
constraints (on top of those 4NRNL constraints given by
the matching at the hard spheres) amounts to computing the
structure matrix at merely one extra energy and then with
two different four-point meshes generating two sets of v&d
functions, a more localized set, �l(r), and a more extended
one, �e(r). If, for instance, we use expression (91) to generate
the five energies: ε5 < ε4 < ε3 < ε2 < ε1, then �l(r) and �e(r)
are the sets obtained from, respectively, points 5 to 2 and points
4 to 1. Any of the 4NRNL (see Sec.VI B) weighted averages:

�dRL(r) ≡ �e
dRL(r)αdRL + �l

dRL(r)(1 − αdRL), (92)

is seen to be a v-or-d function, and we now aim at determining
the weights, αdRL, of the extended v&d functions such that the
extra constraints are satisfied. Note that the number of extra
constraints, Nc, cannot exceed NRNL, because only one extra
USW set, e.g., ψRL(ε1,r), has been added in the expansion (4)
of ρ(r).

Let the extra constraints be qc(r), with c going from 1 to Nc,

and qc ≡ 〈qc|ρ〉 be the value of the cth constraint. As examples,
the integral of the density in the interstitial is obtained with
qc(r) ≡ 1 and the value at point rc is obtained with qc(r) ≡
δ(r − rc). The estimate of the cth additional constraint is now∑

dRL

〈qc|�dRL〉R(d)
RL =

∑
dRL

〈
qc

∣∣�e
dRL − �l

dRL

〉
R(d)

RLαdRL

+
∑
dRL

〈
qc

∣∣�l
dRL

〉
R(d)

RL,

as obtained by use of the interpolated density (8) and the v&d
functions (92). Equating this estimate to the true value, qc, of
the constraint, leads to the linear equations∑

dRL

(
qe

c,dRL − ql
c,dRL

)
αdRL = qc − ql

c, (93)

with c going from 1 to Nc, for the weights, αdRL. On the
right-hand side,

ql
c ≡

∑
dRL

ql
c,dRL

is the estimate of the constraint using localized density:

ρl(r) =
∑
dRL

�l
dRL(r)R(d)

RL,

while ql
c,dRL ≡ 〈qc|�l

dRL〉R(d)
RL on the left-hand side is its dRL

component. Similarly for qe
c,dRL. Since the number, 4NLNR, of

unknown weights exceeds the number, Nc, of extra constraints,
we avoid unphysical solutions of equations (93) by requiring
that the weights, αdRL, of the extended v&d functions be
small. Specifically, we minimize the sum of the square weights,∑

dRl α
2
dRL, subject to the constraints (93). This leads to the

4NRNL Lagrangian equations

∂

∂αd ′R′L′

∑
dRL

[
α2

dRL −
Nc∑
c=1

λc

(
qe

c,dRL − ql
c,dRL

)
αdRL

]
= 0,

for d = 1 to 4, R = 1 to NR, and L = 1 to NL(R), or
explicitly,

αdRL =
Nc∑
c=1

1

2
λc

(
qe

c,dRL − ql
c,dRL

)
, (94)

to be solved together with Eqs. (93) for the weights, αdRL,

and the Langrangian multipliers, λc. Insertion of (94) in
Eq. (93) yields the Nc linear equations for the Nc Langrangian
multipliers,∑

c′

1

2
λc′

∑
dRL

(
qe

c′,dRL − ql
c′,dRL

)(
qe

c,dRL − ql
c,dRL

)
= qc − ql

c, (95)

for c = 1 to Nc, which may be solved and inserted in Eq. (94)
to yield the weights.
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FIG. 8. Total densities plotted along the [111] line shown in the
inset across the dia interstitial for Si (top), ZnSe (middle), and CuBr
(bottom). This line crosses the BE’EA spheres from left to right,
i.e., the anion is to the left and the cation to the right. For each
material, the full red line shows the density calculated as ABEE’,
i.e., the interpolation was merely over the bcc interstitial, while in
the three other curves, the interpolation was across the dia interstitial
and constrained. The dotted magenta curve results from constraining
merely the integral over the interstitial. In the dot-dashed blue curve
also the densities at the center(s) of the void(s), i.e., the minima,
were constrained. In the dashed green curve, finally, also the density
between the voids, i.e., near the relative maximum, was constrained.
We used the energies εn = −4(4)(n−2)/3 Ry with n = 1 to 5, i.e., −16,

−10.1, −6.3, −4, and −2.5 Ry. The screening of the dia structure
matrix required NR = 87 sites and lmax = 4. See also Figs. 5, 6, and
7, as well as Sec. VII.

The Coulomb potential from the constrained v&d functions
(92) is of course given by the same weighted average of the
potentials ϕe

dRL(r) and ϕl
dRL(r), where the latter are those of the

charge densities �e
dRL(r) and �l

dRL(r), obtained as described
in Sec. IV B.

In Fig. 8, we demonstrate how well this works for the
valence electron densities in diamond-structured Si (top)
where NRNL = 4, and in the zinc-blende structured II-VI
and I-VII compounds, ZnSe (middle) and CuBr (bottom)
where NRNL = 8. For all three materials, we used the five
energies, ε5 to ε1, obtained with the same [58] exponential
mesh: εn = −4(4)(n−2)/3 Ry. Figure 8 shows densities along
the open [111] direction, but now all the way across the dia
interstitial, because with the A and B atoms different, the
density is not symmetric around any of their midpoints as in
Fig. 7. The aim is to interpolate the density across the dia
interstitial as in the bottom part of Fig. 5, i.e., without using
the v&d information computed at the empty sphere(s), but
obtaining also the densities below 0.01 electrons per (Bohr
radii)3 accurately by installing the following constraints: the
total number of electrons be 8 and 18 electrons per cell for
respectively Si and the compound semiconductors (Nc = 1),
also the density at the center(s) of the void(s) be correct
(Nc = 2 for Si and 3 for the compounds), and also the density

between the voids be correct (Nc = 3 and 4). This scheme is
seen to work very well, indeed.

VIII. CONCLUSIONS

We have carried through the program laid out in Intro-
duction and have derived a formalism for numerical 3D
interpolation across a hard-sphere interstitial from the cubic-
harmonic projections of the target function, ρ(r), and its first
three radial derivatives at the spheres. Whereas this knowledge
suffices for closely-packed structures, additional information
such as the integral of ρ(r) over the interstitial and/or the
values at specific points deep inside the interstitial is needed
for open structures. This was illustrated by application to a
constant function and to the valence charge densities in Si,
ZnSe, and CuBr, interpolated across either the bcc- or the
zinc-blende-structured interstitial, depending on whether or
not the voids were filled with empty spheres (Figs. 4–7).

Our interpolation is based on localized, structure-adapted
sets of spherical-waves (USWs), ψRL(εn,r), with four different
energies (Fig. 1). These sets are combined linearly into sets of
so-called value-and-derivative (v&d) functions, �dRL(r) with
d = 0 to 3, confined essentially to the Voronoi cells (top
row in Figs. 2 and 3). The formalism is expressed in terms
of energy-divided differences of the USWs and their slope
matrix with elements SRL,R′L′(εn) (Secs. II and III). For the bcc
structure, accurate results were obtained with an exponential
energy mesh spanned by ε4 = −80/t2 and ε1 = −12/t2,

where t is the average radius of touching spheres and gives the
scale of the structure. We expect this mesh to be satisfactory
for all closely-packed structures. The extra constraints needed
for open structures require the use of an extra energy and
we demonstrated that the exponential five-point mesh with
the same limits, ε5t

2 = −80 and ε1t
2 = −12, gives excellent

results for the zinc-blende structure (Fig. 8).
Solving Poisson’s equation for the interpolated function

requires the solutions ψRL(ε0≡0,r) of the Laplace equation as
well. The localized potentials (middle row in Figs. 2 and 3) for
the v&d functions are expressed in terms of energy-divided
differences one order higher than for the v&d functions. The
multipoles needed in order to make the localized potential
regular (bottom row in Figs. 2 and 3), are given by the same
differences of the slope matrix (Sec. IV). The latter also give
the integrals over the interstitial (Sec. V).

The slope matrix is screened through inversion of the ana-
lytical, bare structure matrix for a cluster with NR surrounding
sites. We found NR∼60 for closely packed structures and 2–3
times larger for open 3D structures like zinc blende (Sec. VI A).
For a given site R, only those L channels must be kept for
which the target function does not vanish due to symmetry.
If the local point symmetry is high, the number NL(R)
of L channels is considerably smaller than the maximum,
(1 + lmax)2 ∼ 25, for instance, 4–5 for tetrahedral symmetry.
The dimension of the matrix to be inverted is thus

∑NR

R NL(R).
For interpolating a function without symmetry this can be large
(103–104), but the process increases only linearly with the
number of sites. Whereas NR∼100 is needed in the screening
calculation, all subsequent matrix operations, i.e., those needed
to form v&d functions, potentials, and integrals, can in case
of space-group symmetry and for interpolating the charge
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density be performed with a symmetrized slope matrix in
which equivalent sites have been summed over so that NR

is merely the number of inequivalent sites. Hence NR = 2 for
the zinc-blende structure (Sec. VI B).

This method was developed for interpolating charge den-
sities and is currently used for density-functional FP-NMTO
calculations [41,46]. Since it is generally applicable, local, and
based on cubic harmonics, we expect it to find numerous uses.
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APPENDIX: ONE-CENTER CUBIC-HARMONIC
EXPANSIONS

1. RL projections of the v&d functions

The expressions derived in Sec. III for the short-ranged v&d
functions as linear combinations of USWs are particularly
useful for solving Poisson’s equation and for computing
integrals over the interstitial as was done in Secs. IV and V,
respectively. For other purposes, cubic-harmonic expansions
like (62) around single centers may be more practical. The
coefficients are the projections, P̂R′L′(r)�dRL(r), given in
Eq. (14) to third order in the distance from the spheres,
and beyond this, by the expressions derived below. These
higher-order terms are responsible for the sensitivity to the
energy mesh displayed in Fig. 7.

The expressions for P̂R′L′(r)�dRL(r) might be obtained by
projecting the USWs ψRL(εn,r) in the first Eq. (58) by means
of (16), but it is simpler to commute RL projection with taking
ε-divided differences. Like in (51), we thus start by taking the
ε-divided differences of the projection using the binomial rule
(50). In order that the result clearly exhibit the parts leading to
Eq. (14), we use u(ε,r) ≡ f (ε,r) − g(ε,r) instead of f (ε,r)
and expression (37) divided by r instead of (16). The result is

P̂(r)ψ1(r) = u1(r) + g1(r)S1,

P̂(r)ψ12(r) = u12(r) + g1(r)S12 + g12(r)S2,

P̂(r)ψ123(r) = u123(r) + g1(r)S123 + g12(r)S23
(A1)

+ g123(r)S3,

P̂(r)ψ1234(r) = u1234(r) + g1(r)S1234 + g12(r)S234

+ g123(r)S34 + g1234(r)S4.

The terms present in (A1) and not in Eqs. (51) are of order
higher than third in r − a.

The projections of the set of third-derivative functions (53)
are then

P̂(r)�3(r) = P̂(r)ψ123(r)D3,3 + P̂(r)ψ1234(r)D4,3

= − g12(r) + u123(r)D3,3

+ g123(r)[S3D3,3 + S34D4,3]

+ u1234(r)D4,3 + g1234(r)S4D4,3. (A2)

By construction, the coefficient to g1(r) vanishes and the
coefficient to g12(r) is

S23D3,3 + S234D4,3 = −1.

With Eqs. (44)–(49) in mind, we realize that the terms
after the diagonal term, −g12(r), in (A2) are smaller than
(r − a)3.

The projections of the set of first-derivative functions (58)
and (59) are

P̂(r)�1(r) = P̂(r)ψ123(r)D3,1 + P̂(r)ψ1234(r)D4,1

= g1(r) − g12(r)(ε1 − w) + u123(r)D3,1

+ g123(r)[S3D3,1 + S34D4,1]

+ u1234(r)D4,1 + g1234(r)S4D4,1, (A3)

where the coefficient to g1(r) is

S123D3,1 + S1234D4,1 = 1,

and that to g12(r) is

S23D3,1 + S234D4,1 = −(ε1 − w).

The first, diagonal g1(r) term gives the first derivative, and its
contribution to the third derivative is canceled by the second
term, −g12(r)(ε1 − w).

The projections of the set of second-derivative functions
(58)–(61) are

P̂(r)�2(r)a = − P̂(r)ψ12(r)

+ P̂(r)ψ123(r)D3,2a + P̂(r)ψ1234(r)D4,2a

= − u12(r) + u123(r)D3,2a

+ g123(r)[S34D4,2 + S3D3,2]a

+ u1234(r)D4,2a + g1234(r)S4D4,2a, (A4)

where the coefficients

−S12 + S123D3,2a + S1234D4,2a

and

−S2 + S23D3,2a + S234D4,2a

to, respectively, g1(r) and g12(r) vanish. From Eq. (45), it
follows that −u12(r) = a

r

(r−a)2

2! + o, which is the behavior of
P̂(r)�2(r)a specified by Eq. (14).

The projections of the set of value functions (58)–(61) are

P̂(r)ρ0(r)a

= P̂(r)ψ1(r) − P̂(r)ψ12(r)(ε1 − w)

+ P̂(r)ψ123(r)D3,0a + P̂(r)ψ1234(r)D4,0a

= u1(r) − u12(r)(ε1 − w) + g12(r)aw′

+ u123(r)D3,0a + g123(r)(S3D3,0 + S34D4,0)a

+ u1234(r)D4,0a − g1234(r)S4D4,0a. (A5)
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Here, the coefficient

S1 − S12(ε1 − w) + S123D3,0a + S1234D4,0a,

to g1(r) has vanished and the coefficient to g12(r) has worked
out to

−S2(ε1 − w) + S23D3,0a + S234D4,0a = aw′.

In (A5) then, the u1(r) term gives the value, and the parts of
this term, which behave as (r − a)2 and (r − a)3 are canceled
by, respectively, −u12(r)(ε1 − w) and g12(r)aw′.

The radial functions uRl(ε,r) and gRl(ε,r) may be gen-
erated by numerical integration outwards from the boundary
conditions: uRl(ε,aR) = 1, u′

Rl(ε,aR) = −1/aR, and (18). Al-
ternatively, these functions may be expressed in terms of the
spherical Neumann and Bessel functions using Eqs. (28) and
(21).

As said after Eq. (62), the one-center cubic-harmonics
expansions with the radial functions P̂R′L′(r)�dRL(r) are valid
at and outside the R′ sphere and inside the sphere touching
the nearest-neighbor sphere. Inside the R′ sphere, all v&d
functions vanish.

2. RL projections of the localized potentials from v&d functions

Here we shall derive the radial functions in the L′ expansion
(10) around the arbitrary site R′ of the localized potential
(75) from the v&d function, �dRL. Examples of the localized
and regular potentials were shown in respectively the middle
and bottom rows of Figs. 2 and 3, and were discussed in
Sec. IV B. The regular potentials look very smooth so that
their one-center expansions should converge well. However,
this smooth behavior is due to domination by the central point-
charge potential which gives long range, and thus complicates
the summation

∑
R P̂R′L′(r)ϕdRL(r)R(d)

RL for the projection of
V (r), and will in any case be modified (usually reduced) when
adding the potentials from the remaining charges in the system.
It is therefore better, at the end of the V (r)-calculation, to sum
up all multipole moments at the various sites, R′′, and then
expand their potentials around the site R′ in question, using the
well-known expression [Eq. (23), ε = 0] with its large radius
of convergence dR′′R′ . Below, we shall therefore only consider
the localized potential.

The dth energy-divided difference, ψ1..d+1;RL(r), of a
USW gives rise to the localized potential, φloc

1..d+1;RL(r), given
by Eq. (67). Its cubic-harmonic expansion (68) around the
arbitrary site R′ has coefficients, which are 8π times the
projections given by expressions (69).

Since the v&d functions are superpositions (58)–
(61) of energy-divided differences of USWs: �d (r) =∑

n ψ1..n(r)Dn,d, the potentials from �d (r) are the same

superpositions of the potentials, φloc
1..n(r), from ψ1..n(r):

ϕloc
d (r) =

∑
n

φloc
1..n(r)Dn,d = 8π

∑
n

ψ0...n(r)Dn,d ,

and similarly for the projections of the v&d functions and of
their potentials

P̂(r)�d (r) =
4∑

n=1

P̂(r)ψ1..n(r)Dn,d and

P̂(r)ϕloc
d (r) = 8π

4∑
n=1

P̂(r)ψ0...n(r)Dn,d .

Comparison of P̂(r)ψ1..n(r) in (A1) with P̂(r)ψ0...n(r) in (69)
now shows that expressions (A2)–(A5) for P̂(r)�d (r) hold also
for P̂(r)ϕloc

d (r)/8π, provided that (1) in all energy-divided-
difference functions of r and r—but not in the coefficients—the
subscripts 1..n are substituted by 0 . . . n and (2) the term
g0(r)

∑4
n=1 S0...nDn,d is added. (1) is as if Poisson’s equation

had been solved by taking the energy-divided differences
of only the radial functions, but not of the slope matrix,
and (2) is the Laplace term giving the multipole potential
when continued inside the R′ sphere [see Eq. (70)]. With the
localized potential from the value function as an example, we
get, starting from Eq. (A5)

1

8π
P̂(r)ϕloc

0 (r)a

= g0(r)
4∑

n=1

S0...nDn,0

+ u01(r) − u012(r)(ε1 − w) + g012(r)aw′

+ u0123(r)D3,0a + g0123(r)(S3D3,0 + S34D4,0)a

+ u01234(r)D4,0a − g01234(r)S4D4,0a. (A6)

The expansion (10) around R′ holds also inside the sphere,
i.e. for 0 � r � minR′′ (dR′′R′ − aR′), provided that we keep
only the Laplace term, g0(r)

∑
S0...nDn,d , there. Without

this term, the radial potential from the value function (A6)
increases smoothly from zero inside the sphere to u01(r) + o =
− a

r

(r−a)2

2! + o outside. Here, o is given by Eq. (13). The
analogous potential from the first derivative function, increases
outside as g01 + o = − 1

r

(r−a)3

3! + o, and those from the second
and third derivative functions as o.

These projections with L′ = 0 are used to construct the
overlapping MT potential [35,36] defining the third generation
LMTO [10,35,37] and NMTO [38–41] basis sets.
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