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We address the calculation of dynamical correlation functions for many fermion systems at zero temperature,
using the auxiliary-field quantum Monte Carlo method. The two-dimensional Hubbard hamiltonian is used as a
model system. Although most of the calculations performed here are for cases where the sign problem is absent,
the discussions are kept general for applications to physical problems when the sign problem does arise. We
study the use of twisted boundary conditions to improve the extrapolation of the results to the thermodynamic
limit. A strategy is proposed to drastically reduce finite size effects relying on a minimization among the twist
angles. This approach is demonstrated by computing the charge gap at half filling. We obtain accurate results
showing the scaling of the gap with the interaction strength U in two dimensions, connecting to the scaling of
the unrestricted Hartree-Fock method at small U and Bethe ansatz exact result in one dimension at large U. An
alternative algorithm is then proposed to compute dynamical Green functions and correlation functions which
explicitly varies the number of particles during the random walks in the manifold of Slater determinants. In dilute
systems, such as ultracold Fermi gases, this algorithm enables calculations with much more favorable complexity,

with computational cost proportional to basis size or the number of lattice sites.
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I. INTRODUCTION

The calculation of dynamical correlation functions of
many-body quantum systems is a great challenge in theoretical
condensed matter physics. Such functions provide a unique
opportunity to explore the manifold of the excited states of
a physical system. They often provide a much more direct
connection to experimental measurements, giving access to
crucial properties such as spectral functions, excitation spectra,
and charge and spin gaps, to name a few.

With the advent of modern computational resources, quan-
tum Monte Carlo (QMC) simulations [1-4] are becoming a
very powerful tool for computations in quantum many-particle
models and realistic systems. A vast array of total energy and
related quantities have been computed. Equal-time correlation
functions have also been studied fairly routinely by QMC,
especially in model systems. To estimate dynamical properties
from first principles using QMC has been more challenging.
Important results have been obtained for bosonic strongly
correlated systems [5—11]. Also excited states of low dimen-
sional bosonic systems have been recently studied [12,13]. For
fermionic systems, in special situations where the sign problem
is not present, accurate calculations have been performed
[14-17]. A few attempts have been also made [14,18-21] in
the more difficult situations where approximations are needed
to deal with the sign problem [1,22-25].

In this paper we study the calculation of imaginary-
time correlation functions and excited state information in
interacting fermion systems at zero temperature. We formulate
and discuss our methods in a general framework, keeping
in mind applications in many-fermion systems where a sign
problem arises and a constrained path approach is applied
within an open-ended imaginary-time projection. Most of our
illustrations and applications in the present paper, however,
will be in systems where the sign problem is absent and
exact results can be obtained. For these we use the two-
dimensional Hubbard hamiltonian with repulsive interaction
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at half filling. We employ the path-integral auxiliary-field
quantum Monte Carlo (AFQMC) framework, but including
a force-bias acceleration technique [26] in the Metropolis
sampling and a technique to control Monte Carlo variance
divergence [27].

In the first part of the paper, we implement a standard
approach [15,28] of computing non-equal-time Green func-
tions and correlation functions within AFQMC. Our focus
is on the extrapolation of the results to the thermodynamic
limit and testing the efficiency of different implementations in
general many-fermion systems. We show that it is convenient
to introduce twisted boundary conditions [29], and suggest
a way to exploit the boundary conditions that dramatically
reduces finite-size effects in the calculation of the charge
gap. Accurate results for the gap are obtained in the repulsive
Hubbard model even at weak interactions, which mimic many
real materials where the gap might be very small compared
to the energy scales, presenting challenges for numerical
calculations. With our approach, the charge gap is determined
even at U/t as small as 0.5, far beyond the reach of previous
unbiased many-body calculations.

In the second part, we propose an alternative algorithm
to compute dynamical Green functions, density-density and
spin-spin correlation functions which, in the dilute limit,
dramatically reduces the complexity without affecting the
numerical stability of the calculations or the accuracy of the re-
sults. The method relies on the explicit variation of the number
of particles during the random walk in the manifold of
Slater determinants. We show that, for example, the spectral
function for one given momentum can be calculated with a
computational complexity proportional to the number of lattice
sites, which enables simulations on very large lattices. This
method will have great advantages in systems such as atomic
Fermi gases, which can be modeled by the attractive Hubbard
model in the dilute limit [30], or real materials, where the
calculations typically require [25] a basis size much larger
than the number of electrons.
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The remainder of this paper is organized as follows. In
Sec. II we will briefly sketch the AFQMC methodology, and
then describe our implementation of a stable algorithm to
compute dynamical Green functions, both in the path-integral
(for sign-problem-free systems) and open-ended random walk
(for constrained path calculations when the sign problem is
present). In Sec. III, we propose a strategy to control finite-size
effects using twisted boundary conditions and present our
results for the charge gap in the repulsive Hubbard model at
half filling in the intermediate and weakly interacting regime.
In Sec. IV we describe our alternative approach which, in
the dilute limit, dramatically improves the complexity of the
calculations. We conclude in Sec. V.

II. AUXILIARY-FIELD QUANTUM MONTE
CARLO FORMALISM

We introduce the basic notations of the methodology using
the Hubbard hamiltonian which, as mentioned, will be our

model system:
A A a . 1I\/. 1
H=—t¢ Z Ci.acj,o‘+UZ ni'T_E I’li,i—z ,
()

(i.j).o=1.4
where the labels 7, j run over the sites of a square lattice with
N, = LyxL, = L7 sites, the symbol (,) denotes, as usual,

A

nearest neighbors, and 7; , = cjﬂé ;.0 18 the particle number
density operator on site i for the given spin direction o. The
Hubbard model [31,32] is one of the most widely studied
models in condensed matter physics. It is of fundamental
theoretical importance in the context of magnetism and cuprate
superconductors and is relevant to experiments using ultracold
fermionic atoms both in a trap (in the continuum) and in
optical lattices. Despite its simplicity, no analytical solutions
to this hamiltonian are known beyond the perturbative limit.
The model provides an excellent test ground for many-body
theories and computational approaches.

Denoting by |¢7) a Slater determinant with N spin-up and
N, spin-down particles, provided that |¢7) is not orthogonal
to the V,,-particle (N, = Ny + N|) ground state | W) of (1),
the following relation holds:

[Wo) o lim e FH—E |y, )
p—>+oo

where Ej is an estimate of the ground state energy. A combined
use of the Trotter-Suzuki breakup and Hubbard-Stratonovich
transformation provides the following approximation:

) A M
¢~PH=E) _ (p=0t(H-EoM (/ dxp(x)é(x)> N €))

where X = (x1,...,xy;) 1S an auxiliary field (often discrete
Ising fields on the lattice), B(x) is a one-particle propagator,
and §t = B/M is a sufficiently small time-step. The function
p(x) is a probability density.

In the repulsive Hubbard model, for example, the simplest
way to build the approximation in Eq. (3) is to use the following
discrete spin decomposition of the Hubbard-Stratonovich
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transformation:
N 1.
,57:Un,-,¢n,-,¢ — _bi . 4
e —E:i:l 5 (x), (€]

where

~ Ay i)
bi(x) = eV
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where cosh(y) = exp(6tU/2). Different forms of the de-
composition can affect the accuracy and efficiency of the
calculation [33,34], but will not affect the formalism discussed
in the rest of the paper.

A key point of the methodology is that the operator B(x)
appearing in Eq. (3) is the exponential of a one-body operator
dependent on the auxiliary-field configuration. We can write

Boy=exp| D Ainjor® ¢, e, ], 6)

io,jo'

where the explicit form of the N; x N;-matrix A(x) depends
on the choice of the Hubbard-Stratonovich transformation. For
the description of the formalism, it will turn out to be useful
to introduce the matrix

B(x) = exp (A(x)) . (N

Any operator B(x) operating on a Slater determinant |¢) results
in another Slater determinant |¢’), given in matrix form by

Bx)® = &', (8)

where ® = &; ® ¢, with ®, being the N;xN, matrix
containing the spin-o orbitals of the Slater determinant wave
function |¢), and similarly for |¢').

A. Static properties
The standard path-integral AFQMC method allows the
evaluation of ground state expectation values

Ao (Wl O 1Wy)
O)= — 9
) (Wo | Wo) ©)

by casting them in the following form:
(0) = /dXW(X)O(X). (10)
In Eq. (10), X = (x(1),...,x(M)) denotes a (discretized)

path in auxiliary-fields configurational space. Moreover, if we
introduce the two Slater determinants

(L] = (pr| B(M)) - - - B(x(1)) (11)
and
lpg) = B(x(I — 1))--- B(x(1)) |$7) (12)
we may write
M
WX) o (pr. | ¢r) [ ] px) (13)
i=1
and
(911 O |br)
oX)= ——. 14
X) (Pr | Pr) (14
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Whenever W(X) > 0 for each auxiliary-field configuration, as
it happens if U < 0 and Ny = N, or at half filling (N, = Nj)
when U > 0, the integral in (10) can be evaluated via Monte
Carlo. We use an efficient Metropolis sampling of the paths,
exploiting a force bias [2,26] that allows a high acceptance ratio
in the updates of the path in the auxiliary-field configuration
space, and eliminating the infinite variance problem [27] with
a bridge link approach.

When a sign problem is present, a constrained path [24] or
phase-free approximation [25] can be imposed to remove the
exponentially growing noise (with system size or the length
of the path ) and restore the same computational scaling as
in the sign-problem-free cases. The paths become open ended.
The primary difference is that (¢, | is now produced by back-
propagation (BP) [2], and a weight accompanies each path.
The details of the backpropagation for static properties have
been discussed elsewhere [35]. The modification to compute
dynamical properties is minimal beyond what is necessary for
the path-integral formalism, and we will comment on it as
needed below.

B. Dynamical properties

Dynamical correlation functions in imaginary time at zero
temperature have the general form

(Wol A e TH=E0) B |w)

= , 15
f@ Ty | Uy as)

where A and B can be destruction or creation operators, or
one-body operators such as the particle density or the spin
density or even more general operators.

Let us focus on the dynamical particles and holes Green
functions in imaginary time, i.e., the matrices

(Wol ¢, e I=E0 ¢ W)

(Yo | o)

GPig,jo(T) = (16)

and

(Wo| o], e T H=E0 &, W)

(Wo | Wo)

G jor(T) = a7

When the hamiltonian is spin independent as is the case in
the Hubbard model, all the terms with o # o’ identically
vanish. In order to keep the notations simple, we will work
for o =1 (the other case being analogous) and neglect the
spin index. Dealing with translationally invariant systems,
we will denote Gp'h,-(,,ja(r) by GP"(R,7) with R = (i—J).
The Fourier transforms, i.e., the dynamical Green functions
in momentum space, will be denoted by G?"(Q,1), where
0 = (04,0,) is a wave vector of the reciprocal lattice:
O, = 2L—” ny, withn, € {0, ...,L,—1}, and similarly for Q,.

The imaginary-time propagator between the operators A
and B can again be expressed using Eq. (3). This can be
thought of as inserting an extra segment to the path we keep:
anumber N; = t/8t of time-slices, say X(1), ... ,X(N;). The
static estimator Eq. (14) is replaced by a dynamical estimator
which (for example, in the case of the particles Green function)
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can be cast in the form (see Ref. [14])

(¢r1¢, BEN,))- -~ BE(1) &} lgr)
(¢ IBR(N,)) -+ B&(1) |pr)

To keep the notation simple, we will write B; instead of B(i(i ))
from now on.

In order to calculate Eq. (18) for a given configuration
of auxiliary fields, we use the manipulations presented in
Ref. [15]. We introduce the equal-time Green function matrix

gX,1) = (18)

A

(61| By, -+ Bu1 2,8 BBy -+ Bilgg)
(1| By, - Bi |gr)
and the time displaced one
G"(n,m)
(¢L|1§N,'-'§n+1 ¢, B, B @tgm...gl|¢R>

j
(1| By, -+ By |¢r)

GP(n,n)= (19)

(20)
The central result is provided by the following:
G’(n,m)=G(n,n — DG’ (n — 1,n —2)---GP(m + 1,m)
2y
and
gril -1 =g°a.n8;, (22)

where 5; = B(X(/)) is the matrix of Eq. (7). These identities are
straightforward to show using the commutators between the
propagator and the creation or annihilation operators [36,37].
Similar relations can be easily obtained for the holes

G"(nm) = G"(m + 1,m)G"(m +2,m +1)---G"(n,n — 1)
(23)
and
"l -1 =mB)'G" 1. (24)

The composite properties above allow one to build dynamical
Green functions from shorter segments. One can break the
original imaginary time interval into segments of arbitrary
length, say (n,n—k), which turns the matrix in Eq. (22) into the
product of the k matrices [3; inside the segment. Multiplying
the Green functions, which are physical properties, instead
of composing the 5; matrices, provides more accurate and nu-
merically stable results for the dynamical correlations even for
large values of the imaginary time. The length of the segments
can be chosen for the best balance between numerical stability
(requiring short segments) and computational time (less for
longer segments). The complexity of this approach scales
with the lattice size as J\/S3 , since it requires multiplications
of matrices of size N, x N;.

Although we have discussed the formalism in the path-
integral AFQMC framework, it can be easily modified for
a constrained path approach of open-ended imaginary time
projection, which becomes necessary when the sign problem
is present. This is sketched in Fig. 1. When backpropagation
begins, one records the initial population and their weights,
which play the role of {|¢r)}. As the random walk proceeds
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FIG. 1. The calculation of imaginary-time correlation func-
tions in an open-ended branching random walk: a sketch of the
implementation.

(imposing the constraint along the path as needed), one
keeps track of the sampled auxiliary fields and their path
history, which gives the path X = (x(1), ...,x(M)) for each

J

A(Q.0) =

1 . S
Here \IJnN’ are the eigenstates of the hamiltonian operator

. . . . 1
with AV, & 1 particles corresponding to the energies E,jlv’ ,

while p is the chemical potential. The spectral function
is proportional to the imaginary part of the time-ordered
Green function. It can be experimentally measured from
photoemission and inverse photoemission spectroscopy. The
spectral function provides insight into the nature of the single
particle spectral weight for a correlated system, and is a
central object in many-body theory. From the imaginary-time
correlation functions, a Fredholm integral equation has to be
solved to determine the spectral function; in practice,

+00 Wol o e~ TH-Epl g
/ e’”’A(Q,a))dwz( 0l € o %) (26)
P (Yo | Wo)
and
At t(A—Ey)a
" Wolcpe Co ¥
/ A0y = 00 ol%o o)
—o0 (Wo | Wo)

The charge gap A is typically inferred from the behavior of
the zero distance real-space Green function for large imaginary
time. In general,

A= 3(ep+ep), (28)
with
. log (GP"(R =0,1))
Eph = rEToo T
=EWN,x1)— EWN,), 29)

where E(N,) is the ground state energy for N particles, while
E(N, £1) correspond to the lowest energy eigenstates of
the NV, £ 1 systems having nonzero overlap with the state
obtained by adding/removing a particle in any momentum state
to the V,-particle ground state. At half filling, particle-hole

> (W el 1wo) 8 (e — (E
S 198 6.0 1) P8 (0 + (E2"™
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descendent walker at time Bgp = Mt beyond when BP
begins. We must choose Bgp such that Sgp — 7 is sufficiently
large to project out the ground state from (¢r|. That is,
the segment of the path from [ = M — N, to M is used to
produce (¢, |, using Eq. (11). The remainder, from x(1) to
X(N;), play the same role as in Eq. (18). Since the entire
auxiliary-field configurations (or, equivalently, segments of
the propagator matrices) have been recorded along the BP
path, we can proceed in the same way as described above to
obtain the dynamical Green functions. As in BP computation
of equal-time Green functions, the weight to be used in the
Monte Carlo estimator should be that of the descendent walker
at “future time” Bgp [35].

Once the imaginary-time Green functions are computed,
many correlation functions can be obtained. The charge gap
can be computed as we discuss below. Further, the Green
functions are related to the spectral function

ﬁfﬂ"'l _ E(_;\f[,))’ w> W (25)
I—E(j)\/”)), w < WU

(

symmetry [14] allows us to simplify the above definition:
log (G?(R =0,
A—— lim 0g (G”( T))—M

T—+00 T

(30)

Since the hamiltonian defined in Eq. (1) is particle-hole
symmetric, the chemical potential u is zero at half filling.
We could also compute the gap in momentum space:

. ( . 10g(Gp(Q,f))>
A=min|—- lim ——].
Q Tt—+00 T
Equation (31) provides an intuitive physical meaning of the
charge gap: A is related to the minimum energy among
the unoccupied states, which can be probed via inverse
photoemission spectroscopy (see, for example, Ref. [38] and
references therein), using a collimated beam of electrons
directed at the sample. (At half filling, particle-hole symmetry
makes this energy coincide with the minimum energy needed
to extract a photoelectron in a direct spectroscopy experiment
when the sample is illuminated via electromagnetic radiation.)
Computing the dynamical Green function in momentum
space is more convenient than in real space, at least for smaller
values of U/t. In this regime G”(R = 0,7) contains a linear
combination of exponentials while G?(Q,7) has a simpler
structure which can be handled more easily via analytic con-
tinuation methodologies. It is straightforward to see this in the
limiting case of U = 0, when G”(Q,7) is a single exponential:

Gy(Q, 1) =mp(Q)e ™9, (32)

where 7n9(Q) =1 —no(Q), with no(Q) being the Fermi
distribution. In contrast,

€29}

G/(R=0,7) = /Lv Z n0(Q) e ™D (33)
N Q

in which the minimum gap [¢(QF) =0 in this case, QF
belonging to the Fermi surface] provides the charge gap at
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sufficiently large v but many other exponentials can persist
for significant t values, especially as the system size grows.

In fact we could construct a linear combination to target in
order to optimize convergence and statistical accuracy in the
computation of the gap:

Ghm o Y GP(Q.1). (34)

QeB

One simple definition for the momentum domain in the sum-
mation could be B = {Q : [n(Q) — no(Q)| > const}, where
n(Q) =1—n(Q) is defined with respect to the momentum
distribution of the interacting system, n( Q). The value of const
can be tuned.

Even more generally, one could use any single particle
orbital |u) to create a quasiparticle excitation. The real and
momentum space shown above are simply two special cases.
In the formalism presented above, suitable linear combinations
of the dynamical Green functions would be required. This
possibility can be particularly useful in the alternative ap-
proach we propose in Sec. IV, where any single-particle orbital
(for example, a natural orbital obtained from the many-body
calculation) can be propagated along with the ground-state
random walker with little additional cost.

In Fig. 2 we show an example of the calculation of
imaginary-time Green functions at half filling with U/t = 0.5,
in both real space and momentum space. It is evident that
the two reach the same slope in logarithmic scale at large
imaginary time but that G?(Q, ) has a much simpler structure,
allowing us to accurately calculate the slope without the need
of reaching very large imaginary times. This is important since
the relative statistical uncertainty increases exponentially, as
shown in the inset.

The charge gap can also be estimated with an addi-
tion/removal technique, calculating directly ¢, and g, in

10° , , , , ,

T
momentum space ==t
real lattice w—t=—s

exponential fit =——— 3

107" .

exponential fit s—

1072

0 10 20 30 40
A

! ! ! ! !

0 5 10 15 20 25 30 35 40
T[1A]

FIG. 2. Dynamical Green functions in real and momentum space,
and the dependence of statistical errors on imaginary time. G(R,7)
was computed at R = 0,and G(Q,t) ata Q close to the Fermi surface.
The system was a 6x6 lattice at half filling with U/t = 0.5. In the
main figure, statistical errors are much smaller than symbol size. The
straight lines are exponential fits to the large imaginary time region
(note semilog scale). The inset shows the dependence of the relative
error bar on the imaginary time.
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Eq. (28). This approach has the advantage that it does not re-
quire the evaluation of dynamical correlation functions. It also
has several disadvantages. With three separate calculations (or
two, if at half filling) of N, and V,, & 1 particles, it involves the
difference between extensive quantities, which can give rise to
large statistical uncertainties for large systems. Second, while
not present in Hubbard-like models, the addition/removal of an
electron in a supercell in real solids tends to create a significant
additional finite-size effects which requires larger supercells
or better correction schemes in the many-body calculation.
Moreover, in the Hubbard model at half filling, the systems
with AV, £ 1 particles both have a sign problem, while the
(half-filled) V,, system does not [14].

We have performed addition/removal calculations of the
gap to help check the robustness of the imaginary-time Green
function approach. These calculations were performed with
the constrained path Monte Carlo (CPMC) method [2,24].
We used trial wave functions obtained from the generalized
Hartree-Fock (GHF), which were found to improve the results
near half filling [34,39]. For the (VV, » — 1) calculation, we use
the same GHF trial wave function as for half filling, simply
omitting the extra orbital in the minority-spin sector, while the
next virtual GHF orbital is used in the (N, + 1) case. This
was found, by comparison with exact diagonalization results,
to give exact results on the gap to within statistical errors.

In Fig. 3 the gaps computed from the imaginary-time Green
function and from addition/removal are compared for a variety
of systems ranging from 4x4 to 16x 16 periodic supercells.
Excellent agreement is seen between the two approaches. It
is also evident that the gap converges rather slowly with
supercell size. Especially at smaller values of U, very large
lattices are needed and a fit in 1/L is difficult and can be
unreliable. We discuss how to obtain more robust estimates at
the thermodynamic limit in the next section.

III. GAPS AT THE THERMODYNAMIC LIMIT

A. Approaches to reduce the finite-size effects

To access bulk properties it is crucial to be able to
extrapolate the results to the thermodynamic limit. We perform
simulations up to lattices containing 24 x24 sites, i.e., 576

012 F A
on| ...,___,_._,_..,. A
P S
0.06 + U=O'? ,,w,m-w_..:ynamical - B A
0.03 + g addition removal #--0-reei |
0.96 + ‘9 |
0.84 + U=4 ‘ |
072 F %.ﬁ.r@‘::@-}—_::mqnﬂ,_ |
0.6 | |

0 0.04 008 0.12 0.16 0.2 0.24 0.28
1/L

FIG. 3. Charge gap measured from the dynamical Green function
(filled squares) and from addition/removal (open circles), as a function
of the inverse linear size of the system, 1/L. The two panels are for two
different interaction strengths: U = 0.5 (upper) and U = 4 (lower).
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0.015 0.06 non interactin
0.05 gap with no 'rregioﬁ I R
A from UHF L]
Thermodynamic limit L] g
" I
L] : I . N
- 001 . . 1 0.004 I gap with cfrrecmm ———
" $ 0003 I ]
& 0.002 |
g 0.001
0
0.005 1 list of twists
FIG. 5. Finite-size effects in computing the gap, the use of twist

0.005 0.01 0.015
1/L

FIG. 4. Charge gap measured from UHF calculationsat U = 0.5,
as a function of 1/L. The straight line indicates the UHF gap value
at the thermodynamic limit, 0.0044272.

electrons, more than twice the largest lattice for which dynam-
ical calculations had been performed before. Nevertheless,
as shown in Fig. 3, it is still challenging to determine the
gap reliably, especially for small values when it is necessary
to resolve the existence of a gap. In order to shed light
into the behavior for 1/L — 0, we performed unrestricted
Hartree Fock (UHF) calculations systematically as a function
of lattice size. The gaps are obtained by the orbital energies in
a Koopman’s theorem type of approach for each supercell size.
The results are shown in Fig. 4. Note that most of the L values
in the data are beyond reach of many-body calculations in
supercells with present day computing power. The quantitative
(or even qualitative) accuracy of UHF aside, the results
illustrate the strong finite-size effects that must be overcome
in order to reach the thermodynamic limit accurately.

Our first step to reduce finite-size effects is to use twisted
boundary conditions with quasirandom sequences of twist pa-
rameters [34]. Formally, the introduction of a twist parameter
0 = (04,6,),0 < 0,y < 1 means that the algebra of creation
and destruction operators satisfy the new boundary conditions

AT 270, @T At

_ _ i2n, Al
Citpg =€ Ciyry =€ 7 ¢ (35)

for all sites i;x and § denote the unit vectors in the x
and y directions. This implies that the wave vectors are
Oy = 2T”(nx, y + 0y,y) or, equivalently, that we can replace
the original dispersion relation ¢(Q) with e(Q + 2T”@).

It is known [29] that performing averages of physical
quantities, like the ground state energy, with respect to the twist
parameter strongly reduces finite-size effects. The discretiza-
tion of the Fermi “sphere” due to the finite size is smeared
out by the presence of the twist parameters. A straightforward
application of twist averaging in our calculations yields the
results shown in the inset of Fig. 6 for U/t = 0.5. The error
bars are estimated as a combination of the uncertainty from the
analytic continuation for a given twist and the one coming from
the twist averaging (obtained with a jackknife estimator). From
the plot it is evident that the role of the boundary conditions is
important.

boundary conditions, and special twist values. The top panel shows
the noninteracting gap and the exact many-body gap as a function of
the twist parameters. The bottom panel shows the corrected gaps and
identifies the minimum. The system is a 14x 14 lattice at U/t = 0.5.

We can further improve convergence to the thermodynamic
limit by removing the one-body finite-size effect [40,41]. We
can correct the values of the computed gap for a given 6
by the finite-size noninteracting gap, to eliminate or reduce
the effects arising purely from the shift of the Fermi sphere
and the shell structure. The upper panel of Fig. 5 illustrates
this effect, where a strong correlation is evident between the
true many-body gap A(6) and the noninteracting gap A%(9).
The simple correction A(9) = A(0) + [A? — A%(H)], where
A = 0 is the noninteracting gap at the thermodynamic limit,
gives one order of magnitude reduction in the fluctuations of
the gap values. This is expected at small U. We find that,
although the dependence on the twist parameter is weaker
at, say, U = 4, the correlation is also present at larger U.
The gap result as a function of system size after the one-
body finite-size correction is shown in Fig. 6. We see that
the twist-averaged result [averaging A(0) over the twist 6, in
this case nearly 50 quasirandom twist parameters] has much
smaller error bars, because of the reduction in the fluctuations
between twist parameters mentioned above, and displays better
convergence and a quadratic scaling in 1/L.

We propose a third step for accelerating convergence, in-
volving a different way to use the twisted boundary conditions
than the more standard procedure above. After one-body
finite-size correction, we seek the minimum gap among all
the twist angles:

Amin = l’IleiH (A(Q)) . (36)

This allows one to better sample for the minimum in Eq. (31).
We stress that the difference between Eq. (36), averaging over
A(0), and even A(H) itself vanishes in the thermodynamic
limit. However, taking the minimum among the postcorrection
twist results enables access to estimations of the values of
Eq. (31) for a much larger set of points, which improves
the estimation of the minimum. As we see in Fig. 6, this
procedure leads to a further improvement over the TA results,
with the computed gap becoming essentially flat for L 2> 12.
Most of our results in the next section are obtained with
this procedure of finding the minimum corrected gap. The
statistical uncertainties on the minimum corrected gap are
estimated simply as the QMC errors; we have checked that
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FIG. 6. Reduction of the finite-size effects and convergence to
the thermodynamic limit in computing the charge gap. The charge
gap at U/t = 0.5 measured from the dynamical Green function is
shown as a function of 1/L, from a twist-averaging (TA) procedure
together with the one-body correction (empty circles) and taking
the minimum among the corrected gaps (filled squares). The dotted
line is a quadratic fit to the twist-averaged data. The straight line is the
estimation of the thermodynamic limit, obtained using the minimum
gap estimator performing a linear fit. The inset shows the same data,
together with the results from TA prior to the one-body correction also
shown (filled circles) with those from periodic boundary conditions
(PBC) (filled triangles), which contain large finite-size effects.

this estimation is reliable by performing, in some situations,
several independent calculations and computing the variance
of Amin~

We have examined the location of Ap;,. In the bottom
panel of Fig. 5 we have marked the twist angle which yielded
the minimum. We find that the corrected gap A() reaches
its minimum when the noninteracting gap is maximum, that
is around 6y, = (0,1/2) or symmetry-related points. This
observation holds for all the cases we have studied, including
a variety of lattice sizes L at multiple values of U (0.5, 1, and
4). We rationalize the observation as follows: when a particle
is added at half filling, the system accommodates it by creating
a spin wave. The value 6,,;, = (0,1/2) allows the maximum
wavelength for this excitation, thus allowing the minimum
energy. In the next section, we apply this special 6,,;, to obtain
the gap value in many other U values between 0.5 and 4. Of
course the particular value of 6, will depend on the system,
but any insight towards identifying its value or narrowing its
range will help reduce the computational cost.

B. Results on gaps and the spectral function
for the Hubbard model at half filling

In this section, we present our results of the charge gap in
the repulsive Hubbard model at half filling, systematically as a
function of the interaction, as well as the spectral function
at U = 4t. These calculations are similar to prior efforts
that exist to study such quantities, using both the Lanczos
method for small lattices [42,43] and QMC for larger lattices
[14,16,17]. Our calculations reach larger system sizes and

FIG. 7. Charge gap at U/t =1 vs the inverse (linear) system
size. The gases are measured from the dynamical Green function
with twist-averaging and the one-body correction (empty circles) and
with the minimum A ,;, (filled squares). The dotted line is a quadratic
fit to the twist-averaged data. The straight line is the estimation of the
thermodynamic limit, obtained using the minimum gap estimator.

apply the approaches discussed above to systematically reach
the thermodynamic limit.

In Fig. 6 we show the final results obtained for U = 0.5¢.
Lattice sizes up to 24 x24 were studied using multiple quasir-
andom twist angles. We find a charge gap of A = 0.00027(4)
at the thermodynamic limit. This very small value is clearly
impossible to determine using conventional calculations with
PBC or even twist-averaged boundary conditions (TABC).
That the gap value is small but nonzero is significant,
confirming that the ground state of the Hubbard model is
insulating at small finite U.

In Fig. 7 we show the results of the same calculation for
U/t = 1. Qualitatively the behavior is the same as for U =
0.5. The statistical uncertainties are larger, since U = 0.5 is so
small that the dynamical Green functions are very similar to
the ones of the noninteracting system, which makes the finite-
size correction in Eq. (36) especially effective in reducing
the statistical uncertainty. Our estimation of the charge gap at
U/t =1is A =0.0034(4).

We present results for U/t = 4 in Fig. 8. In this case, the
twist-averaged results display a nearly linear dependence on
1/L, consistent with results from a previous QMC study [16].
As in the other cases, our estimator from Eq. (36) becomes flat
also in this case. Our estimate of the charge gap at U/t = 4 is
A = 0.656(2).

Next, we map out a detailed A vs U curve by studying
a variety of interaction strengths. Having established the 6y,
value from the systematic searches at the U values studied
above, we now use the special twist value O, for each
additional system, computing the gap at a sufficiently large L.
We have verified in a few systems by calculations at multiple
L’s that convergence to the thermodynamic limit has been
reached. The results are shown in Fig. 9. We find that, at small

U, the gap behaves as A(U) = a exp (—ﬂ\/g), as predicted

by UHF [14], with renormalized parameters o and . We
find ¢ = 0.23(4) and B = 4.3(2), in contrast with the UHF
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FIG. 8. Charge gap at U/t = 4. Symbols and setup are the same
as in Fig. 7.

predictions o = 32 and B = 2. (The actual UHF results are
seen to, not surprisingly, severely overestimate the gap.) On
the other hand, at large U/¢, the gap appears to follow the
same behavior predicted in one dimension from the Bethe
ansatz [44]:

» Ji(w)
o[l +exp(wU/2)]’

U +00
AID(U)=3—2+4/ d 37
0
where Ji(w) is a Bessel function.

Finally, in Fig. 10 we show a calculation of the full spectral
function A(Q,w) defined in Eq. (25). The horizontal axis
shows Q along a path in the Brillouin zone, indicated by the
end points of the straight-line segments. The spectral function
was obtained from analytic continuation of the imaginary-time
Green functions, as discussed in Eqs. (26) and (27).

08 [ 001 V gaa® " ] 7
0.001 ; o 1 -
0.6 r J
0.0001 . -
< 04 08 1.2

04 r ) gmc estimation  ----{l---- |

one dimension

u® UHF
02} S R e |

= renormalized UHF

| |
|
0 ‘:""'“HI!. i
0 1 2 3 4 5 6

FIG. 9. Gap at half filling as a function of the interaction strength.
Symbols are obtained from AFQMC calculations. Statistical error
bars are shown but are smaller than symbol size. The (green) dashed
line corresponds to a fit of the QMC data with a mean-field form
allowing renormalized parameters. The (blue) dotted line is the actual
mean-field result from unrestricted Hartree-Fock. The (orange) line
at large U is the Bethe ansatz prediction for one dimension. The inset
shows a zoom of the main graph at small U.
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(0,0 () (m,0) (0,0)

FIG. 10. Color plot of the spectral function A(Q,w) as a function
of momentum Q (horizontal axis) along the principal directions
in the Brillouin zone and frequency w (vertical axis). The spectral
function has been obtained by performing an analytic continuation of
the calculated imaginary time Green functions in momentum space.
The system was a 16x 16 lattice at U/t = 4. The dotted line is the
noninteracting dispersion relation.

The analytic continuation has been performed using the
genetic inversion via falsification of theories (GIFT) method
[5]. As mentioned, the spectral function can be measured
experimentally via photoemission experiments, and provides
a map of the single particle states of the system. From the
plot, where the noninteracting spectral function A°(Q,w) =
8(w — e(Q)) is also shown, the effect of the interactions is
evident, with the opening of a gap at the Fermi surface, as
well as the broadening and renormalization of the dispersion
relation.

IV. ALTERNATIVE METHOD

In this section we propose an alternative method which
will enable faster computations of the Green functions in
a larger number of situations than the method of Sec. II B.
In particular, the alternative method allows us to calculate
single matrix elements of the Green function with a number of
operations scaling linearly with lattice sites (or basis size). In
systems such as a dilute Fermi gas and ab initio calculation of
realistic systems [2,25], the lattice or basis size is significantly
larger than the number of particles, N, > N, so that it is
advantageous to be able to calculate the Green functions
(and certain correlation functions) with computational cost
of O /\fpz) versus O(N?). Even if the calculation of the full
Green function matrix would still require the latter, generally
we are interested in in a subset of them, not all the elements.
Moreover, as we will show below, the method we are proposing
allows one to extend the calculation in a straightforward
way to two-body dynamical correlations without affecting the
complexity.

A. Particle excitations

We consider the estimator in Eq. (18) in a more general
sense:

(@L1¢, By, -+ By &l,1¢r)

~ = , (38)
(L | By, --- B1 | ¢r)

gvuX,1) =
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where |v) and |u) are single-particle orbitals, which can be
either position eigenstates |i},| j), momentum eigenstates | Q),
or even more general states such as natural orbitals.

Let us start from the \V,-particles Slater determinant

|pr) =2}, ---¢l 10, (39)

where &T, = {ilu) 6j creates a particle in the orbital |u).
It is convenient to assume that the orbitals [u1), ...,[uy,)
form an orthonormal set, which in practice is realized by,
for example, a modified Gram-Schmidt (GS) procedure. The
creation operator cT adds to |¢g) one particle in the orbital
|i), giving rise to a new (N, 4+ 1)-particle Slater determinant

Np+1 o
g ") = ¢l 1gg) - (40)
Written in orthonormal form
Np+1 AT A N
[¢r""") = ehel, -+ el 10) Dagaa @1)

where |fi) is the orbital |u) after projecting out the linear
dependence on {|u)}:

= M Z (e ) >’ “2)

| - ﬁ;wa 0) I |

with Dy, 11 = (fi |u). Now, if a propagator B is applied, we
have
A _at At
Blgn) =&y, -2y, 10) 43)
and
Bloy ™) =él el el 10) D (44)
R 1= %Ba%Bu " Chuy, Nyl

That is, each orbital is propagated by the one-particle prop-
agator B, so that both the N,- and the (N, + 1)-particle
Slater determinants remain in form as Slater determinants.
In orthonormal form

Blgr) = 16} ) D, (45)
with

Ipk) =&y, - &l 10}, (46)

where the orbitals u}), ..., |u jvp) form an orthonormal set and
D is the factor arising from the GS decomposition, and

Blox™") = lox

/\/ /
DDy Dy (4D
with

|¢M,+1 />

=&l loR) = chT ---éi,N 0), (48)
where, as before, |’ is the orbital |B) after projgcting out
the linear dependence on {|u’)}, and D}\/,,-H = (' |Bfi).

This procedure can be iterated for the product of B in
Eq. (38), propagating the single-particle orbitals and accu-
mulating the weights D’. As in regular AFQMC for static
observables, the GS reorthonormalization need not be applied
at every iteration, only with a frequency sufficient to ensure
numerical stability [24]. The evaluation of the Green function
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element requires the calculation of

: (¢c]e, 007"
X, 1) =D D _ 49
S D) = P PNt T @

Applying ¢, to the left, we can evaluate the numerator as
the overlap of two (N, + 1)-particle Slater determinants.
Equivalently,

(P18, el | o)

guX,7) = D), , Dy, | —t (50)
g Nt gL 1)
In explicit matrix representation, if we denote
(Luy) (Huy )
(2lu}) (2luy; )
3 3|
we=| O P b
(N ) (Nl )
and
(Ivy) (Low,)
2lvy) (2lvw,)
o, = | Glod o Bl )
<J\fs|v1) (Nsluw,)
for (¢l =(01¢, ---¢, , simple algebraic manipulations

allow us to obtaln the ratio on the right-hand side of Eq. (50),
the matrix element, as

/\/p

WY = D7 (vl (uy |) (DL PR | (53)
a,f=1

which can be evaluated with O(N; /\fj) operations for a given
pair of |2') and |v).

In Fig. 11 we show a comparison between the particle
Green function computed using the method discussed in

L w w w
°a o methodology of Sec. Il +---B:---2
nsn s new methodology +——e—
0.1 r e a i
Bog ]
= “a o
<} 0.01 | o, ]
O] =
°a
®q
0.001 | ]
o
0.0001 L L L L L L L
0 2 4 6 8 10 12 14 16

FIG. 11. Particle Green function G(Q,t) for a large lattice in
the repulsive Hubbard model: comparison between the alternative
methodology and that described in Sec. II B. A 12x 12 lattice with 72
spin-1 and 72 spin-|, particles is studied at U/t = 1.
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Sec. II B and the one computed with the present method. The
perfect agreement shows the robustness of both approaches. As
mentioned, the savings from the present method occur when a
small number of Green function elements are targeted. When
the whole Green function is needed, the approach becomes
more computationally expensive. Also, the advantage relies
on NV, < N, so that at half filling as in Fig. 11, for example,
there is no advantage over the previous method. On the other
hand, in the dilute limit the reduction in computational cost
[and potentially in memory requirement as well, since the
propagated determinants are of size O(N;N,,) vs O(N?) for
G] can be dramatic, such as in systems of cold atoms [26] and
especially with spin-orbit coupling present [45] which further
increases the basis size.

B. Hole excitations

Suppose now we wish to compute the estimator

(¢l el B, -+ By ¢,|¢r)

hy X, 1) = (54
' (6| By, -+ B1 | x)
We again consider ¢, acting on |¢g):
-/vp_ A
0" ) =2 lor) = 2,8l ---¢f 100, (55)

which is no longer a single Slater determinant, but a linear

combination of N » Slater determinants. However, because

these determinants all have the same structure, each containing

(N, — 1) orbitals taken from |¢g), their propagation by a

propagator B can be handled together in a convenient way.
We rewrite Eq. (55) as

lox” ") = ezl el 10), (56)

where | 1) is the projection of |¢) onto the linear space spanned
by lur), ... luy,):

NP
) = (1l ug) | ug) . (57)

a=1

The propagation of |¢g) in the denominator in Eq. (54) is
identical to that in the previous section, Sec. IV A. For the nu-
merator, it follows from simple algebraic manipulations [37]:

Bl aNe—1\ _ A at N
Blop" )= €11 B CBu, 10). (58)

The orbital |fi) evolves under the action of (B’I)T, since it
corresponds to a destruction operator.

After reorthonormalization of §|¢R) as in Eqs (45)
and (46), we can rewrite

A1 N,—1 Np—171
Blgp" ) =lox" ) D, (59)
with
pmIN A ey oA At gt
02 ") = el = ¢l el 100 (60)
where |ji’) is the projection of the orbital (B~Ht | ) onto the

linear space of {|u’)}, as in Eq. (57). The evaluation of the hole
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Green function in Eq. (54) now becomes

(b eldn’™") (@l )
(oL l9k) N (L k) '

Simple algebraic manipulations in the matrix representation
of Egs. (51) and (52) allow us to express the matrix element
on the right as

hy(X,7) =

(61)

M}

Zulu

a,f=1

(uly V) (D) D), - (62)

C. Two-body correlation functions

Suppose we wish to compute a density-density or a spin-
spin correlation function. In both cases, we have to compute

n(X.7) = (TARPY ?N, {31 ﬁi,o'|¢R>7 63)
(¢ | By, -+ B1 |¢r)

where 71, , = cjacl , s the fermion density operator. In this
case, we will write explicitly the spin index.

We will exploit the following exact property:

. eﬁm — 1
Ay = : (64)
e—1

which can be easily proved by expanding the exponential
operator and noting ﬁ = fi; . Thus the numerator in Eq. (63)
can be viewed as propagatlng two Slater determinants.

IF19R) = &, 1)+l 11 Ehyty oy, 1) 10), the identity
in Eq. (64) provides the following (for example, in the spin-up
case):

|¢>R(l)) (3

fip|fr) = 65)
where

/ey oAt AT of
|¢R(l)) - clle""'-Tul,T) tet Cleﬁ"'TMN‘r T> ‘Ul l«) C‘UN ) |O> (66)

The application of the one-body propagator et on the orbitals
can be carried out straightforwardly. Now, the estimator
Eq. (63) can be broken into two pieces:

1
nX,7) = ——mX,1) = mX.7)], (67)

which can be conveniently expressed as

(DLl o B 19K (Dol B |¢R0))
(1B 19x() (oo |B |$r)

n(X,7) = (68)

and

(DA B |pr)
(1B | ¢r)

Both n;(X,7) and n,(X,7) can be readily calculated. As
usual, GS decomposition can be applied periodically in the
propagation of |¢g) and |¢}) to ensure numerical stability.

n(X,7) = (69)
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V. CONCLUSIONS

We study the calculation of dynamical correlation functions
in imaginary time using auxiliary-field quantum Monte Carlo.
The use of twisted-boundary conditions is systematically
explored. One-body finite-size corrections help improve the
convergence to the thermodynamic limit. We study the role
of special twists which correspond to the minimum corrected
gap, and show that this dramatically reduces finite-size effects.
In the repulsive Hubbard model at half filling, the charge gaps
and spectral functions are computed for different interaction
strengths. Much higher accuracy was reached than previously
possible, especially for small gap values. We propose an
alternative approach to compute the imaginary-time Green
functions by explicitly varying the number of particles in
the QMC random walk. This method has several advantages,

PHYSICAL REVIEW B 94, 085140 (2016)

including a much more favorable computational cost in
“dilute” systems where the size of the basis is significantly
larger than the number of fermions (from cubic to linear in
lattice/basis size).
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