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Standard model of the rare earths analyzed from the Hubbard I approximation
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In this work we examine critically the electronic structure of the rare-earth elements by use of the so-called
Hubbard I approximation. From the theoretical side all measured features of both occupied and unoccupied
states are reproduced, without significant deviations between observations and theory. We also examine cohesive
properties like the equilibrium volume and bulk modulus, where we find, in general, a good agreement between
theory and measurements. In addition, we have reproduced the spin and orbital moments of these elements as they
are reflected from measurements of the saturation moment. We have also employed the Hubbard I approximation
to extract the interatomic exchange parameters of an effective spin Hamiltonian for the heavy rare earths. We
show that the Hubbard I approximation gives results which are consistent with calculations where 4f electrons
are treated as core states for Gd. The latter approach was also used to address the series of the heavy/late rare
earths. Via Monte Carlo simulations we obtained ordering temperatures which reproduce measurements within
about 20%. We have further illustrated the accuracy of these exchange parameters by comparing measured and
calculated magnetic configurations for the heavy rare earths and the magnon dispersion for Gd. The Hubbard I
approximation is compared to other theories of the electronic structure, and we argue that it is superior. We discuss
the relevance of our results in general and how this makes it possible to treat the electronic structure of materials
containing rare-earth elements, such as permanent magnets, magnetostrictive compounds, photovoltaics, optical
fibers, topological insulators, and molecular magnets.
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I. INTRODUCTION

Rare-earth (RE) elements are found in a wide range
of functional materials with diverse applications. Prominent
examples may be found in the Nd2Fe14B compound, with
its outstanding properties as a permanent magnet [1], and
the so-called Terfenol materials, TbxDy1−xFe2, that have
excellent magnetostrictive properties [2–5] and are used in,
e.g., applications involving transducers. Multiferroism, the
coupling between ferroelectric and ferromagnetic degrees
of freedom often involves rare-earth-based compounds; an
example is TbMnO3 [6]. Furthermore, rare-earth impurities
in semiconductors are frequently used in optical fibers for
signal enhancement [7], in high-power fiber lasers [8], as
well as in photovoltaic applications [9]. Examples can also
be found of rare-earth-containing compounds with topolog-
ically protected surface states, e.g., in the mixed valence
semiconductor SmB6 [10]. Moreover, there is recent interest
in rare-earth elements in molecular magnets, e.g., in so-called
phthalocyanine double deckers [11]. The examples mentioned
above all represent wide research fields with different foci,
ranging from applied technology to more fundamental aspects
of the electronic structure of solids.

In all the materials listed above, the 4f shell of the rare-
earth element plays an active role in determining the material’s
unique properties. Hence, it is of fundamental importance to
establish a sound and practical theory of this 4f shell, not

only for the materials listed above, but for the entire class of
rare-earth-based compounds. The standard model of the rare
earths does indeed provide such a model [12,13], and it has
been extremely successful in describing the properties of the
rare-earth elements and their compounds. The standard model
of the rare earths identifies the 4f shell as atomiclike, with
vanishingly small wave-function overlap between neighboring
atoms of the crystal lattice (the only exception here is
Ce, which sometimes forms a narrow band [14]), with the
consequence that band dispersion is absent. Then the main
interaction of the 4f shell with the lattice is a crystal field
splitting of a Russel-Saunders coupled J manifold and the
establishment of the valency (most isolated rare-earth atoms
are divalent, whereas most elements are trivalent in the
condensed phase). Interesting intermediate valence states are
well known in compounds like, e.g., SmS, TmTe, and Yb under
pressure [12,13]. The rare earths display such robust behavior
of the physical and chemical properties, among both elements
and compounds, that the standard model is expected to apply
equally well for them all. This fortunate situation allows for
testing electronic structure theories for subgroups of rare-earth
systems, while allowing for conclusions of the applicability of
any theory over wide classes of rare-earth-based materials.

Even though the standard model is well established in
analyzing experimental data of rare-earth-based materials
[15–17], ab initio-based electronic structure theory has strug-
gled in making a solid connection to it. It is well known that
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typical parametrizations of the exchange-correlation potential
of density functional theory [18,19] are inadequate. For this
reason theories like LDA + U [20], self-interaction correction
(SIC) [21], orbital polarization [22], and a treatment of the 4f

shell as corelike [23] have all been explored. Each of these
theories describes some properties of the material at hand,
sometimes with exceptional accuracy [23], but a complete set
of relevant properties of a rare-earth compound have never
been reproduced with one single method. For instance, none
of the methods listed above reproduces the valence band
spectrum of the materials they have been applied to, and
instead of reproducing measured multiplet features, they all
result in more or less narrow energy bands. In addition,
most of these methods have had difficulties in reproducing
magnetic properties that are expected from a Russel-Saunders
ground state. The development of the Hubbard I approximation
(HIA) [24] to treat the 4f shell of rare earths is the
focus of this investigation, and although it has been used
in the past to calculate spectroscopic properties [25,26], we
examine here its capability to describe all salient aspects of
rare-earth materials. Hence, our study involves the cohesive
properties, as evidenced by the equilibrium volume, bulk
modulus, and structural stabilities, as well as the magnetic
properties, as revealed by the spin moments, orbital moments,
and interatomic exchange parameters. The latter have also
been compared with results obtained by treating the 4f

electrons as corelike, which were, in turn, used to calculate
ordering temperatures and magnon spectra and to investigate
the stability of the ferromagnetic state. Finally, we used the
Hubbard I approximation to address the spectroscopic data
of the valence band (both occupied and unoccupied states).
We reproduce with good accuracy a wide range of reported
properties of the most important testing ground of rare-earth
materials, namely the elements. Based on our results we argue
that the HIA can be the basis of future investigations addressing
rare-earth-based materials.

II. METHOD

The [spd] electrons in the lanthanides are truly itinerant
electrons and are well described by Kohn-Sham density func-
tional theory (KS-DFT) in either the local density approxima-
tion (LDA) or the generalized gradient approximation (GGA).
On the contrary, the 4f electrons are very localized and
cannot be described by approximated exchange-correlation
functionals. In this article we use two methods to tackle
this problem. We mainly use the Hubbard I approximation,
which combines the atomic multiplets of the 4f electrons
with an LDA/GGA description of the itinerant conduction
electrons. This method is explained in Sec. II A and is
used for an improved description of the cohesive properties,
for the structural stabilities, for the ground-state magnetic
properties, and for the spectral properties. The exchange
parameters Jij are calculated by means of the magnetic
force theorem [27,28], which can be easily combined with
the Hubbard I approximation. However, this approach also
involves a few technical ambiguities and eventually additional
parameters (see below). Therefore, we prefer to address the
exchange parameters by treating the 4f electrons as core states
within the Kohn-Sham formalism (see Sec. II B). Naturally, we

TABLE I. Investigated properties and employed methods.

Properties Quantities Method

Cohesive Volume, bulk modulus HIA
Structural stability HIA

Magnetic Magnetic moments HIA
Exchange parameters f in core, HIA�

Ordering temperature

�

MFA, MC�

Fourier transforms

�

ASD�

Magnon spectra

�

ASD
Spectral Photoemission spectra HIA

compare this approach to the HIA. Notice that the underlying
assumptions behind the 4f -as-core approach and the Hubbard
I approximation are the same, i.e., the lack of hybridization
between the 4f states at a given site and the rest of the
valence electrons, including 4f states at other sites. In a sense,
treating the 4f electrons as core states can be seen as a poor
man’s version of the Hubbard I approximation. The exchange
parameters were then used to calculate measurable quantities
as the magnon spectra and the ordering temperatures (TN/C’s)
using atomistic spin dynamics (ASD) (Sec. II C) and Monte
Carlo (MC) simulations combined with the cumulant crossing
method (CCM). An overview of the physical quantities we are
going to investigate, as well as the method used to obtain them,
are reported in Table I.

A. Hubbard I approximation

The main idea of the Hubbard I approximation is to
combine the many-body structure of the 4f states, given by
the atomic multiplets, with the broad Kohn-Sham bands of
the delocalized valence electrons. This is done in the typical
framework of the combination of DFT with the dynamical
mean-field theory (DMFT), i.e., by using the DFT + DMFT
Hamiltonian [24,29]. The latter is obtained in two steps. First,
the DFT Hamiltonian is projected onto the 4f orbitals (or
more in general on those orbitals not correctly described in
LDA/GGA). This projection results in a local Hamiltonian
Ĥ loc

LDA. Second, a Hubbard interaction term U is added
explicitly to Ĥ loc

LDA to describe the strong on-site Coulomb
interaction between the 4f electrons. The combined local
Hamiltonian reads

Ĥ = Ĥ loc
LDA − ĤDC

+ 1

2

∑
R

∑
ξ1,ξ2,ξ3,ξ4

Uξ1,ξ2,ξ3,ξ4
ĉ
†
R,ξ1

ĉ
†
R,ξ2

ĉR,ξ4
ĉR,ξ3

, (1)

where R are Bravais lattice site vectors and ĤDC is the so-called
double-counting (DC) term. This term should remove from
Ĥ loc

LDA those contributions that are due to U and are incorrectly
described in LDA/GGA. The orbital index ξ labels the subset
of the “correlated orbitals” and in our case corresponds to
atomic quantum numbers n = 4, l = 3, m, and σ .

The effective Hubbard model defined by Eq. (1) can be
solved by means of DMFT [29], i.e., through a mapping
onto a single impurity Anderson model, under the condition
of conserving the local Green’s function. The bare Green’s
function of the correlated orbitals ξ for the effective impurity
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model is

Ĝ0
imp(iωn) = 1

(iωn + μ)1̂ − Ĥ loc
LDA − �̂(iωn)

, (2)

where we have also introduced the fermionic Matsubara
frequencies ωn. For sake of simplicity, μ contains the chemical
potential and the double-counting correction. �(iωn) is instead
the hybridization function between the 4f orbitals and the
local environment around them. The Dyson equation gives the
local Green’s function in the impurity model,

Ĝimp(iωn) = 1

Ĝ0
imp(iωn)−1 − �̂imp(iωn)

, (3)

where �̂imp(iωn) is the self-energy function. To complete the
mapping procedure, the hybridization function �̂(iωn) for
a resulting self-energy �̂(iωn) should be chosen such that
Ĝimp(iωn) reproduces the local Green’s function at a single site
in the Hubbard model ĜRR(iωn). In DMFT, one approximates
the lattice self-energy as

�̂RR′ (iωm) = δRR′�̂imp(iωm). (4)

The self-energy is therefore local, or in other words k

independent.
The effective impurity model arising in DMFT can be

solved by various techniques [29]. In HIA a solution of the
effective impurity model is obtained by neglecting the coupling
between the bath and the impurity, i.e., the hybridization in
Eq. (2). This boils down to approximating the self-energy in the
impurity problem [Eq. (4)] by the atomic self-energy �̂at(iωm),
which still retains the proper multiconfigurational description.
For the lanthanides this is a meaningful approximation, since
the 4f orbitals are chemically almost inert and are very
much atomiclike. As we mentioned above, this approach is
reminiscent of treating the 4f electrons as corelike states, as
both approaches are based on the assumption of negligible
hybridization of the 4f electrons. However, in HIA the 4f

states are real valence electrons, possessing a proper multiplet
spectrum, and can therefore be used in a much more flexible
way. Although the self-energy is atomiclike, the feedback
effect generated when the self-energy is taken back into the lat-
tice through Eq. (4) leads to some (small) hybridization effects.
Once the self-energy has been determined, the computational
cycle can be closed by adjusting the chemical potential and
determining the full lattice Green’s function ĜRR′ (iωn). This
can be used to update the electron density and create a new
ĤLDA in Eq. (1). This is the so-called charge self-consistent
cycle. When both the electron density and the local self-energy
have been converged, the most important physical properties
can be obtained through the lattice Green’s function. The
spectral function is calculated as

ρ(ω) = − 1

π
Im[G(ω + iδ)] for δ → +0. (5)

In this study we use the DFT + DMFT approach and the
HIA as implemented in the full-potential linear muffin-tin
orbital (FP-LMTO) code RSPT [30–32]. The construction of
the correlated orbitals is based on the muffin-tin heads and
is described extensively in Ref. [33]. The total energies have
been evaluated by following the approach of Ref. [34].

B. DFT with 4 f -as-core electrons for exchange parameters

Most of the results concerning the exchange parameters Jij

have been obtained by using the expression for the exchange
parameters of the Heisenberg model derived in Ref. [27]. In
these simulations the 4f electrons were treated as core ones.
This is justified by the fact that these states are to a large
extent chemically inert due to their very localized nature, and
the Fermi surface of the two treatments is expected to be
similar. In this way the orbitals are still not described correctly
by the approximate exchange-correlation functionals, but at
least they do not hybridize with the orbitals, centered at
the neighboring atoms. Therefore, they do not influence the
bonding nor spuriously contribute with the direct exchange,
which appears due to the overestimation of the wave functions
extension (see, e.g., Ref. [35]). There are a few technical
reasons why this approach is preferable to the direct use of the
expression for the exchange parameters derived in Ref. [27]
in the HIA. These issues will be discussed more in detail in
Sec. III B.

C. Atomistic spin dynamics and Monte Carlo

The calculated exchange parameters were used as an input
for the ASD simulations. The formalism is described in
Ref. [36] and is implemented in the UPPASD package [37].
Within this approach the motion of the magnetic moments is
described semiclassically. The spins are treated as classical
vectors, exposed to different types of magnetic interactions,
which have quantum origin. In our study we have employed a
spin Hamiltonian,

H = −
∑
i �=j

Jij ei · ej + K
∑

i

(ei · eK )2, (6)

where (i,j ) are atomic indices, ei is the unit vector along
the direction of the atomic spin moment at the site i, Jij

is Heisenberg exchange coupling parameter, and K is the
strength of the anisotropy field pointing along the direction
of eK . The dynamics of the atomic spins at finite temperature
is governed by Langevin dynamics and is described in the
Landau-Lifshitz-Gilbert (LLG) equation, which reads

∂si

∂t
= − γ

1 + α2
i

si × [Bi + bi(t)]

+ − γ αi

si

(
1 + α2

i

) si × {si × [Bi + bi(t)]}, (7)

where si = siei is the spin moment vector at the site i, γ

is the gyromagnetic ratio, and αi denotes a dimensionless
site-dependent damping parameter, which gives rise to the
energy dissipation and eventually brings the system to a
thermal equilibrium. The effective field that the spins are
exposed to, consists of an intrinsic field (Bi = −∂H/∂si) and
a stochastic magnetic Gaussian-shaped field bi . The latter one
is introduced to mimic the effects of thermal fluctuations and
is directly related to the αi parameter. Once Eq. (7) is solved,
the time evolution of every spin moment [si(t)] is known.
This makes it possible to evaluate any dynamical property of
the system, such as the spin wave excitation spectrum. More
information about the dispersion relation calculation can be
found in Refs. [37,38].
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III. COMPUTATIONAL DETAILS

A. Cohesive properties, structural stabilities, and ground-state
magnetic moments and photoemission spectra

The cohesive properties, the structural stabilities, the
ground-state magnetic moments, and the spectral functions
were calculated using the Hubbard I approximation as imple-
mented in RSPT [30]. The FP-LMTO basis was constructed as
described in the following. The 5s and 5p states were included
as semicore states with two spherical Hankel functions at 0.3
and −2.3 Ry. The linearization energy, at which the radial
Koelling-Harmon scalar relativistic equation was solved, was
set to the center of the band. The completeness of the basis
was found to significantly increase by including also the 5f

basis functions (with the same parameters as 5s and 5p). The
valence electrons were described with 6s, 6p, 5d, and 4f

basis functions. The 6s and 6p states were described with three
spherical Hankel functions at 0.3, −2.3, and −1.5 Ry and the
linearization energy was chosen such that the functions are
orthonormalized to the 5s and 5p basis functions. The 5d and
4f states were described with two spherical Hankel functions
at 0.3 and −2.3 Ry. The linearization energy of the 4f was set
to the center of the band. For the divalent elements, it was found
to be important to set the linearization energy of the 5d also
to the center of the band. The spin-orbit coupling (SOC) was
taken into account in a perturbative way [30]. Spin polarization
was only taken into account for the magnetic properties, as in
fact HIA is capable of describing the proper paramagnetic
phase of a material [29]. The exchange-correlation functional
was treated in both LDA [39] and GGA [39,40].

The ground-state properties were determined by assum-
ing the experimental lattice structure, except for the dhcp
structures, which were approximated by fcc. Thus, Ba was
calculated in bcc structure, Ce to Pm in the fcc structure, Sm
in the Sm structure (9R), Eu in bcc structure, Gd to Tm and
Lu in the hcp structure, and Yb in the fcc structure. For hcp
structures we assumed the experimental c/a ratio. Especially
for the bulk modulus it was found to be important to use a
large number of k points. The reciprocal space was sampled
with about 10 000 k points in the full Brillouin zone for each
structure.

The U matrix in Eq. (1) was constructed from the Slater
parameters F 0, F 2, F 4, and F 6 [29]. F 0, which corresponds
to the Hubbard U , was treated as a parameter and fixed at a
value of U = 7 eV throughout the whole series. This choice
is based on calculated values found in the literature [41–43],
as well as on the agreement between previous calculations
and experimental spectra [25,26]. Other choices of U are,
of course, also possible, such as calculated values obtained
with cLDA, cRPA, or linear response methods. However, this
involves some additional technicalities, such as renormalizing
the Kohn-Sham Hamiltonian [44] and having the same basis
for the correlated orbitals. In Ref. [45] is has been argued that
the Hubbard U in the HIA should be decreased compared
to the U in full DMFT for the light actinide dioxides to
mimic the hybridization. However, for the lanthanides, the
hybridization is at least one order of magnitude smaller than
for the light actinide dioxides, so we predict the discrepancy
to be negligible. The other Slater parameters were directly
calculated at experimental volume and then screened by an

TABLE II. Calculated Hund’s J ’s for the lanthanides.

Z Name J (eV) Z Name J (eV)

57 La 0.75 65 Tb 1.08
58 Ce 0.79 66 Dy 1.11
59 Pr 0.84 67 Ho 1.15
60 Nd 0.89 68 Er 1.23
61 Pm 0.93 69 Tm 1.21
62 Sm 0.97 70 Yb 1.16
63 Eu 0.91 71 Lu 1.27
64 Gd 1.05

empirical factor [31,46]: F 2 → 0.92F 2 and F 4 → 0.97F 4.
The correction over the values obtained directly from the KS
wave functions is tiny, but this small change is noticeable in
the spectroscopic data. The parameters were found to depend
only slightly (meV) on the exchange-correlation functional
(LDA/GGA) or on the various double-counting schemes. From
the Slater parameters, we can evaluate the Hund’s J , whose
values are reported in Table II. A slightly increasing J is
found across the series, starting from J ≈ 0.5 eV for Ba to
J ≈ 1.3 eV for Lu, as can be expected from Slater’s rule [47].
This increase reflects the contraction of the radial part of the
f wave functions due to the increasing core charge, which
results in an increasing importance of the electron-electron
repulsion. We tested the influence of changing U or J on the
volume and bulk modulus for Nd and Tm. The effect on these
materials is rather small; a change of about 30% in one of the
parameters results in a difference in volume of about 0.3 Å3

and a difference in bulk modulus of about 1 GPa.
The double-counting correction ĤDC in Eq. (1) was chosen

as in the fully localized limit, but replacing the occupation N

of the 4f shell with the closest integer number Nat, in the spirit
of Ref. [42]. This results in a total energy correction:

EDC = 1

2
UNat(Nat − 1) − J

Nat

2

(
Nat

2
− 1

)
. (8)

This choice of double counting, which is unique to HIA,
should be accompanied by evaluating the Galitskii-Migdal
contribution to the total energies [34] directly into the
atomic problem. Because in our implementation of HIA this
contribution is instead evaluated in the global LDA basis [32],
the total energy correction in Eq. (8) should be renormalized
to take into account the contribution of the hybridization. At
first order, this can be simply done by replacing the factors
NatNat in Eq. (8) with NNat. A more elaborate explanation of
this correction can be found in Ref. [48].

For the magnetic properties, the double-counting issue is
much more complicated, as recently outlined in Ref. [49].
When combining spin-polarized DFT with HIA (or DMFT in
general), ĤDC should correct for the f -f exchange already
taken into account in the DFT part and again in U . However,
it should not correct for the f -d exchange, since this is not
taken into account for by the Hubbard U . The problem is
that one cannot disentangle the two, and therefore any choice
becomes an unjustified guess. To avoid this problem, we prefer
to obtain the magnetic properties by applying HIA to non-
spin-polarized DFT after a small field has been applied to
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break the spin symmetry. This results in a local Hamiltonian
possessing a tiny polarization, which is enough to lead to a fully
spin-polarized self-energy. Given that the ĤLDA contains only
the (vanishing) spin polarization due to the tiny external field,
the double-counting correction has to be non-spin-polarized.
This is obtained by taking the average of ĤDC over both spin
channels. The correction to average can be again constructed
through the fully localized limit [29].

For calculating the spectra the double-counting correction
was chosen such that the number of f electrons is correct and
that the position of the first occupied (or unoccupied) peak is
aligned to the corresponding experimental peak in the direct (or
inverse) photoemission spectrum. This choice makes it easy
and insightful to compare the theoretical and experimental
spectra. We evidently compared this to the spectra calculated
with the fully localized limit double counting. We mainly see a
rigid shift of the 4f multiplet with respect to the [spd] density
of states, as is shown in Appendix C. Notice that this is in
good agreement with a recent work on the double-counting
corrections for the DFT + DMFT method [50].

B. Exchange parameters

We have emphasized above that it is rather difficult to
obtain a proper spin-polarized double-counting correction in
DFT + DMFT. For most materials, and for most properties,
this problem can be circumvented by starting the DMFT cycle
from non-spin-polarized DFT and let the whole magnetism
arise from the U term in Eq. (1). Obviously, this procedure
cannot be performed to reach full charge self-consistency,
because the KS Hamiltonian (without the tiny magnetic field)
is only going to be non-spin-polarized at the first iteration.
Unfortunately, for the heavy REs, the effects of charge self-
consistency are very important, due to that native LDA or
GGA calculations tend to overestimate the occupation of the
4f shell of as much as 0.5 electrons. Therefore, this procedure
is not applicable to the calculation of the interatomic exchange
parameters, which are very sensitive to this redistribution of
electron density. A charge self-consistent calculation within
the HIA can be done by fine-tuning the parameters involved in
the simulation, as illustrated in Appendix A. This Appendix
contains a comparison between results obtained with HIA
in a single-shot calculation and in a charge self-consistent
calculation. The results emphasize the importance of a charge
self-consistent description of the density. In the end of
Sec. IV C 5 a comparison between magnon spectra obtained
with HIA exchange parameters and with 4f -as-core exchange
parameters is made. We show there that the overall shapes
of the magnon spectra are similar. Since we did not find
any large qualitative differences between these two types of
calculations, we decided to simulate the properties related to
the magnetic excitations using the 4f -as-core setup, which is
computationally more expedient, as mentioned above. Thus,
for this study we have treated the 4f states as nonhybridizing
atomic states, allowing for their spin polarization. In this way,
the 4f electrons produced an effective magnetic field within
the muffin tin (MT), influencing the itinerant [spd] levels.
Throughout the paper, whether the 4f electrons were present
in the valence or not, the exchange parameters were always
computed between the available valence states, projected on

the head of the corresponding MT sphere. Every state was
described with the set of three basis functions having different
kinetic energy tails. The tail energies used where the same
as those used in Sec. III A for the cohesive properties, the
ground-state magnetic properties, and the spectra. For each RE
element, we have chosen the MT radii such that the spheres
were almost touching. We have adopted the experimental
lattice constant for each metal. The states at the Fermi level
were smeared using the Fermi-Dirac scheme with an effective
temperature of 2.5 mRy (≈400 K).

It is worth mentioning that we had to utilize a very dense
k-point grid (38 × 38 × 24 divisions) to correctly describe
the interaction with the far-distant neighbors (which were
found to be important). Further details of the implementation
of the magnetic force theorem in RSPT code can be found
in Ref. [51]. We finally note that these calculations were
performed without including SOC. The 5d bandwidth, which
is mainly responsible for mediating the exchange between the
localized 4f bands, is much larger than the spin-orbit coupling
strength.

C. Ordering temperatures and magnon spectra

Using the values of the exchange parameters and magnetic
moments from DFT, we estimated the ordering temperature
TN/C for the heavy RE metals by means of Monte Carlo
simulations and using the cumulant crossing method [52].
The Hamiltonian used to estimate the ordering temperature
is described by Eq. (6) but neglecting the anisotropy term.
The results were compared with the simple estimates, based
on mean-field approximation (MFA). We underline the fact
that due to the long-range nature of the magnetic couplings, a
relatively large number of exchange interactions was required
in order to sufficiently converge the TN/C value. For most of
the simulations we had to include the Jij ’s with all nearest
neighbors (NN) within the distance of 5.57 lattice parameters,
which corresponds to taking into account the nearest 1098
neighbors of each atom. The magnon spectrum of Gd was sim-
ulated with ASD, using a low-temperature experimental value
of the uniaxial anisotropy constant K1 = 2.5 μRy (Ref. [53]).
A simulation box containing 50 × 50 × 50 sites with periodic
boundary conditions was adopted. The temperature was set
to T = 78 K, α = 0.001, and the exchange interactions with
all neighbors within dmax � 5.57a, where a is the lattice
parameter, were taken into account.

IV. RESULTS

We present first the cohesive properties, i.e., the equilibrium
lattice parameter and the bulk modulus in Sec. IV A. Second,
we discuss the structural stabilities in Sec. IV B. Third,
the magnetic properties, i.e., the magnetic ground state, the
exchange parameters, the ordering temperatures, the Fourier
transform of the exchange parameters, and the magnon spectra
are presented in Sec. IV C. Fourth, the calculated valence band
(inverse) photoemission spectra are discussed in Sec. IV D.

A. Cohesive properties

To obtain the cohesive properties, the energy was cal-
culated for several lattice parameters with the Hubbard I

085137-5



I. L. M. LOCHT et al. PHYSICAL REVIEW B 94, 085137 (2016)

 25

 30

 35

 40

 45

 50

 55

 60

 65

Ba La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu

V
(Å

3 )

(a) Exp. volume

4f−core LDA

4f−core GGA

HIA LDA

HIA GGA

 0

 10

 20

 30

 40

 50

 60

Ba La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu

B
 (

G
P

a)

(b)

Exp. bulk modulus

FIG. 1. Cohesive properties: (a) equilibrium atomic volume and
(b) bulk modulus for all elements of the REs series. The red solid
dots are experimental data from Ref. [59] for the volumes and from
Ref. [58] for the bulk moduli. The light gray lines are volumes
calculated with the 4f ’s treated as core electrons in LDA and GGA
by Delin et al. in Ref. [55]. The open dots are the present calculations
with the Hubbard I approximation in LDA and GGA (see labels in
the plots).

approximation in a charge self-consistent mode. The energy
versus lattice parameter was calculated from −3% to +3%
around the theoretical equilibrium lattice parameters for the
structures described in Sec. III. These curves were fitted with
the Birch-Murnaghan equation of state [54].

In Fig. 1 we present our results on the equilibrium volume
and the bulk modulus for the entire series of the lanthanides.
Figure 1(a) shows the calculated equilibrium volumes per
atom compared to experimentally measured volumes. The
trend across the series is quite well captured, both with the
LDA and the GGA functionals. However, the LDA functional
displays the usual underestimation of the volume, which is
caused by an overbinding of this functional of itinerant [spd]
electrons. The lanthanide contraction is slightly overestimated
by both functionals. This overestimation of the contraction
may be dependent on the value of U . For the light REs, a more
pronounced overestimation of the lanthanide contraction had

previously been found by Delin et al. in Ref. [55]. In that study
the 4f electrons were treated as core electrons. Söderlind et al.
treated the 4f electrons in the REs bandlike but with spin and
orbital polarization [56] and found a quite pronounced increase
in the volume across the light rare earths, which is a trend
opposite to experiment. Strange et al. [57], who treated the REs
using SIC, found a slight increase in the volume across the light
rare earths. Thus, the trend in equilibrium volume for the early
elements is captured better by the Hubbard I approximation
than by treating the 4f electrons as core electrons, using the
orbital polarization method or the SIC method. For the late
lanthanides the HIA captures the trend very well, but even
the GGA functional underestimates the equilibrium volumes
slightly. In Ref. [55] a small underestimation of the contraction
was found. In Refs. [56,57] quite good agreement was found
for the volume of the heavy REs, although some small
unexpected increases are noticed (see also Appendix B).

Figure 1(b) shows the bulk moduli (at the theoretical equi-
librium volume) for the two functionals and the experimental
values. The experimental values found in the literature for the
bulk modulus differ quite a lot between different studies. We
used values from Ref. [58], where the literature values (up to
1991) are averaged with error bars indicating the lowest and
highest reported values. Both functionals capture the trend in
the bulk modulus quite well. The relative difference between
the bulk modulus for the divalent and trivalent elements is
found correctly. Also, the trend between the other consecutive
elements is consistent with the experimental measurements. In
all cases (except for Eu), the bulk modulus is overestimated.
This can be attributed partially to the the slight underestimation
of the volume. In Appendix B the HIA is compared to other
methods. The LDA calculations for Sm, Tb, and Tm showed
some problems in convergence due to the high number of k

points needed for an accurate calculation of the bulk moduli.
However, we increased the k mesh for all elements until the
results were reasonably stable.

B. Structural stability

In the previous section we assumed the experimental crystal
structure for most calculations. However, it is interesting
whether HIA actually can predict the crystal structure with the
lowest energy. Although a full analysis of all relevant crystal
structures of the lanthanides (fcc, hcp, dhcp, and 9R) is outside
the scope of this investigation, we give here an example of how
well HIA reproduces structural properties of Ce, Pr, and Nd.
For this limited example, we compare the stability only of fcc,
hcp, and dhcp. We find in all three cases that the dhcp structure
is about 10 meV lower in energy than the fcc structure, which
is in turn 20 meV lower than the hcp structure. For Pr and
Nd, the experimental crystal structure at ambient pressure and
room temperature is the dhcp structure [12,15], in agreement
with our calculations. With increasing pressure or temperature
a transition to the fcc structure would occur [15]. For Ce, our
predicted dhcp structure might at first sight seem surprising,
since the experimentally predicted structure is fcc [12].
Although our prediction is indeed wrong, it is not completely
unexpected. In the phase diagram of Ce, at low pressure, there
is a low-temperature α phase (fcc) and a medium-temperature
β phase (dhcp), and around room temperature there is a γ
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phase (fcc). Compared to the γ phase, the 4f electrons in
the α phase hybridize significantly more with the surrounding.
Therefore, the HIA is not able to describe this phase. If we
therefore remove the α phase from the phase diagram, the
expected phase at low temperature would be the β phase.
Hence, among the phases with entirely localized 4f electrons
in Ce, the HIA reproduces the expected crystal structure.

C. Magnetic properties

1. Hund’s rules, ground-state magnetic moments

The Russell-Saunders coupling scheme is normally adopted
to describe the 4f magnetism of the REs. The spins of the
individual electrons are coupled to form a total spin S by
the exchange interaction and the individual orbital angular
momenta are coupled to form a total orbital momentum
L by the Coulomb interaction. The state with the lowest
energy is found from Hund’s rules by maximizing S and
thereafter L. The total angular momentum J is given by J =
|L ± S|, where the minus sign is used for less-than-half-filled
shells and the plus sign for more-than-half-filled shells. The
total magnetic moment due to the spin angular momentum
is μS = 2μB

√
S(S + 1), where μB is the Bohr magneton.

The total moment due to the orbital angular momentum
is μL = μB

√
L(L + 1). These moments precess around the

direction of J ; therefore the magnetic moment due to the
total angular momentum looks slightly more complicated:
μJ = gJ μB

√
J (J + 1), where gJ is the Landé factor [12].

The saturation moment is given by the projection of μJ

on the direction of the applied field, the ẑ axis, which is
μf = gJ J . In our case, S, L, and J are the spin, orbit, and
total angular momentum originating from the 4f electrons,
respectively. The conduction electrons ([spd]) are known to
have a measurable contribution to the total moment, with
a value up to 0.65μB for Gd that has the largest [spd]
contribution of the entire series [60], as discussed below.
In addition, the conduction states are very important for
mediating the exchange interaction between the f moments
on different sites.

The magnetic moments were calculated at the experi-
mental volume for the structures described in Sec. III A in
a ferromagnetic orientation. An external magnetic field of
0.05 Ry/bohr was added to polarize the f electrons, according
to the arguments of Ref. [49]. The temperature was set at
T = 0.1 mRy in order to select only the ground state and to
avoid superpositions of different configurations. Tests with
fields up to 50 times smaller in size, i.e., of about 0.001
Ry/bohr, were investigated and resulted into the same 4f

moments, provided that the temperature was also reduced
accordingly. In Fig. 2(a) we present the saturated magnetic
moments, the projection of μJ on the ẑ axis, μf = gJ J . This
saturation moment and the Landé factor are calculated both
from the S, L, and J as expected from Hund’s rules (for
Hund’s rules gJ J ) and from the S, L, and J that are obtained
as expectation values of the corresponding angular momentum
operators in the local Green’s function (for HIA gJ J ). The
HIA approximation recovers the Hund’s rule ground state as
the state with the lowest energy and the magnetic moments of
the two different calculations are practically the same. These
similarities are partially expected since both Hund’s rules and
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FIG. 2. Magnetic ground-state properties. (a) The 4f saturation
moment (gJ J , where gJ is the Landé factor) following from Hund’s
rules (blue line) and the 4f -moment calculated with HIA (green
line). The red dots are experimentally measured saturated moments
taken from Table 1.6 of Ref. [12] and Chapter 6 of Ref. [61]. The
highest experimental value for Ce is taken from the more recent work
of Ref. [62]. (b) The 4f moment calculated with HIA minus the
experimental moment (green line) and the [spd] moment calculated
with the 4f in the core model (orange line). In the inset the 4f

moment calculated with HIA is added to this [spd] moment.

HIA correspond to an atomiclike picture, although HIA also
includes crystal field effects. However, it is rewarding that a
theory which does not rely on any assumption on couplings
between spin and angular momenta, like HIA, results in the
expected behavior. This is not self-evident, as is illustrated
for example for TbN in Ref. [49], where the problem of
finding correct orbital moments of rare-earth systems using,
e.g., LSDA + U and LSDA was discussed.

One may note in Fig. 2 a good agreement between the
measured [12,61] and the calculated moments for the whole
series. The most striking differences are found for Ce, Nd,
and Eu. For Ce two very different experimental values for
the saturation moment were found in the literature. We
expect that a small error in the calculated value should arise
from neglecting a still finite hybridization. In Ref. [61] it
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is noticed that the measured magnetic moment for Nd is
quite far from what is expected from Hund’s rules. Moreover,
the paramagnetic moment [gJ

√
J (J + 1)] was measured

to be 3.4μB, whereas the saturated moment (gJ J ) was
measured to be 2.2μB for Nd in Ref. [12]. These values do not
correspond with one another. For Pm no experimental data
are available, since it is radioactive. Reference [61] reports
that the experimental value of the magnetic moment for Eu
does not correspond to the true saturation value. This is due
to the fact that in Eu the moments form a spin spiral [61] and,
if a field is applied, are lifted out of the plane to form a helix.
However, it is very hard to distort this helix and the magnetic
field used in the experiment was not high enough to reach
saturation. Apart from these cases, the agreement is good.

We notice, however, an overall overestimation of the
calculated saturation moments compared to the experimental
moments for the light rare earths and an overall underestima-
tion for the heavy rare earths. This can be partially attributed to
the [spd] polarization. The [spd] electrons contribute mainly
with a spin moment that is parallel to the spin moment of the
4f ’s. For the light rare-earth elements the magnetic moment is
dominated by the orbital f contribution, with a smaller spin f

contribution that is coupled antiparallel to the orbital moment.
This results in a reduced saturation moment when the [spd]
contribution is accounted for in the early rare-earth elements.
For the heavy rare-earth elements, where the spin and orbital
moments are parallel, including the [spd] contribution results
in a bigger saturation moment. The different contributions to
the total magnetic moment are illustrated by the gray arrows
in the inset of Fig. 2(b). To investigate the contribution of
a spin-polarized [spd] band, we subtracted the experimental
moment from the moment calculated with HIA. In Fig. 2(b) we
compared this difference with the [spd] moment (as calculated
when the 4f states were treated as core electrons). For the
heavy lanthanides the [spd] moment follows the same trend
as the difference between the experimental moment and the
total 4f moment from HIA. Hence, the difference between
theory and experiment in Fig. 2(a) may be attributed primarily
to the [spd]-derived magnetism. For the light lanthanides
the situation is a little more complex, partially since there
are several experimental values. In the inset of Fig. 2(b) we
added the [spd] moment (calculated with the 4f -in-the-core
treatment) to the 4f moment calculated with HIA. For
the late REs we find an excellent agreement, especially
given the magnitude of the moments. Europium was excluded
from this comparison since the experimental value does not
correspond to the true saturation value.

2. Exchange parameters Ji j

Next we have investigated the intersite exchange interac-
tions in the heavy REs, as defined in the first term of Eq. (6).
We focused on the heavy REs, since in the light REs, crystal
field effects have a large impact. Figure 3 shows the computed
intersite exchange interactions in heavy rare-earth metals. The
parameters were extracted from the FM reference state. Note
that this is the actual ground state for Gd, Tb, and Dy at
low temperatures. The other elements have more complex
noncollinear magnetic configurations [12]. Interestingly, in
each coordination shell, the sign of the Jij is the same for all the
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FIG. 3. (Top) Calculated intersite exchange parameters in heavy
rare-earth metals as a function of the distance. a denotes the lattice
constant. The ferromagnetic reference state was assumed for all the
elements. (Bottom) Jij parameters divided by the value of the 4f spin
moment for each element. For instance, in case of Gd, S = 7/2.

considered elements. This is an indication that the underlying
Fermi surfaces of all heavy lanthanides are very similar. This
fact has an experimental confirmation at least for Gd, Tb, and
Dy [63].

For late REs it is known that the heavier the element, the
smaller the unit cell volume. Moreover, adding one more
electron results in the decrease of the total spin moment,
which is already anticipated from the Hund’s rules picture.
This implies that there are two factors contributing to the
changes in the Jij couplings along the heavy RE series: a
decrease in the interatomic distances and in the spin moments.
To disentangle these two effects, in the bottom panel of Fig. 3
we show the rescaled exchange parameters, divided by the
value of the corresponding 4f spin moment. One can see that
the renormalized Jij parameters for all the considered elements
with an exception of Tm are remarkably similar. This would
suggest that the shape of the Jij curve is governed by the
common features of the electronic structure of the REs, e.g.,
the Fermi surface topology, while the strength of the exchange
interaction is governed by the size of the induced moment
of the valence states. A larger 4f spin moment results in a
larger induced valence moment (see Fig. 2) and hence stronger
interatomic exchange. In fact, the present result implies that
the Weiss field created by other neighboring spins (i.e., the
sum of all intersite exchange interactions) is close to being
constant throughout the series of the heavy REs.

As stated before, we extract the exchange parameters from
a ferromagnetic state. However, it is well known that some of
the REs have a more complicated magnetic ordering [12]. We
discuss the stability of the ferromagnetic state in more detail
below.

3. Ordering temperature

In Fig. 4 we show the calculated ordering temperatures
(TN/C) for the series of heavy REs. The results were obtained
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FIG. 4. Calculated TN/C for heavy REs. The results are obtained
using Jij ’s presented in Fig. 3. The experimental data for the ordering
temperature, i.e., the transition from a paramagnetic state to an
ordered state, is taken from Ref. [12]. These ordered states have no
net magnetic moment, with an exception for Gd, where the transition
is directly to the ferromagnetic state. The solid lines are calculated
with the classical spin moment; the dashed line is calculated with the
de Gennes prescription and is merely a rescaling of the classical MFA
result.

with Monte Carlo and MFA methods, utilizing the Jij ’s
presented in Fig. 3, as defined in the first term of Eq. (6).
In all simulations the total spin moment (see legend of
Fig. 3), including f and [spd] contributions, was used in the
classical limit [(Sz

f spd )2]. Additionally, we plot the ordering
temperatures in the MFA when de Gennes prescription S2 →
(gJ − 1)2J (J + 1) is used. In this case, the total angular
momentum quantum number J is due only to the f elec-
trons. Although both approaches rely on the same physical
mechanism, namely that the exchange interaction is between
spin moments, de Gennes prescription takes into account the
existence of an orbital moment, by taking the projection of the
spin onto the J axis.

We have also verified the impact of varying the amount
of neighbor interactions on the resulting TN/C values. For this
study we used the computationally less demanding MFA-based
estimation. In the inset of Fig. 4 the results obtained with two
different cutoff radii for the Jij interactions are compared. One
can see that an increase of the cluster radius from 3.2a to 5.57a

produces almost negligible changes in the calculated ordering
temperature for almost all heavy REs. The exceptional case
is Gd, where the differences are more significant, as was also
shown in Ref. [64]. We believe that it is related to the fact that
the strength of the Jij ’s in this metal is the largest among the
studied systems. The TN/C’s obtained from the maximum in
the susceptibility are calculated with a cutoff radius of 5.57a.
For the CCM we used only 3.2a, except for Gd, where we used
5.57a.

From Fig. 4 one can see that both Monte Carlo methods
(TN/C obtained from the maximum in the susceptibility and
using CCM) and the MFA produce quite similar results. MFA
has a well-known tendency to overestimate the TN/C’s. Indeed,
our results indicate that MFA-based estimates are about 20%

FIG. 5. Fourier transform of the exchange interaction J (q) −
J (0) for heavy rare-earth metals plotted along the �-A-� line. The
inset shows a magnification of the figure for the reduced wave vector
in the interval [0, 0.6]. In the inset we also indicated the pitch vector
for Er and Tm, showing that the ferromagnetic reference state is
unstable for both metals.

larger than the ones obtained with Monte Carlo methods. One
can also see that the calculated TN/C’s produced with both
methods are in fair agreement with experimental data. The
largest errors in the Monte Carlo calculation are found for
Gd and Dy and reach about 35 K. However, in spite of these
differences, the qualitative trend of lowering of the TN/C across
the heavy RE series is nicely reproduced in these calculations.

A small remark on the experimental TN/C in Fig. 4: We
chose to compare our results to the experimental ordering
temperature related to magnetically ordered to paramagnetic
transition. However, for most heavy rare-earth elements there
is a low-temperature ferromagnetism, followed by a phase
without net moment (helix, cone, or longitudinal spin wave)
before the paramagnetic phase. In principle, Monte Carlo
simulations should be able to reproduce both transitions.
However, to investigate the full magnetic phase diagram, one
needs both temperature-dependent Jij ’s and a temperature-
dependent anisotropy. These quantities we cannot calculate at
the moment.

4. Fourier transform exchange parameters

The Fourier-transformed exchange constants J (q) shifted
by the value at the � point, are shown in Fig. 5 for heavy
rare-earth metals. The values have been calculated by using
linear spin-wave theory in the framework of the adiabatic
approximation and are plotted in the reciprocal space along the
path �-A-�, with A-� laying in the second Brillouin zone. The
reported results for Gd, Tb, Dy, and Ho have been computed
by using as a reference state a collinear configuration with the
magnetic moments pointing parallel to the basal plane. The
positive maximum at finite q vector for Er and Tm indicates
that for these elements the ferromagnetic state is unstable
by about 0.15 and 0.36 meV, respectively. In experiments at
low temperature, indeed a spin spiral is found for Er and a
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longitudinal collinear spin wave for Tm [12]. The maxima in
J (q) − J (0) occur at pitch vectors (0,0,0.22) and (0,0,0.32)
in π/c units, which are different from the experimental data
in Ref. [65]. This might be related to the fact that the Jij ’s
were extracted not from the actual ground state, but from the
FM state. The low-temperature experimental magnetic ground
states for Gd, Tb, and Dy are ferromagnetic [12], which is
in agreement with our findings. Experimentally, Ho is found
to have a spin-spiral ground state, whereas we find a stable
ferromagnetic ground state. In Ref. [66], the authors also found
a ferromagnetic ground state for Ho; however, it was found
to be unstable for slightly reduced 4f moments. Overall, our
results give encouraging agreement with experiment, although
there is room for improvement. In order to reproduce the
full magnetic phase diagram of these elements, one needs to
calculate theoretically the magnetic anisotropy, and exchange
interactions as a function of temperature, something which
cannot be done routinely with HIA. Also, in order to evaluate
the full details of the low-temperature magnetic phase of
the rare earths, one needs, in general, to also include a full
description of the crystal field effects. This is outside the scope
of the present study, although, in principle, the HIA should be
a relevant starting point for such an investigation and offer a
better ansatz than, for instance, the LDA + U or 4f -as-core
approximations.

5. Magnon spectra

As an example, we show in Fig. 6(a) the calculated magnon
spectra of Gd (black) obtained with ASD using the exchange
parameters in Fig. 3. This element was selected because its
magnon spectrum is dominated by exchange effects, in contrast
to many of the other rare earths where either crystal field
effects and magnetic anisotropy become important or where
even magnon-phonon coupling is important [12]. First of all,
one can see in Fig. 6(a) that, for small q values, the dispersion
follows a parabolic dependence. This is clear evidence of the
FM ordering, intrinsic to Gd at low temperatures. Second, both
acoustic and optical branches are in good agreement with the
experimental data, indicating the high quality of the obtained
parametrization of the Heisenberg model from DFT for Gd,
as well as the accuracy in extracting the dynamical structure
factor from spin-dynamics simulations.

Finally, we compare in Fig. 6(b) the adiabatic magnon
spectra obtained using the exchange parameters calculated
with two different methods compatible with the standard
model, namely 4f -as-core and HIA (for more details, see
Appendix A). One can see that the overall shape of the two
magnon curves is rather similar throughout the whole Brillouin
zone and the spectra differ by not more than 4 meV. The
similarity of these two results provides another justification for
the use of the 4f -as-core method to simulate the dynamical
magnetic properties of the REs.

D. Spectral properties

The photoemission spectra were calculated at the experi-
mental volumes. An LDA + HIA functional was used for the
plots shown here, but GGA + HIA was found to give very
similar results. As discussed in Sec. III A, the double-counting
correction for the spectra was chosen such that the position
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FIG. 6. Spin wave dispersion spectrum of hcp Gd. (a) Simulated
spectrum using ASD (black) along with experimental data (red solid
circles) from Ref. [12]. (b) A comparison between adiabatic magnon
spectra calculated with exchange parameters obtained with HIA
(blue) and with 4f -as-core (black).

of the first occupied or unoccupied peak was aligned with
the corresponding experimentally observed peak. Additional
calculations were also performed, with the fully localized
limit double-counting scheme. This did not lead to significant
differences, but only to a small relative shift between the
4f multiplets and the [spd] density of states. These spectra
are essentially similar to the spectra presented below; see
Appendix C.

In Figs. 7 and 8 the photoemission spectra are shown.
In the left panel of each subfigure the x-ray photoemission
spectroscopy (XPS) spectra are displayed and in the right panel
the inverse photoemission spectroscopy, i.e., Bremsstrahlung
isochromat spectroscopy (BIS) spectra are displayed. For a
RE metal with n 4f electrons, the XPS spectrum corresponds
to f n → f n−1 transitions. The BIS spectrum corresponds
to f n → f n+1 transitions. For an easier comparison we
displayed, apart form the bare spectral function, also the same
spectral function but modified according to estimated cross
sections of the d and f states, with Gaussian smearing and
with an estimation of the background. The cross sections for
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FIG. 7. Spectra: The red dots are experimental data from Ref. [67]. The green line is the bare total spectral function calculated in the
Hubbard I approximation. For the blue line we applied a Gaussian smearing of FWHM = 0.3 eV for XPS and FWHM = 1.0 eV for BIS, we
multiplied the f and d-partial density of states by their cross sections just below (XPS) and just above (BIS) the Fermi level, and we added
a background proportional to the integral under the spectrum. For clarity we also plotted this background in gray. For each element the plot
consists of the XPS part (left) and BIS part (right). Since Pm has a radioactive unstable nucleus, no experimental data are available. Therefore,
the experimental data are not included in the plot and the blue line does not contain a background. For the same reasons, we used the fully
localized limit double-counting scheme for this particular element.

the d and f orbitals are estimated from their magnitude around
the Fermi level calculated with the single-scatterer final-state
approximation [68–70]. We used a Gaussian smearing of
FWHM = 0.3 eV for XPS and FWHM = 1.0 eV for BIS to
simulate the spectrometers resolution. We added a background
proportional to the integral under the spectrum to simulate the

experimental background due to electrons (XPS) or photons
(BIS) that scatter before they reach the detector. The XPS and
BIS spectra were normalized such that the first occupied and
first unoccupied peaks have approximately the same height
as in experiment. There is an excellent agreement between
theory and experiment as Figs. 7 and 8 show. All peaks in the
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FIG. 8. Spectra: The red dots are experimental data from Ref. [67]. The green line is the total spectral function calculated in the Hubbard I
approximation. For the blue line we applied a Gaussian smearing of FWHM = 0.3 eV for XPS and FWHM = 1.0 eV for BIS, we multiplied
the f and d-partial density of states by their cross sections just below (XPS) and just above (BIS) the Fermi level, and we added a background
proportional to the integral under the spectrum. For clarity we also plotted this background in gray. For each element the plot consists of the
XPS part (left) and BIS part (right). Note that for Lu the spectrum in the XPS panel contains just below the Fermi level the spectral function
with the same scaling as the BIS spectral function, which is different from the scaling of the XPS spectral function between −4 and −12 eV.

atomic multiplet structure are captured. For some elements the
different excitations are separated a bit too much compared to
experiment. This separation is directly related to the values
of U and J . Since we did not tune U to fit experiment, but
kept it constant across the series, a small mismatch between
calculation and observation may be expected. Also the Hund’s
J seems to be a bit overestimated in general.

The Ce BIS spectrum captures the multiplet features very
well. The shoulder just above the Fermi level is not completely
captured by the bare spectral function; however, when taking
into account the ratio between the f and the d cross sections
just above the Fermi level the theoretical spectrum agrees
better with experiments. In Ce, however, effects involving
hybridization might play also a role [71,72]. For the elements
after Ce, the hump in the XPS spectrum just below the Fermi
level (between 0 and −2 eV) is captured quite well, even
by the bare spectral function and originates mainly from the
d electrons. This shoulder was not identified in the studies
by Lebègue et al. [25,26]. Taking into account the f and d

cross sections just below the Fermi level even improves the
description of this feature, except for Sm. However, for Sm it
is suggested that this feature partially arises from divalent Sm
atoms present at the surface [73–76]. For Pr, Nd, and Sm the

relative height of the peaks in the BIS spectrum seems to be in
better agreement with experiment than was found in Ref. [25].
Also, the relative height in the XPS spectrum of Tb and Dy
seems to be more accurate than found in Ref. [26]. There
are three main differences between the present calculations
and the calculations done in Refs. [25,26]. The first is that
in Refs. [25,26] the atomic sphere approximation (ASA)
was used, whereas we use a full-potential code. The second
difference is that in those works the crystal field splitting
was not taken into account in the atomic impurity problem.
The third difference might be that the temperature used in
the Boltzmann factors for the calculation of the one-electron
Green’s function, was probably different.

In general, we find that the HIA reproduces the experi-
mental XPS and BIS spectra very well. This might be an
indication that the full-potential treatment and nonsphericity
of the potential experienced by the 4f orbitals is of significant
importance. We finally want to mention that we have also
performed a comparison between HIA and LDA + U for
selected elements, e.g., Tb, in order to analyze how close
these two approaches really are. The LDA + U results (see
Appendix D) show significant differences with HIA and
with the available experimental data. In Ref. [49], where the
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example of TbN was investigated with several methods, the
authors already concluded that HIA was superior to LDA and
LDA + U; there were, however, no experimental data for the
photoemission spectra available.

V. CONCLUSION

In this paper we have examined the applicability of
the Hubbard I approximation (in connection with a full-
potential electronic structure method) and how this method
reproduces cohesive, structural, and magnetic properties, as
well as spectroscopic data, of the rare-earth series. We find
good agreement between theory and observations, where a
comparison can be made. In particular, it is rewarding that
equilibrium volumes, bulk moduli, and magnetic properties are
in good agreement with measured data. Similarly, calculated
magnetic excitations as well as photoelectron spectra (direct
and inverse) are in good agreement with measured data.
As to the 4f magnetic moment we obtain similar values
as would be obtained from a Russel-Saunders ground state.
It is rewarding that this follows as a natural result from a
quantum mechanical treatment that makes no assumption of
the mechanism of coupling angular momentum states. We have
also pointed to shortcomings of other methodologies, like LDA
and LDA + U, in establishing results that consistently agree
with measurements. In particular, the electronic structure from
these theories is found to not reproduce the measured XPS and
BIS spectra, while the Hubbard I approximation gives a very
satisfactory account of the measured spectra.

Among the different methods considered here, the treatment
of the 4f shell as part of a nonhybridizing core comes closest
to the Hubbard I approximation, since the LDA + U approxi-
mation is found to overestimate the hybridization and results
in formation of dispersive energy states. We thus considered
for simplicity exchange parameters of the rare-earth elements
with this method. The 4f states were treated in the core
with a Russel-Saunders ground state. The resulting exchange
parameters give ordering temperatures and magnon dispersion
that are in acceptable agreement with measurements. The
4f -induced polarization of the [spd]-valence band states is
also captured with this 4f in the core treatment, a poor-man’s
version of the Hubbard I approximation.

The Hubbard I approximation is hence demonstrated to be
consistent with the standard model of the lanthanides, which
identifies the 4f shell as atomiclike, and provides practical
and reliable theoretical framework of the rare-earth elements
and rare-earth-containing materials in general. This opens for
accurate theoretical analysis of rare-earth-containing multifer-
roics, rare-earth-based permanent magnets, rare-earth-based
topological insulators, and rare-earth-based photovoltaics.

Although we think that the HIA is, among the available
state-of-the-art methods, the most promising for the REs, a
correct assessment of the magnetic anisotropy and related
quantities remains a challenge. These quantities strongly
depend on the subtle balance between the crystal field and
the spin-orbit coupling. From the current work we understand
the importance of some technicalities of the simulations. One
important ingredient is the full-potential treatment. Another
important component is the charge self-consistency of the
simulations in order to correctly describe the valence electrons.

Here, however, the methodological issue of the double-
counting correction arises. We also have to investigate whether
HIA properly describes the crystal field to the accuracy
needed for these sensitive quantities. Similarly, in the future
it would be interesting to address the cohesive properties in
the magnetically ordered phases. We are positive that HIA
is potentially able to provide an equally accurate picture
for magnetic and nonmagnetic phases, but methodological
advances are needed.
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APPENDIX A: IMPORTANCE OF CHARGE
SELF-CONSISTENCY IN THE HIA METHOD

We have performed a series of calculations for elemental
Tb to check the differences in the calculated Jij ’s, obtained
with single-shot HIA and charge self-consistent HIA. In the
latter, the updated electron density is used to construct a new
Kohn-Sham potential. This is done in an iterative manner

1.0 2.0 3.0 4.0
 Rij / a

-0.05

0.00

0.05

0.10

 J
ij (m

Ry
)

HIA (1-shot)
HIA (CSC)

FIG. 9. Effective exchange parameters in hcp Tb, extracted from
single-shot and charge self-consistent HIA calculations. A positive
sign corresponds to the FM coupling.
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FIG. 10. Calculated adiabatic magnon spectra of Tb using the Jij

parameters taken from Fig. 9.

until the potential is converged. For the spin-polarized HIA
calculations we have neglected the effect of SOC and solved
an impurity problem for the spin-polarized LDA (LSDA)
solution. This recipe implies that the double-counting potential
is different for spin-up and spin-down electrons. In the present
case, we adopted fully localized limit (FLL) formulation, but in
order to converge to the saturated magnetic solution, we had
to significantly decrease the Hund’s J parameter (by factor
two in case of Tb) with respect to Table II. This is due to the
fact that J is supposed to compensate the exchange splitting,
present in the LSDA, since it will be reintroduced through
the spin-polarized self-energy. However, if the magnitude of
this compensation is too large, it results in the flip of the
spin moment. Thus, it starts to fluctuate from one iteration to
another and the self-energy can never be converged.

The calculated exchange parameters obtained with single-
shot and charge self-consistent HIA are shown in Fig. 9.
The first two NN interactions are the most dependent on the
description of the 4f states. More distant neighbors, which
are due to RKKY mechanism, are less affected by these
details.

Next we have used these Jij parameters to calculate the
adiabatic magnon spectra. The results, shown in Fig. 10,
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FIG. 11. Energy versus volume curve for Gd calculated with
single-shot HIA (blue triangles, right axis) and charge self-consistent
HIA (green circles, left axis), using an LDA functional.

indicate the importance of the charge self-consistency in
the HIA calculation. One-shot HIA calculations produce an
unstable ferromagnetic state, which is indicated by the magnon
instabilities specifically along the �-A direction. For the late
REs we found a significant shift from [spd] character to
f character in the LDA calculation when treating the 4f

electrons as valence electrons, which is the starting point for
the HIA. A single-shot HIA restores the correct 4f occupation,
but does not allow for the remaining [spd] electrons to relax to
the adjusted potential. The effect of this relaxation, obtained
in a charge self-consistent (CSC) calculation, is that the [spd]
density contracts towards the nucleus. The results in Fig. 10
indicate that the [spd] contraction is important for a proper
description of the magnetic interaction.
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FIG. 12. Comparison between different methods for the volume
(a) and bulk modulus (b) of the rare earths. Experiments were
taken from Gschneidner [59] and Grosshans et al. [58]. Results
calculated with 4f -in-core GGA treatment were taken from Delin
et al. [55]. The GGA + spin-orbit coupling with orbital polarization
(OP GGA) results were taken from Söderlind et al. [56]. The
self-interaction correction (SIC) results are from Strange et al. [57]
and the GGA + U results from Mohanta et al. [77]. The Hartree-Fock
(HF) and dynamical mean-field theory (DMFT) results for Ce, Pr, and
Nd were taken from McMahan [78]. The Gutzwiller approximation
(GA) results for Pr were taken from Lanatà et al. [79].
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The relaxation of the [spd] electrons, obtained in a CSC
calculation, also significantly affects the cohesive properties,
such as the equilibrium volumes and bulk moduli, as illustrated
with Gd as shown in Fig. 11. As described above, the LDA
starting point for the HIA calculation overestimates the f

character at the expense of [spd] character. The single-shot
HIA calculation removes the f electrons from the bonding
and restores the correct f occupation and thereby increases
the [spd] occupation. The first effect results in less binding,

whereas the second effect results in more binding. For the late
REs the second effect is usually stronger and single-shot HIA
largely overestimates the binding and therefore underestimates
the volume. Allowing the potential to adjust in a charge self-
consistent way to the changes in the electron density improves
the description of the [spd] electrons. The [spd] electrons
contract towards the nucleus, which results in less overlap
with the wave functions on neighboring atoms. Hence, the CSC
procedure results in less binding and therefore a bigger volume

FIG. 13. Spectra for Nd, Tb, and Dy. The first and second rows show the difference between the fixed peak (FP) double counting and the
fully localized limit (FLL) double counting. The second and third rows show the difference between LDA and GGA functionals. The red dots
are experimental data from Ref. [67], the green line is the calculated total spectral function, and the blue line is the calculated 4f contribution
to the spectral function.
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than single-shot HIA. Since the [spd] electrons are responsible
for the chemical bond, a proper description of them is essential.
For the volumes, we found it is especially important to use
charge self-consistent simulations in the heavy REs. For the
early REs the effects were less pronounced.

APPENDIX B: COHESIVE PROPERTIES,
DIFFERENT METHODS

In the main text we briefly compare the cohesive properties
obtained with the Hubbard I method to the same properties
obtained with other methods, such as the 4f core model,
GGA + U, SIC, and others. In Fig. 12, we compare our results
to those obtained by other groups [55–57,77,78]. It is clear that
it is most difficult to describe the beginning of the RE series.
None of the methods captures the pronounced decrease in
volume between La and Ce and the moderate decrease between
Ce and Sm.

APPENDIX C: PHOTOEMISSION SPECTRA WITH
DIFFERENT EXCHANGE-CORRELATION FUNCTIONALS

AND DIFFERENT DOUBLE COUNTINGS

For the calculation of the spectra, we use a double-
counting scheme that fixes the position of the first occupied or
unoccupied peak, with the only purpose to make comparison
with experiment easier. In the top two rows of Fig. 13 we
compare this double-counting scheme to the fully localized
limit double-counting scheme, as defined in Eq. (8), for three
different elements. The main difference between these two
schemes is a rigid shift of the f spectrum with respect to the
[spd] spectrum.

In Sec. IV D we also mention that changing from an LDA
to a GGA functional does not significantly change the spectra.
In the bottom two rows of Fig. 13, we compare the spectra
calculated with two different functionals for three elements.
The spectra are essentially the same.

(a)HIA (b)LDA+U

FIG. 14. Comparison between the spectra calculated with the
HIA (a) and with LDA + U (b). The red dots are experimental data
from Ref. [67]. The green line is the calculated total spectral function.
The blue line is the calculated 4f contribution to the spectral function.
For each method the plot consists of the XPS part (left) and the BIS
part (right).

APPENDIX D: PHOTOEMISSION SPECTRA:
LDA + U VERSUS LDA + HIA

The Hubbard I approximation is very suitable to describe
the lanthanides and outperforms the LDA + U method. In
Fig. 14, we compare the photoemission spectra calculated with
HIA and LDA + U for Tb. The HIA spectrum [Fig. 14(a)]
captures all multiplet features and is clearly more accurate
than the LDA + U spectrum [Fig. 14(b)]. Although LDA + U
can describe several properties quite well, it is essentially a
single-particle method and cannot be expected to reproduce
many-body multiplet features accurately.

The setup for the HIA calculation was described in
Sec. IV D. The same Hubbard U = 7 eV and Hund’s J =
1.080 eV was also used for the LDA + U calculation. For a
fair comparison the same double-counting scheme was used,
where the double-counting correction was chosen such that the
first occupied peak is aligned between theory and experiment.
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Condens. Matter 15, 2771 (2003).

[65] A. Y. Perlov, S. V. Halilov, and H. Eschrig, Phys. Rev. B 61,
4070 (2000).

[66] L. Nordström and A. Mavromaras, Europhys. Lett. 49, 775
(2000).

[67] J. K. Lang, Y. Baer, and P. A. Cox, J. Phys. F: Met. Phys. 11,
121 (1981).

[68] H. Winter, P. J. Durham, and G. M. Stocks, J. Phys. F: Met.
Phys. 14, 1047 (1984).

[69] J. Redinger, P. Marksteiner, and P. Weinberger, Z. Phys. B:
Condens. Matter 63, 321 (1986).

[70] P. Marksteiner, P. Weinberger, R. C. Albers, A. M. Boring, and
G. Schadler, Phys. Rev. B 34, 6730 (1986).

[71] K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404 (2001).

[72] B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan,
Phys. Rev. Lett. 96, 066402 (2006).

[73] G. K. Wertheim and G. Crecelius, Phys. Rev. Lett. 40, 813
(1978).

[74] E. Lundgren, J. N. Andersen, R. Nyholm, X. Torrelles, J. Rius,
A. Delin, A. Grechnev, O. Eriksson, C. Konvicka, M. Schmid,
and P. Varga, Phys. Rev. Lett. 88, 136102 (2002).

[75] B. Johansson, Phys. Rev. B 19, 6615 (1979).
[76] A. Stenborg, J. N. Andersen, O. Björneholm, A. Nilsson, and N.
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