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Transition from the Z2 spin liquid to antiferromagnetic order: Spectrum on the torus
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We describe the finite-size spectrum in the vicinity of the quantum critical point between a Z2 spin liquid
and a coplanar antiferromagnet on the torus. We obtain the universal evolution of all low-lying states in an
antiferromagnet with global SU(2) spin rotation symmetry, as it moves from the fourfold topological degeneracy
in a gapped Z2 spin liquid to the Anderson “tower-of-states” in the ordered antiferromagnet. Due to the existence
of nontrivial order on either side of this transition, this critical point cannot be described in a conventional
Landau-Ginzburg-Wilson framework. Instead, it is described by a theory involving fractionalized degrees of
freedom known as the O(4)∗ model, whose spectrum is altered in a significant way by its proximity to a
topologically ordered phase. We compute the spectrum by relating it to the spectrum of the O(4) Wilson-Fisher
fixed point on the torus, modified with a selection rule on the states, and with nontrivial boundary conditions
corresponding to topological sectors in the spin liquid. The spectrum of the critical O(2N ) model is calculated
directly at N = ∞, which then allows a reconstruction of the full spectrum of the O(2N )∗ model at leading order
in 1/N . This spectrum is a unique characteristic of the vicinity of a fractionalized quantum critical point, as well
as a universal signature of the existence of proximate Z2 topological and antiferromagnetically ordered phases,
and can be compared with numerical computations on quantum antiferromagnets on two-dimensional lattices.
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I. INTRODUCTION

Recent numerical studies [1,2] of the spin S = 1/2 antifer-
romagnet on the triangular lattice have presented convincing
evidence for a spin-liquid ground state in the presence of a
next-nearest neighbor exchange interaction J2. They also find
an apparently continuous transition to an antiferromagnetically
ordered ground state at smaller J2, with the familiar three-
sublattice coplanar order of the triangular lattice. Here, we
will assume that this antiferromagnetic state is the same as
the conventional state described by the semiclassical spin-
wave theory, and possesses only integer spin excitations. So
the transition from the spin liquid to the antiferromagnet is
a confinement transition, associated with the confinement of
half-integer spin excitations.

An attractive candidate for the observed spin liquid is the
Z2 spin liquid [3–6]. The purpose of our paper is to examine
a confinement transition of the Z2 spin liquid on a torus
geometry. The torus is characterized by a length scale, a
circumference L, and a modular parameter τ . At a continuous
quantum phase transition associated with a conformal field
theory, the low-lying quantum states on a torus have an
energy proportional to c/L (where c is a spin-wave velocity,
which will henceforth be set to unity), with proportionality
constants, which are universal functions of τ . We will show
that this torus spectrum contains characteristic signatures of
the topological order of the proximate Z2 spin liquid. The
spectrum exhibits a universal crossover from the fourfold
topological degeneracy of the Z2 into the characteristic spec-
trum of the confining phase: in our case the confining phase
has long-range antiferromagnetic order and has a low-lying
Anderson “tower-of-states” [7–9] signaling the spontaneous
breaking of the SU(2) spin-rotation symmetry. It is our hope
that these results on the spectrum of the critical point will
aid numerical studies of quantum antiferromagnets, and help
identify the topological order of proximate spin-liquid phases.

A theory of a confinement transition of the Z2 spin liquid
was initially presented in Refs. [4,10], in terms of a frustrated
Ising model obtained from an “odd”-dimer model; the same
theory appeared later in other models [11–13], and in recent
work [14–16]. This confinement transition can be interpreted
in terms of the condensation of the m particle (the “vison”)
of the toric code [17], but with the modification that the
m particle carries nontrivial quantum numbers of the space
group of the underlying lattice (in modern terminology, the
odd dimer model realizes a “symmetry enriched topological’
(SET) state [18]). The nontrivial quantum numbers of the vison
lead to lattice symmetry-breaking in the confining state. In
other models [19], including the toric code and “even”-dimer
models, the m particles transforms trivially under the space
group, and then the confining state does not break any
symmetries. A theory for the finite-size spectra across such
a non-symmetry-breaking confinement transition, along with
exact diagonalization results in a model system, appear in a
separate paper [20].

In the present paper, we are interested in the case where
the condensing particle carries half-integer quantum numbers
of the total spin, which is the “spinon” of the spin liquid
(conventionally labeled as analogous to the e particle of the
toric code). A theory for the condensation of spinons from
the SET state of a Z2 spin liquid on the triangular lattice
was presented in Refs. [21,22], and this theory will form
the basis of our computations here. The order parameter
of the coplanar antiferromagnet is identified by points on
the SO(3) manifold, and so the Landau-Ginzburg-Wilson
(LGW) framework suggests a field theory based on such an
order parameter. However, the theory of Refs. [21,22] is a
“deconfined” critical theory beyond the LGW paradigm, and is
instead expressed in terms of a spinon field which is identified
by points on SU(2)≡ S3.

The connection between coplanar magnetic order and the
spinon in the spin-liquid phase can be made explicit. We write
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the expectation value in the ordered state as

〈Sj 〉 = S[n1 cos( �Q · �xj ) + n2 sin( �Q · �xj )], (1)

where the ordering wave vector is �Q = 4π (1/3,1/
√

3) for
the semiclassical ground state of the Heisenberg model on
the triangular lattice. The vectors n1,2 are arbitrary up the
constraints

n2
1 = n2

2 = 1, n1 · n2 = 0. (2)

Different orientations of these two vectors are related by a
rotation matrix, identifying the order parameter as an element
of SO(3). A conventional LGW description of a transition from
this magnetically ordered state to a paramagnetic state would
begin with an effective action for the fluctuations of the vectors
n1,2. However, this phase transition would drive the system
into a trivial gapped paramagnetic state with a nondegenerate
ground state, which cannot occur in a system with an odd
number of half-integer spins per unit cell such as the triangular
antiferromagnet [23]. Therefore we seek a description in terms
of fractionalized degrees of freedom. Following Refs. [21,22],
we write

n1a + in2a =
2∑

α,β,γ=1

εαγ zγ σ a
αβzβ. (3)

This parametrization explicitly solves the constraints in
Eq. (2), and it can be checked that the complex bosonic
field zα , with α = ↑,↓, transforms as an S = 1/2 spinor
under spin rotations. However, this representation is doubled-
valued: one can perform a gauge transformation, zα(x,τ ) →
η(x,τ )zα(x,τ ), η = ±1, at any point in space-time and obtain
an equivalent representation of the physically observable
order parameter. This identifies the order parameter space as
SU(2)/Z2, which is equivalent to SO(3). This description is
complementary to the confinement transition described above,
where zα is identified with the SU(2) spinon of the Z2 spin
liquid. We note that as the spinon condenses, the only remnant
of the gapped vison in the spin liquid is the double-valued
nature of the spinon field.

We therefore write a critical theory for the complex boson
zα , taking values in SU(2), consistent with the allowed
symmetries. Keeping only terms relevant at the critical point,
the universal Lagrangian of the transition in 2+1-dimensional
space-time is

L = |∂μzα|2 + s|zα|2 + u(|zα|2)2. (4)

The “mass” s has to be tuned to a critical value s = sc to
access the critical point, while u approaches a nonzero value
determined by the Wilson-Fisher fixed point [24]. Note that
this spin-1/2 relativistic boson is not in contradiction with the
spin-statistics theorem, because here “spin” refers to a global
flavor symmetry, rather than the intrinsic angular momentum
of relativistic particles. We will allow the index α to range
over 1, . . . ,N , and obtained results in the 1/N expansion.
Note that the theory L has O(2N ) symmetry, and so we will
be examining properties of the O(2N ) fixed point.

A first guess towards obtaining the spectrum on the torus
is that we simply have to solve the theory L on the torus with

periodic boundary conditions on the spinon field zα:

zα(x + iy + n1ω1 + n2ω2) = zα(x + iy), (5)

where x,y are the spatial co-ordinates, n1,2 are integers, and
ω1,2 are the complex periods of the torus with τ = ω2/ω1;
we choose |ω1| = L. These boundary conditions would be
appropriate if we were solving for the spectrum of an O(2N )
rotor model, for a transition from an ordered state with 〈zα〉 �=
0 to a trivial paramagnet with 〈zα〉 = 0.

However, in our case, we are considering a transition to
a paramagnet with Z2 topological order, and this does have
important consequences for the spectrum of the critical theory.
A first consequence follows from the fact that no physical
operator can be associated with a single zα operator, and all
observables involve at least bilinears of zα and z∗

α . The periodic
boundary conditions on the torus apply to the physical spin
operators of the antiferromagnet, and so for the spinons, we
have the more general boundary conditions [20]

zα(x + iy + n1ω1 + n2ω2) = ±zα(x + iy). (6)

The antiperiodic boundary conditions correspond to the
presence of a vison flux in the corresponding cycle of the
torus. In the Z2 spin liquid, such boundary conditions lead
to the near fourfold degeneracy of the ground state, with the
states differing by an energy which is exponentially small in
L. At the quantum critical point, this degeneracy evolves into
additional states which are spaced by an energy of order 1/L.

A second consequence arises from the fact that the all states
share the same number of spinons modulo 2. In other words,
if the underlying lattice antiferromagnet has an even (odd)
number of S = 1/2 spins on the torus, then all states will
carry integer (half-integer) spin. This implies that the wave
functional, �, of the critical theory obeys [20]

�[−zα(x + iy)] = η �[zα(x + iy)], (7)

where η = +1 (−1) for an even (odd) number of spins.
We postulate here that there is a universal spectrum at the
critical point between the Z2 spin liquid and an ordered
antiferromagnet which is described by the O(2N ) critical
theory in Eq. (4) subject to the boundary condition in Eq. (6)
and the constraint in Eq. (7). Following the notation of
Ref. [11], we will call this the O(2N )∗ critical theory, while
the theory obeying the boundary condition in Eq. (5) is the
conventional O(2N ) theory. It was previously pointed out [25]
that the O(2N )∗ critical theory has a distinct entanglement
entropy from the O(2N ) theory; our results show that the
distinction also applies to the finite-size spectrum on a torus.

In the application to the lattice antiferromagnet, we also
have to consider the fact that the O(2N ) symmetry of L
is an emergent symmetry of the critical point, and is not
a symmetry of the underlying Hamiltonian. So we have to
consider operators which break the O(2N ) symmetry. All
operators which break the O(2N ) symmetry down to SU(N )
are irrelevant at the critical point, and we will consider here
only the leading irrelevant operator. This is given by [21,22]

L′ = γ |z∗
α∇zα|2. (8)

We also describe the leading perturbative effect of γ on the
critical spectrum.
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FIG. 1. The geometry of the spatial torus, where the position is
given by complex coordinates w = x + iy. We associate all points
related by a lattice vector nω1 + mω2 for n,m ∈ Z, where the complex
numbers ω1 and ω2 are the periods of the torus. We define the modular
parameter τ = ω2/ω1 and the length scale L ≡ |ω1| = √

A/Im(τ ).

We will begin in Sec. II by a description of the torus
spectrum of the O(2N ) critical theory in the 1/N expansion,
followed by a discussion of the evolution of the spectrum
between the ordered and disordered phases in Sec. II C. This
will be followed by the corresponding results for the O(2N )∗
critical theory in Sec. III as well as a discussion of new
features of the spectrum in the topological and ordered phases
in Sec. III A. The effects of L′ will be considered in Sec. IV.

II. CRITICAL O(2N) SPECTRUM: LARGE N

A. General formalism

In this section, we develop our formalism for the large-N
expansion of the critical O(2N ) model. For a review of the
large-N expansion, see Ref. [26]. We take the Euclidean action

S =
∫

dτd2x

(
|∂μzα|2 + us|zα|2 + u

2N
(|zα|2)2

)
. (9)

We choose a slightly different notation for the couplings
compared with Eq. (4), which will simplify subsequent
expressions. We will perform the large N expansion at fixed
u, and tune the quadratic coupling to its critical value s = sc.
Subsequently, we will take the u → ∞ limit in each term to
obtain the scaling limit. We will also consider deviations from
the critical coupling s − sc.

The field theory is defined on a spatial torus, which can be
parametrized by complex coordinates w = x + iy. The torus
is defined by two complex periods ω1 and ω2, an area A =
Im(ω2ω

∗
1), and we define the dimensionless modular parameter

τ = ω2/ω1 with real and imaginary parts denoted τ = τ1 +
iτ2. The geometry is shown in Fig. 1. We also define the
length scale L ≡ |ω1| = √

A/τ2. In this geometry, the basis
vectors of the dual lattice are given by

k1 = −iω2/A, k2 = iω1/A, (10)

so a general momentum vector takes the form

kn,m = 2π (nk1 + mk2), n,m ∈ Z. (11)

We can rewrite the path integral (up to an unimportant
constant) as

Z =
∫

Dzα exp

{
−

∫
d2xdτ

[
|∂μzα|2 + u

2N

(
|zα|2 + Ns

2

)2
]}

. (12)

We decouple the quartic term by introducing an auxiliary field λ̃:

Z =
∫

DzαDλ̃ exp

{
−

∫
d2xdτ

[
|∂μzα|2 + iλ̃

(
|zα|2 + Ns

2

)
+ Nλ̃2

2u

]}
. (13)

The zα can be integrated out, obtaining an action for λ̃,

Z =
∫

Dλ̃ exp

[
−N Tr ln

( − ∂2
τ − ∇2 + iλ̃

) − N

∫
dτd2x

(
λ̃2

2u
+ s

2
iλ̃

)]
. (14)

At N = ∞, we should expand around the saddle point value,
which we call iλ̃ = �2, and is given by

�2

u
= s

2
+ 1

A
∑

k

∫
dω

2π

1

ω2 + |k|2 + �2
. (15)

At this point, we tune s → sc such that the correlation length
diverges when A → ∞. From Eq. (13), it is clear that the
correlation length at N = ∞ is just the inverse of �, so sc is

sc = −2
∫

dω

2π

d2k

4π2

1

(ω2 + |k|2)
= −2

∫
d2k

4π2

1

2k
. (16)

We can add and subtract sc from Eq. (15) while taking the limit
u → ∞, and we find

s − sc =
∫

d2k

4π2

1

k
− 1

A
∑

k

1√
|k|2 + �2

. (17)

This equation is to be solved for �, yielding an answer of the
form � = #/L, where # is a universal function of L(s − sc)
independent of the regularization scheme at large momenta.
From the general theory of finite-size scaling [27], the energy
levels should take the form

En = 1

L
Xn[L1/ν(s − sc)], (18)

085134-3



SETH WHITSITT AND SUBIR SACHDEV PHYSICAL REVIEW B 94, 085134 (2016)

for some universal set of functions Xn, so our expressions
show that ν = 1 at N = ∞ in (2 + 1) dimensions.

In this paper, we use dimensional regularization to evaluate
divergent sums, which sets sc = 0. The computation is given
in Appendix A, and in terms of the special functions defined
there, the gap equation becomes

g
(2)
1/2(�,τ ) = −2πL(s − sc), (19)

which is solved numerically. At the critical point, s = sc, the
gap � depends only on the geometry of the torus. We note that
� is a monotonically increasing function of (s − sc).

We also find the ground-state energy. This is computed from
the path integral by temporarily taking a finite length in the
time direction, 0 < t < T , and then taking the limit

E0 = − lim
T →∞

1

T
ln Z. (20)

Directly taking iλ̃ = �2 and u = ∞, this is given by

E0 = N
∑

k

∫
dω

2π
ln(ω2 + |k|2 + �2) + Ns

2
A�2

= N
∑

k

∫
dω

2π
ln(ω2) + N

∑
k

√
|k|2 + �2 + Ns

2
A�2.

(21)

We subtract the first term, which is independent of the system
size and boundary conditions. The remaining sum is evaluated
using dimensional regularization,

E0 = 2πN

τ2L
g

(2)
−1/2(�,τ ) + N (s − sc)

2
τ2L

2�2, (22)

where the special function g
(2)
−1/2(�,τ ) is defined in Eq. (A13).

Our choice of renormalization has set E0 = 0 at s = sc and
L = ∞, where the theory has full conformal invariance.

Now that we have the saddle point value of λ̃ at N = ∞,
we can read off the Euclidean-time propagator of zα:

G0(k,iω) ≡
∫

d2xdτe−ixk−iωτ 〈zα(x,τ )z†β(0,0)〉

= δαβ

ω2 + k2 + �2
. (23)

We also expand in the fluctuations of λ̃. Writing iλ̃ = �2 +
iλ/

√
N , the effective action is

Z =
∫

Dλ exp(−S0 − S1),

S0 = 1

2A
∑

k

∫
dω

2π

(
�(k,ω) + 1

u

)
λ2 (24)

with

�(k,iω) = 1

A
∑

q

∫
d�

2π

1

(�2 + |q|2 + �2)((ω + �)2 + |k + q|2 + �2)

= 1

A
∑

q

√
|q|2 + �2 +

√
|k + q|2 + �2

2
√

(|q|2 + �2)(|k + q|2 + �2)((
√

|q|2 + �2 +
√

|k + q|2 + �2)2 + ω2)
(25)

and S1 contains nonlinear terms. We discuss S1 and 1/N

corrections in Appendix B. We see that the λ propagator at
N = ∞ is

D0(k,iω) ≡
∫

d2xdτeixk+iωτ 〈λα(x,τ )λ†
β(0,0)〉

= 1

�(k,iω) + 1/u
. (26)

This is related to the propagator of |zα|2. This is most easily
seen directly from the action (13), where λ is not a dynamical
field. Integrating out the field iλ is equivalent to replacing it
by its equation of motion

iλ = u√
N

|zα|2 +
√

N
(us

2
− �2

)
. (27)

So the propagator of λ is related to the propagator of |zα|2 by

〈|zα|2(x,τ )|zα|2(0)〉c = − N

u2
〈λ(x,τ )λ(0)〉. (28)

This can also be verified by coupling a source J to |zα|2 and
taking functional derivatives [28].

B. Spectrum

We describe the spectrum in terms of “n-particle states,”
which are created by n fields:

b†αb
†
β · · · b†γ︸ ︷︷ ︸

n

|0〉. (29)

The enlarged O(2N ) symmetry rotates spinons into anti-
spinons, so we define b†α with indices running from α =
1, . . . ,2N , which can create either particle. The single-particle
states are created by a single z field, so by the form of the z

propagator, their energy is given by the Hamiltonian

H0 = E0 +
∑
kα

√
|k|2 + �2b†α(k)bα(k), (30)

where α = 1, . . . ,2N . The energy of the state b†α(k)|0〉 is given
by

E1(k) = E0 +
√

|k|2 + �2. (31)

This state is in the fundamental representation of O(2N ), so it
is 2N -fold degenerate in addition to any degeneracies between
values of k.

Two-particle states with momentum k take the form

b†α(q)b†β(k − q)|0〉 (32)
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for all choices of momentum q. We decompose this into
irreducible representations of O(2N ), which must separately
have definite energy:

b†αb
†
β = δαβ

(
1

2N
b†γ b†γ

)
+ (b†[αb

†
β]) +

(
b
†
(αb

†
β) − δαβ

2N
b†γ b†γ

)
≡ δαβS + Aαβ + Tαβ. (33)

These are the singlet, antisymmetric tensor, and symmetric
traceless tensor representations respectively. Simple counting
shows that S creates one state, Aαβ creates N (2N − 1) states,
and Tαβ creates (2N − 1)(2N + 2)/2 states. Note that if q =
k − q, the antisymmetric representation will not be present.

At this point, we can use the analysis above. At N = ∞,
the z propagator takes the form of a free boson with dispersion√

|k|2 + �2, so one would naı̈vely expect all states to have
energy given by the Hamiltonian (30). However, this is not the
case for the singlet state, since

〈|zα|2(x,τ )|zβ |2(0,0)〉 ∝ 〈λ(x,τ )λ(0,0)〉. (34)

So the fact that that the propagator of λ takes a nontrivial form
at N = ∞ has the effect of shifting the energy of singlet states.
The energies of the singlet states are given by the poles in
D(k,iω), or equivalently the zeros of �(k,iω). From Eq. (25),
we see that � is always convergent in d = 2, so we can sum
the series numerically to find the singlet energies, which are
given by

�
(
k,E

(S)
2 (k)

) = 0. (35)

In contrast, the antisymmetric tensor and symmetric traceless
tensor remain degenerate at N = ∞, giving 4N2 − 1 degen-
erate states with energy

E2(k) = E1(q) + E1(k − q) (36)

for all choices of the momentum q, where E1(q) is the
single particle energy, Eq. (31). The choice of q can also
induce additional degeneracies for any given total momentum
k. In addition, we saw that if q = k − q there will be no
antisymmetric part, so there will only be a degeneracy of
(2N − 1)(2N + 2)/2 from O(2N ) symmetry.

Going beyond the two-particle states, we expect that a
general state will be given by an application of

b†α(k1)b†β(k2)b†γ (k3)b†σ (k4) · · · |0〉. (37)

Past the two-particle states, the decomposition into irreducible
representations becomes more involved. Generally, the states
will decompose into singlets with energies given by the zeros
of �(k,E(k)), and states described by O(2N ) traceless tensors
with energies given by by Fock spectrum of Eq. (30). Extra
degeneracies can occur due to discrete point group symmetries
of the torus, and sometimes degeneracies are reduced if some
of the b†s are indistinguishable.

C. Evolution of the spectrum of a function of s − sc

In this section, we discuss the general structure of the finite-
size spectrum as a function of s − sc, which can be worked out
on general principles in the limits s = sc, s � sc, and s � sc.
We show that our model takes the correct form in these limits

before giving explicit results on the evolution of the as s − sc

is varied.

1. Critical point

At criticality, s = sc, the system at an infinite volume has
full conformal invariance, and there is no scale in the theory.
The excitation spectrum forms a gapless continuum, E = k. As
a result, when the system is placed on a torus, the only possible
dependence that the energy can have on the size of the system
is 1/L. Therefore the quantities LE will be universal functions
of τ only. This dependence is automatic from our finite-size
calculations, where the solution to the gap equation will give
a pure number for L�, and all energies manifestly have 1/L

dependence.

2. Disordered phase

In the disordered phase, s > sc, the system develops a
gap m even at L = ∞, and the low-energy excitations will
take the form E =

√
|k|2 + m2. In the scaling limit, m is of

order (s − sc)ν and ν = 1 at N = ∞. This energy gap implies
that all correlations decay exponentially over a length scale
1/m ∼ 1/(s − sc), resulting in a very weak dependence on
finite-size effects when the system is placed on a torus of
size L, provided Lm ∼ L(s − sc) � 1. Therefore we expect
the finite-size spectrum of the disordered phase to evolve
to the form E =

√
|k|2 + �2 at increasing (s − sc), where

� = m + O(e−Lm) takes the same value as it does in an infinite
volume up to exponentially small corrections in L(s − sc),
and the momenta k are quantized according to the required
boundary conditions. We also note that the threshold for singlet
excitations in an infinite volume is 2m, so the absence of large
finite-size corrections suggests that the two-particle singlet
spectrum will merge with the other two-particle states.

The properties of the disordered phase can be verified
explicitly. By taking the L → ∞ limit of Eq. (19), we find
the exact gap in an infinite volume,

m = 2π (s − sc). (38)

This can be compared with the gap in a finite volume when
s � sc. In this limit, L� is large and we can expand g

(2)
1/2(�,τ ),

obtaining

� = 2π (s − sc) + O
(

1

L2(s − sc)2
e−L2(s−sc)2

)
, s � sc.

(39)

The energies of the two-particle singlet states can be verified
to merge with the other two-particle states in this limit.

3. Ordered phase

In the ordered phase, s < sc, the finite-size spectrum differs
considerably from the infinite volume case. In an infinite
volume, there is a degenerate ground-state manifold of states
at zero momentum, which are related by the O(2N ) symmetry,
and a properly prepared system will pick a single one of
these states, spontaneously breaking the symmetry. The stable
excitations above the ground state consist of 2N − 1 Goldstone
modes with a linear dispersion, E = c|k|, corresponding to
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transverse fluctuations of the order parameter about its ground-
state value. In addition, there will be an unstable continuum of
excitations associated with transverse fluctuations of the order
parameter and fluctuations of its amplitude φ2

α , which will be
mixed by interactions [28].

In contrast, in a finite volume the ground state must be
a nondegenerate O(2N ) singlet, and spontaneous symmetry
breaking is impossible. Instead of a ground-state manifold,
there will be a “tower of states” above the ground state at k = 0
with energies scaling as E ∼ 1/A with the system size [7–
9,29–31]. In the thermodynamic limit, this tower “collapses”
into the ground state, and a symmetry-broken state can be
formed as an extensive superposition of states in the tower.

One can analyze the general properties of the tower of states
by forming an effective Hamiltonian for their spectrum. This
can be derived by integrating out the finite-momentum modes
and finding an effective Hamiltonian for the zero-momentum
component of the field [27]. For a system with O(2N )
symmetry, the effective Hamiltonian for the tower takes the
form

Htower = E0 + L2

κAN (sc − s)
(40)

up to corrections induced by fluctuations of the finite mo-
mentum modes. Here, Li , i = 1,2, . . . ,N (2N − 1) are the
generators of rotations in O(2N ), and κ is a constant which
will be nonuniversal away from the scaling limit. The effective
Hamiltonian for the tower is simply an O(2N ) rigid rotator,
and the energy levels are given by

Etower = E0 + �(� + 2N − 2)

κN (sc − s)A , � = 0,1,2, . . . . (41)

This constrains the level spacing between states in the tower. In
our present calculation, we take the N = ∞ limit, and obtain
equally spaced energy levels. We note that for the physical
cases of interest the splitting will be different; below we
consider an O(4)∗ transition where one takes N = 2 and �

even, resulting in a splitting of 2�(2� + 2) up to the irrelevant
splittings discussed in Sec. IV. The eigenfunctions of Eq. (40)
in the angular basis are the hyperspherical harmonics on S2N−1,
which are the higher-dimensional generalization of the familiar
spherical harmonics on the two-sphere. These eigenfunctions
are in the symmetric traceless tensor representations of O(2N ),
and their degeneracy is given by

Deg. = 2

(
� + 2N − 3

2N − 2

)
+

(
� + 2N − 3

�

)
. (42)

We can verify the above structure in our model by taking the
limit s � sc in the gap equation (19). We find that the gap
takes the form

� = 1

A(sc − s)
+ O[(A(sc − s))−2], s � sc. (43)

The states created purely by |k| = 0 will form an equally
spaced spectrum above the ground state with this 1/A
dependence on the system size, and by the analysis in Sec. II B
they will be in the symmetric traceless tensor representations
of O(2N ), in agreement with the above analysis.

The states created by finite-momentum operators will have
an energy given by E = |k| + O(�2/|k|), and transform in

TABLE I. Lowest energy splittings L(E − E0) and their degen-
eracy at s = sc for large-N on the square torus. The ground-state
energy is given by E0 = −.329N . Here, κ = L|k|/2π .

Degeneracy κ = 0 κ = 1 κ = √
2

1 0
2N 1.512

(2N + 2)(2N − 1)/2 3.024(2N+2
3

) − 2N 4.536

2
(1+2N

2N−2

) − (3+2N

4

)
6.048

8N 6.463
2
(2+2N

2N−2

) − (4+2N

5

)
7.560

4(4N 2 − 1) 7.975
1 8.126
8N 9.013
2
(3+2N

2N−2

) − (5+2N

6

)
9.072

either traceless tensor or singlet representations. These corre-
spond to the Goldstone modes in the infinite-volume system,
but there will be no distinction between the longitudinal and
transverse fluctuations since symmetry is unbroken. We note
that even the zero-momentum states created by the singlet
operator approach the expected spectrum for multi-particle
Goldstone states.

D. Results

For an explicit example, we consider the square torus, τ =
i, where both spatial directions have length L. Precisely at
s = sc, the energy levels are a set of universal numbers times
1/L; in Table I, we have given the lowest-lying energy levels
at the critical point and their total degeneracy. We show the
evolution of the spectrum LE as a function of L(s − sc) in
Fig. 2, choosing states that highlight important features of the
spectrum.

ground state
κ = 0 tower
Goldstone states
singlets

=1.5 =1.0 =0.5 0.5 1.0 1.5

5

10

15

20

25

30

FIG. 2. The evolution of the spectrum LE for the O(4) model as
a function of the tuning parameter L1/ν(s − sc) on the square torus,
τ = i. Note that ν = 1 at leading order in 1/N . The energy levels
are defined so that E = 0 at s = sc and L = ∞. We label the states
by their behavior in the ordered region, distinguishing between the
tower, the Goldstone modes, and the singlet states. Our choice of
states is not not exhaustive, but they highlight the main features of
each region.
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FIG. 3. (Left) The dimensionless ground-state energy density LE0/τ2 = L3E0/A for the O(4) model on an infinite cylinder with
circumference L. This energy is defined so that E/A = 0 at s = sc and L = ∞. (Right) The energy gap above the ground state for the
O(2N ) model at N = ∞ on the infinite cylinder as a function of s − sc. For energies higher than the gap, the spectrum is continuous.

We also give results for the cylinder, τ2 → ∞, in Fig. 3.
The presence of an infinite dimension changes the nature of the
spectrum considerably, but there are still universal quantities to
compute. Since the ground-state energy is extensive, diverging
with the area of the system, we plot the universal ground-
state energy density LE0/τ2 = L3E0/A instead. Also, since
particles can take a continuous momentum along the direction
of the cylinder, the spectrum above the gap is a continuum
given by particles with energy

√
k2 + �2. However, the gap

remains a universal quantity which we plot in Fig. 3. We
also note that in the ordered phase, the gap no longer scales
with 1/A since the area is infinite. Instead, the gap becomes
exponentially suppressed in the circumference of the cylinder,

� ∝ 1

L
exp(−πL(sc − s)), s � sc, τ2 = ∞. (44)

III. CRITICAL O(2N)∗ SPECTRUM

We now consider the O(2N )∗ model, where the spinons can
take antiperiodic boundary conditions along either direction
of the torus. We treat the four topological sectors as separate
decoupled theories for now. The boundary conditions can be
taken into account by simply by noticing that momentum
quantization is shifted by a half-integer in the antiperiodic
direction. We parametrize the momentum as

kn,m = 2π [(n + a1)k1 + (m + a2)k2], n,m ∈ Z, (45)

TABLE II. The definitions of a1 and a2 appearing
in (45) for different boundary conditions. The left column
denotes whether the boundary conditions are periodic (P)
or antiperiodic (A) in the ω1 or ω2 directions respectively,
while the right column gives the values of a1 and a2 for
this boundary conditions.

(ω1,ω2) (a1,a2)

(P,P) (0,0)

(P,A) (0, 1
2 )

(A,P) ( 1
2 ,0)

(A,A) ( 1
2 , 1

2 )

where the ki were defined in Eq. (10), and the values of a1, a2

are determined by the boundary conditions, see Table II.
This redefinition of allowed momenta is all that is needed

to reproduce the calculations in Sec. II A. We can still use the
special functions defined in the appendix (which are defined
for arbitrary boundary conditions), and we solve the same gap
equation for �,

g
(2)
1/2(�,τ ) = −2πL(s − sc), (46)

and have the same formula for the ground-state energy,

E0 = 2πN

τ2L
g

(2)
−1/2(�,τ ) + N (s − sc)

2
τ2L

2�2. (47)

However, we can now find the gap and the ground-state
energies in all four topological sectors of the theory, and
we will see below that the splitting between the ground-
state energies is important. The ground-state energies are
proportional to N , so the energy splittings in the O(2N )∗ theory
will be N dependent in the 1/N expansion, unlike the O(2N )
case above. This N dependence is a physical property of a
system with 2N spinons, since the ground-state configuration
of each field with a twist will each contribute equally to shift
the energy above the ground state of the system without a twist.

One consequence of the antiperiodic sectors is that there is
no zero mode, so the massless free particle spectrum |k| already
has a gap. As a result, the saddle-point value of iλ̃ = �2

determined through Eq. (46) can take negative values, provided√
|k|2 − |�2| is real for all possible values of k.
We now consider the constraint of Eq. (7), requiring that

the wave functional must be either an even or odd function of
the zα . These two cases correspond to an even or odd number
of spins in the underlying lattice antiferromagnet of interest.
In terms of the results in Sec. II B, this means we need to
calculate the full spectrum for all of the relevant boundary
conditions, and then separate the spectrum into the states with
even particle-number states and odd particle-number states to
describe the two possibilities.

A. Evolution of the spectrum of a function of s − sc

When considering the deviation from the critical point, the
topologically nontrivial sectors correspond to extra features in
the two neighboring phases. In a Z2 spin liquid, the ground
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state on a torus will exhibit a fourfold degeneracy up to
exponential splitting in the system size. In addition, excited
states in each topological sector will also contain a fourfold
degeneracy corresponding to excitations in the background
of different flux sectors through the holes of the torus. This
topological degeneracy is the only remnant of the vison
particle, which has been integrated out to obtain the O(2N )∗
model, so our theory only captures the spectrum at energies
well below the vison mass.

1. Topological phase

This degeneracy is easily verified in our model; as shown
above, the phase with s > sc will have an energy gap even in
an infinite volume, which results in the spectrum showing a
weak dependence on boundary conditions. This will cause
the different topological sectors to become degenerate up
to an exponential splitting of magnitude e−mL where m =
2π (s − sc). From solving Eq. (46) for s � sc, one find that in
all four sectors the gap approaches � = m up to exponential
corrections in the system size, and similarly the ground-state
energies in this limit will become exponentially close.

2. Magnetically ordered phase

In the magnetically ordered phase, s < sc, the antiperiodic
boundary conditions have an interpretation as vortices of the
order parameter. This can be seen from the parametrization
of the order parameter in terms of the spinon degrees of
freedom in Eq. (3). As the spinon field undergoes a smooth
noncontractible twist around a cycle of the torus, zα →
−zα , the physical order parameter returns to its original
configuration after traversing a topologically nontrivial path in
order parameter space. These correspond to vortices associated
with the first homotopy group, π1(SO(3)) = Z2. Note that by
only allowing twists in the order parameter around the torus,
we are ignoring local vortex configurations. This simplification
is analogous to ignoring the local vison excitations in the
spin-liquid phase, since a local vortex will have some extra
energy cost due to its core.

The energy cost of a vortex can be estimated by dimensional
analysis. On general grounds, in the ordered phase we can write

TABLE III. Energy splittings L(E − E0) and their degeneracies
at s = sc for the O(4)∗ transition from the large-N expansion with
τ = i. Here, κ = L|k|/2π . The ground-state energy relative to L =
∞ is LE0 = −1.317. Here, we restrict to states that are even in
the fields zα , which corresponds to an antiferromagnet with an even
number of spins.

Deg. κ = 0 κ = 1

1 0
2 1.921
9 3.0239
1 3.0244
25 6.048
66 7.111 7.111
60 7.975
1 8.126
49 9.072

TABLE IV. Energy splittings from L(E − E0) for the O(4)∗

transition from the large-N expansion with τ = i and N = ∞. Here,
κ = L|k|/2π , and we restrict to states that are odd in the fields zα ,
which corresponds to an antiferromagnet with an odd number of spins.
We are measuring the energies with respect to the lowest energy in
the O(4) model, LE0 = −1.317, for comparison with Table III.

Deg. κ = 0 κ = 1/2 κ = 1/
√

2 κ = 1 κ = √
5/2 κ = √

2

4 1.512
16 4.516
16 4.536
16 6.463
16 6.694
36 7.560
32 8.719
16 9.013

the energy functional for the phase θ (x) of the order parameter
as

E = ρs

2

∫
d2x(∇θα)2, (48)

where ρs is a “spin stiffness” (really the stiffness of the
condensed zα fields rather than the underlying spin order
parameter), given by ρs ∼ N (sc − s) close to the large-N
critical point [21,22]. We consider a smooth configuration
of the field from zα → −zα as the order parameter winds
around either cycle, which have lengths |ω1,2|. This contributes
a gradient of order ∇zα ∼ 1/|ω1,2|, and the energy cost will
be

E ∼ N (sc − s)
A

|ω1,2|2 . (49)

(a1,a2) ground states
κ = 0 tower
Goldstone states
singlets
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FIG. 4. The evolution of the spectrum LE for the O(4)∗ model as
a function of the tuning parameter L1/ν(s − sc) on the square torus,
τ = i. Note that ν = 1 to leading order in 1/N . The energy levels
are defined so that E = 0 at s = sc and L = ∞. We label the states
by their behavior in the ordered region, distinguishing between the
tower, the Goldstone modes, and the singlet states. We also distinguish
the four “ground states” of the different sectors (a1,a2) according to
Table II, though the (A,P) and (P,A) sectors are degenerate for the
square geometry. These states become degenerate in the topological
phase, while they represent Z2 vortices in the magnetic phase. Our
choice of states is not exhaustive, but highlights the main features of
the proximate phases.
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FIG. 5. (Left) The splitting between the energy densities of the periodic and antiperiodic sectors for the O(4)∗ model on the infinite cylinder.
The energy levels are defined so that E0/A = 0 at s = sc and L = ∞. (Right) The energy gap above the ground state for the O(4)∗ model on
the cylinder as a function of s − sc. The spectrum above this gap is continuous.

The estimate can be checked against the current model. For
s � sc, the solution of of gap equation becomes

�2 = 1

A2(sc − s)2
− |kmin|2, (50)

where |kmin| is the minimum value of |k| allowed in a given
topological sector [so kmin is always zero in the (P,P) sector].
Solving Eq. (47) for the energy of a vortex in this limit gives

Evortex ≡ E0 − E0,(P,P ) = NA(sc − s)

2
|kmin|2, s � sc.

(51)

This agrees with the above estimate since |kmin|2 ∼ 1/|ω1,2|2
in the different sectors.

B. Results

We give the results for the low-lying O(4)∗ spectrum on a
square torus at criticality in Tables III and IV, which contain
the even and odd spin results, respectively. We also give the
evolution of the spectrum as a function of s − sc in Fig. 4,
choosing some representative states to depict the nature of the
two phases. We also give universal results for the cylindrical
limit in Fig. 5. We plot the splitting between the ground-state
energy densities in the two sectors, as well as the excitation
gap which is simply twice the gap for the O(4) model. Above
the excitation gap, the spectrum becomes a continuum due
to the momentum along the infinite direction, so there are no
universal energy levels.

We also comment on the triangular torus, τ = eiπ/3.
This is an interesting case because numerical simulations
on the triangular lattice are more easily performed using
this boundary condition, so these results have relevance to
future studies on the J1-J2 Heisenberg model where the
antiferromagnetic-spin-liquid transition has been reported. For
this special value of the modular parameter, it turns out that
all three nontrivial topological sectors are exactly degenerate.
This is due to the choice eiπ/3 being invariant under the
modular transformation τ → −1/(τ − 1), see the discussion
below Eq. (A18). In addition, this torus has a discrete six-fold
rotational symmetry, resulting in a highly degenerate spectrum
for finite-momentum states. The evolution of the spectrum for
the triangular torus is shown in Fig. 6.

IV. ANISOTROPIC CORRECTIONS

We now consider to the leading irrelevant operator in our
theory,

L′ = γ |z∗
α∇zα|2. (52)

Asymptotically close to the critical point, this term is irrelevant
and will not contribute to universal physics. However, this
term is dangerously irrelevant because it breaks the O(2N )
symmetry down to SU(N ) for any deviation from the scaling
limit. Therefore the actual energy levels for the transition will
organize into SU(N ) multiplets for any lattice model, with a
splitting determined by γ . The coefficient γ is nonuniversal
and will be determined by microscopics, so in principle one
must fit its value to a given spectrum.

We begin by discussing the nature of the splitting in terms
of representation theory. The real and imaginary parts of zα

transform together as an O(2N ) vector, but this representation
will transform reducibly under the SU(N ) symmetry of
Eq. (52). Labelling the irreducible representations by their

ground states
κ = 0 tower
Goldstone states
singlets
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FIG. 6. The evolution of the spectrum LE for the O(4)∗ model
as a function of the tuning parameter L1/ν(s − sc) on the triangular
torus, τ = eiπ/3. Note that ν = 1 to leading order in 1/N . The energy
levels are defined so that E = 0 at s = sc and L = ∞. We label the
states by their behavior in the ordered region, distinguishing between
the tower, the Goldstone modes, and the singlet states. Note that the
three sectors (A,P), (P,A), and (A,A) are degenerate in this geometry.
Our choice of states is not exhaustive, but highlights the main features
of the proximate phases.
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dimension, the splitting of the O(2N ) vector into SU(N )
representations is

2N −→ N ⊕ N, (53)

where N and N are the fundamental and antifundamental
representations of SU(N ), which we will shortly associate with
spinons and antispinons. We can analyze the breaking of higher
representations of O(2N ) by taking tensor products of the
fundamental representation. For example, the splitting of the
two-particle states can be obtained by taking the antisymmetric
or symmetric tensor product of the O(2N ) vector, and use the
known properties for adding SU(N ) representations

[(N ⊕ N ) ⊗ (N ⊕ N )]A

= N (N − 1)

2
⊕ N (N − 1)

2
⊕ (N2 − 1) ⊕ 1,

[(N ⊕ N ) ⊗ (N ⊕ N )]S

= N (N + 1)

2
⊕ N (N + 1)

2
⊕ (N2 − 1) ⊕ 1, (54)

where the subscripts indicate antisymmetrizing or symmetriz-
ing the direct product with respect to the ordering of the O(2N )
indices. Since the symmetric representation of O(2N ) contains
an irreducible singlet, it must coincide with the singlet state in
the last line of Eq. (54).

We can make contact with our expressions in Sec. II B by
defining spinon and antispinon operators and relating them
to the O(2N ) vector operators b†α . We expand the zα field
as

zα = 1

A1/2

∑
k �=0

eik·x
√

2E1(k)
(aα(k) + c†α(−k)). (55)

Here, the dot product is given by k · x ≡ Re(kx∗), and E1(k) =√
|k|2 + �2 is the single-particle energy at N = ∞. Here, we

are assuming that the perturbation γ does not shift the saddle-
point value of the path integral, so we can perturb around the
N = ∞ spectrum. Since zα transforms as an SU(N ) vector,
the particles created by c†α are spinons and the particles created
by a†

α are antispinons. We can identify these with the O(2N )
bosons defined earlier

c†α = 1√
2

(b†α + ib
†
α+N ), a†

α = 1√
2

(b†α − ib
†
α+N ). (56)

From these relations, it is straight-forward to check that the
embedding in Eq. (53) holds. The decomposition of the two-
particle states can be written

b
†
[αb

†
β] −→ c

†
[αc

†
β] + a

†
[αa

†
β]

+
(

c†αa
†
β − a

†
βc†α − δαβ

N
(c†γ a†

γ − a†
γ c†γ )

)

+ δαβ

N
(c†γ a†

γ − a†
γ c†γ ),

b
†
(αb

†
β) −→ c

†
(αc

†
β) + a

†
(αa

†
β)

+
(

c†αa
†
β + a

†
βc†α − δαβ

N
(c†γ a†

γ + a†
γ c†γ )

)
,

b†γ b†γ −→ c†γ a†
γ + a†

γ c†γ , (57)

where the indices on the left run to 2N while the indices on
the right run to N . Once again, if the two states carry the same
momentum there is no antisymmetric contribution.

We now apply perturbation theory on the degenerate
states, using Eq. (57) to diagonalize the perturbation. We
define the dimensionless coupling γ̃ ≡ γ /L as well as the
shorthand χα(k) ≡ aα(k) + c†α(−k), and obtain the interaction
Hamiltonian

Vγ = γ̃

τ2L

∑
k1,k2,k3 �=0

k2 · k3

4
√

E1(k1)E1(k2)E1(k3)E1(k1 − k2 + k3)

×χ †
α(k1)χα(k2)χ †

β(k3)χβ(k1 − k2 + k3). (58)

The single-particle energies of spinons and antispinons are
shifted by the same amount, so there is no splitting to one-
particle states to leading order.

We will explicitly compute the shift in energies for the two-
particle states in Eq. (57), which are all degenerate at N = ∞
except for the singlet state in the last line. The perturbation will
split these states, and can also split any possible degeneracy
between states with the same total momentum. We first ignore
the latter possibility, which does not occur for any of the
states listed in the above tables. Recall that the two-particle
state energies can be written as E2(k) = E1(q) + E1(k − q)
for some value of q. Then the splitting of the antisymmetric
representation is

N (N − 1)

2
,
N (N − 1)

2
: �Easym(k) = − γ̃

τ2L

|k − 2q|2
4E1(q)E1(k − q)

;

N2 − 1 : �Eadj(k) = − γ̃

τ2L

2q · (k − q)

4E1(q)E1(k − q)
;

1 : �Es(k) = γ̃

τ2L

N (|q|2 + |k − q|2) − 2q · (k − q)

4E1(q)E1(k − q)
, (59)

while for the symmetric representation,

N (N + 1)

2
,
N (N + 1)

2
: �Esym(k) = γ̃

τ2L

|k|2
4E1(q)E1(k − q)

;

N2 − 1 : �Eadj(k) = − γ̃

τ2L

2q · (k − q)

4E1(q)E1(k − q)
. (60)
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TABLE V. The two-particle states in the even sector of the
critical O(4)∗ spectrum, taken from Table III, and their splitting
due to the perturbation. The energies of these states are written
as E2(k) = Egs + E1(q) + E1(k − q), and we list the scaled mo-
menta, κ = L|k|/2π and q̃ = L|q|/2π . For further details, see the
text.

Deg. at γ = 0
√
AE2 κ q̃ Deg. at O(γ )

√
A�E

9 3.0239 0 0 9 0
30 7.111 0 1/2 4 −1.47γ̃

12 0
12 0.73γ̃

2 1.47γ̃

36 7.111 1 1/2 12 −0.73γ̃

24 0
60 7.975 1 0 8 −1.01γ̃

24 0
24 1.01γ̃

4 2.02γ̃

The subscripts refer to the states being in the symmet-
ric, antisymmetric, singlet, or adjoint representations of
SU(N ).

Summarizing the results to first order in γ , the degener-
acy of the antisymmetric representation breaks down from
N (2N − 1) to N (N − 1), N2 − 1, and 1, while the degeneracy
of the symmetric traceless tensor representation breaks down
from (2N − 1)(2N + 2)/2 to N (N + 1) and N2 − 1.

Note that the first-order correction is zero if the unperturbed
particles all have zero momentum. Therefore, to first order
there is no splitting of the “tower of states” in the antiferro-
magnetic phase. Although we do not compute the magnitude
for the splitting of the states in the tower, we comment on the
expected representations which should appear. In Sec. II C, we
saw that the tower of states for the O(2N ) model all belong to
the symmetric traceless tensor representations. For the case of
interest, N = 2, the allowed degeneracies in the tower becomes
(2� + 1)2 for � = 0,1,2, . . . where we use the constraint that
only an even number of particles are allowed. Repeating the
above analysis by forming symmetric products and subtracting
out the traces, one finds that each of these states decomposes
into (2� + 1) different SU(2) representations each with spin
�. We also note that the spacing of the even-particle spectrum
for the O(4)∗ model should be proportional to 2�(2� + 2) ∝
�(� + 1), which agrees with the spacing for the tower in an
SU(2) antiferromagnet [30]. This qualitative structure of the
spectrum, with (2� + 1) inequivalent spin-� multiplets in the
tower becoming approximately degenerate close to the critical
point, is an interesting feature of this theory which could give
good evidence for the existence of an O(4)∗ transition and a
neighboring spin-liquid phase.

For a definite example, we revisit the results for the even
sector of the O(4)∗ model on the square torus. In Table V,
we explicitly show all the two-particle states from Table III,
which are split by the perturbation, and give the magnitude of
the splitting. Note that the numerical value of all energies will
be shifted from their unperturbed values, but here we only give
the energy splitting between states. The states listed in Table V

turn out to be the only states in Table III which are split at first
order in γ .

In principle, one can continue this process to higher-particle
states, and to higher order in γ . For a more complex O(2N )
multiplet, one finds how the SU(N ) representations fit inside
the larger group, and use this to diagonalize the perturbation
within the degenerate multiplet.

V. CONCLUSIONS

There have been extensive discussions in the literature
on the nature of the finite size and low energy spec-
trum of quantum antiferromagnets in antiferromagnetically
ordered and gapped topological phases. For magnetically
ordered antiferromagnets, we have the well-known “tower of
states” [7–9,29–31] obtained from the excitations of a quantum
rotor representing the spatially uniform collective quantum
fluctuations of all the spins; such a spectrum is characteristic
signature of the spontaneously broken spin rotation symmetry.
On the other hand, antiferromagnets with an energy gap
and topological order have low energy states whose energy
differences are exponentially small in the system size; again,
this nearly degenerate spectrum is a characteristic signature of
the topological order in this phase of the antiferromagnet.

In the present paper, we have presented results on the
evolution of the spectrum between the above two limits.
We examined a two-dimensional antiferromagnet, with global
SU(2) spin rotation symmetry, which undergoes a transition
between a gapped Z2 spin liquid and coplanar antiferromag-
netic order. Such a transition is described by a O(4)∗ conformal
field theory in 2+1 dimensions, which is closely related to
the O(4) Wilson-Fisher conformal field theory. We showed
that the quantum critical point has a universal spectrum, in
which the energy levels are universal numbers times 1/L,
where L is the spatial system size. This spectrum contains
features which descend from the phases found on either side
of the critical point. The topological degeneracy on the gapped
side evolves into nontrivial boundary conditions and selection
rules on the operators of the conformal field theory. And the
spontaneously broken spin-rotation symmetry on the other
side yields low-lying states with nonzero spin at the critical
point.

We hope that our results will aid in analyzing numerical data
on lattice quantum antiferromagnets which undergo transitions
from antiferromagnetically ordered to spin-liquid states. With
the available data on the manner in which the “tower of
states” evolve into the spin liquid across a quantum critical
point, strong constraints become available on identifying the
topological order in the spin liquid.
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APPENDIX A: LOOP SUMS

Here we review the calculation of loop diagrams in a finite volume using dimensional regularization. To remind the reader of
our notation, we parametrize the coordinates on the spatial torus in complex coordinates w = x + iy, and denote the two periods
in these coordinates as ω1 and ω2 (see Fig. 1). We define the modular parameter τ ≡ ω2/ω1 and the length scale L ≡ |ω1|. In
this geometry, the basis vectors of the dual lattice are given by

k1 = −iω2/A, k2 = iω1/A. (A1)

The eigenvalues of the Laplacian are dependent on the boundary conditions of the torus. We consider the fields to be either
periodic or antiperiodic in either direction. With this in mind, we write the eigenvalues of the Laplacian as

|kn,m|2 = (2π )2|(n + a1)k1 + (m + a2)k2|2, n,m ∈ Z. (A2)

Here, the numbers a1 and a2 parametrize whether the boundary conditions on the fields are periodic or antiperiodic in the
directions ω1 and ω2, see Table II.

A general one-loop diagram will be of the form

∑
n,m∈Z

1

(|kn,m|2 + �2)s
=

(
τ2L

2π

)2s ∑
n,m∈Z

1

(|m + a2 + (n + a1)τ |2 + γ 2)s
, (A3)

where τ = τ1 + iτ2 and γ = τ2L�/2π (we have used τ2 = A/L2).
We now generalize this sum to arbitrary dimension. This is done by promoting the two-dimensional vector (n + a1,m + a2) to

a d-dimensional vector of (half) integers for the (anti)periodic case. Then in (A3) we simply take the sums to be over n,m ∈ Zd/2.
We will write the sums as

g(d)
s (�,τ ) =

∑
n,m∈Zd/2

1

(|m + a2 + (n + a1)τ |2 + γ 2)s
. (A4)

The summand is rewritten using the identity

1

As
= πs

�(s)

∫ ∞

0
dλλs−1e−πλA (A5)

giving

g(d)
s = πs

�(s)

∫ ∞

0
dλλs−1e−πλγ 2

∑
n,m∈Zd/2

exp(−πλ|m + a2 + (n + a1)τ |2). (A6)

We can now write the sum in terms of the two-dimensional Riemann theta function, defined as

�(λ,�,u) ≡
∑
n∈Z2

exp(−πλnᵀ · � · n − 2πnT · u), (A7)

where � is a 2 × 2 matrix and u is a two-dimensional vector. Then

g(d)
s = πs

�(s)

∫ ∞

0
dλλs−1e−πλγ 2

exp

[
−πλγ 2 − dπλ

2
((a1τ2)2 + (a2 + a1τ1)2)

]
�(λ,�(τ ),v1)d/2, (A8)

where

�(τ ) =
(|τ |2 τ1

τ1 1

)
, v1 = λ

(
τ1(a2 + a1τ1) + a1τ

2
2

a2 + a1τ1

)
. (A9)

As with the original sum, the function (A8) converges whenever s > d/2, while for s < d/2, the integral diverges for small
values of λ. We proceed by splitting the integral into two parts,

∫ ∞
0 = ∫ 1

0 + ∫ ∞
1 , and working on the divergent piece. Using the

mathematical identity

�(λ,�,u) = 1

λ
√

det �
exp

(π

λ
uT · �−1 · u

)
�

(
1

λ
,�−1, − i

λ
�−1 · u

)
, (A10)

the integral at small λ becomes

τ
−d/2
2

πs

�(s)

∫ 1

0
dλλs−1−d/2e−πλγ 2

�

(
1

λ
,�(τ )−1,v2

)d/2

= τ
−d/2
2

πs

�(s)

∫ ∞

1
dλλd/2−s−1e−πγ 2/λ�(λ,�(τ )−1,v2)d/2 (A11)

with v2 = −i(a1,a2). Since � → 1 for large λ, we see that the integral has the expected UV divergence. In this paper, we evaluate
sums with s = 1/2 and s = −1/2 in d = 2, so we add and subtract the divergent terms for these cases, evaluating integrals where
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possible in the convergent region s > d/2:

τ
−d/2
2

πs

�(s)

∫ ∞

1
dλλd/2−s−1

(
e−πγ 2/λ�(λ,�(τ )−1,v2)d/2 − 1 − πγ 2

λ

)
+ τ

−d/2
2

πs

�(s)

(
1

s − d/2
+ πγ 2

1 + s − d/2

)
. (A12)

Now that the integrals which were only convergent for s > d/2 have been evaluated, we analytically continue the result to the
dimensionality of interest, and g(d)

s will only have simple poles on the complex plane.
To summarize, we have∑

k

1

(|k|2 + �2)s
=

(
τ2L

2π

)2s

g(d)
s (�,τ ),

g(d)
s (�,τ ) = πs

�(s)

{∫ ∞

1
dλλs−1 exp

[
−λτ 2

2 L2�2

4π
− dπλ

2
((a1τ2)2 + (a2 + a1τ1)2)

]
�(λ,�(τ ),v1)d/2

+ τ
−d/2
2

∫ ∞

1
dλλd/2−s−1

[
exp

(
−τ 2

2 L2�2

4πλ

)
�(λ,�(τ )−1,v2)d/2 − 1 + τ 2

2 L2�2

4πλ

]

+ τ
−d/2
2

s − d/2
− L2�2

4π

τ
2−d/2
2

1 + s − d/2

}
, (A13)

where the Riemann theta function � was defined in (A7), and we have also defined

�(τ ) =
(|τ |2 τ1

τ1 1

)
, �(τ )−1 = 1

τ 2
2

(
1 −τ1

−τ1 |τ |2
)

, (A14)

v1 = λ

(
τ1(a2 + a1τ1) + a1τ

2
2

a2 + a1τ1

)
, v2 = −i

(
a1

a2

)
. (A15)

At this point, we note the properties of these sums under modular transformations. Modular transformations are discrete
diffeomorphisms on the torus, so we need the spectrum to be invariant under the modular group. This group is generated by the
two transformations [32]

T : τ → τ + 1, S : τ → − 1

τ
. (A16)

Under these transformations, the area τ2L
2 is left unchanged. To see how our loop sums transform under these operations, we

look at how |kn,m|2 in Eq. (A2) transforms, since all sums involve some power of this object summed over all integers. A quick
calculation finds

1

(2π )2
|kn,m|2 = 1

τ2A
[
(n + a1)2

(
τ 2

1 + τ 2
2

) + (m + a2)2 + 2(n + a1)(m + a2)τ1
]

T−→ 1

τ2A
[
(n + a1 + m + a2)2

(
τ 2

1 + τ 2
2

) + (m + a2)2 + 2(n + a1 + m + a2)(m + a2)τ1
]

S−→ 1

τ2A
[
(m + a2)2

(
τ 2

1 + τ 2
2

) + (n + a1)2 − 2(n + a1)(m + a2)τ1
]
. (A17)

After summing over all integers, it is clear that modular transformations transform between the different topological sectors as
follows:

T : (a1,a2) → (a1 + a2,a2), S : (a1,a2) → (a2,a1), (A18)

where a1 and a2 are defined modulo an integer. Note that if we include any of the antiperiodic sectors, modular invariance forces
us to include the other two.

We note that the above relations will also cause extra degeneracies to arise for special values of τ . For example, we consider
the square torus τ = i in the main text, which satisfies τ = −1/τ . Since the full spectrum must be invariant under S, the (1/2,0)
and (0,1/2) sectors are degenerate. We also consider the triangular torus τ = eiπ/3, which satisfies τ = −1/(τ − 1). Then the
invariance of the full spectrum under T −1S means all three nontrivial sectors have exactly degenerate spectra.

In the main text, we gave universal results for the cylindrical limit, which is τ1 = 0, τ2 → ∞. This can be done either by
considering formulating the problem on the cylinder to begin with, or by taking the limit of the special function in Eq. (A13).
The limit requires needs to be taken carefully because of the competing dependencies g(d)

s on τ2, but by similar manipulations to
the above derivation the limits can be extracted. For the two cases we use in the text, the limits are given by

g
(2)
1/2(�,τ = i∞) =

∫ ∞

1
dλλ−1/2

[
exp

(
−L2�2

4πλ

)
ϑ3(πa1,λ) − 1

]
+

∫ ∞

1
dλλ−1 exp

(
−λL2�2

4π
− πλa2

1

)
ϑ3(−iπλa1,λ) − 2

(A19)
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and

g
(2)
−1/2(�,τ = i∞) = − τ 2

2

2π

{∫ ∞

1
dλλ1/2

[
exp

(
−L2�2

4πλ

)
ϑ3(πa1,λ) − 1 + L2�2

4πλ

]

+
∫ ∞

1
dλλ−5/2 exp

(
−λL2�2

4π
− πλa2

1

)
ϑ3(−iπλa1,λ) − 2

3
+ L2�2

2π

}
. (A20)

Here we have used the Jacobi theta function, defined as

ϑ3(iπa,b) ≡
∑
n∈Z

exp(−πbn2 − 2πan). (A21)

The gap on the cylinder can be obtained by using Eq. (A19) in the gap equation (19). From Eq. (A20), we see that g
(2)
−1/2 diverges

in the cylindrical limit. This is related to the area dependence of the ground-state energy, which is given by

E0 = 2πN

τ2L
g

(2)
−1/2(�,τ ) + N (s − sc)

2
τ2L

2�2. (A22)

The ground-state energy is proportional to τ2 in this limit, diverging as the area becomes infinite. However, the dimensionless
ground-state energy density, LE0/τ2 = L3E0/A, remains a universal function of s − sc, which we compute in the main text.

APPENDIX B: 1/N CORRECTIONS

Here we mention the form of the leading 1/N corrections, following a similar notation to Ref. [28]. First, we need to calculate
the critical coupling sc to order 1/N . This is done by solving the infinite-volume gap equation (15), where we write the infinite
volume saddle point as iλ̃ = r + iλ/

√
N :

r

u
= sc

2
+

∫
dd+1p

(2π )d+1

1

p2 + r
. (B1)

The coupling sc should be tuned so that the energy gap in an infinite volume vanishes. We do this by working backwards: we first
calculate the energy gap as a function of r , then tune r such that the energy gap vanishes, and finally define sc through Eq. (B1).
From action (13), the relevant self-energy diagram corrections to the zα propagator are

G−1
∞ (p) = p2 + r + 1

N

∫
dd+1q

(2π )d+1

1

�∞(q,r)

1

((p + q)2 + r)

− 1

N

1

�∞(0,r)

∫
dd+1q1

(2π )d+1

dd+1q2

(2π )d+1

1

�∞(q1,r)

1(
q2

2 + r
)2

((q1 + q2)2 + r)
, (B2)

where we have the inverse λ propagators in an infinite volume:

�∞(q,r) =
∫

dd+1q

(2π )d+1

1

(q2 + r)((p + q)2 + r)
. (B3)

The critical point is given by G−1
∞ (0) = 0, so to order 1/N ,

r = − 1

N

∫
dd+1q

(2π )d+1

1

�∞(q,0)

1

(p + q)2
+ 1

N

1

�∞(0,0)

∫
dd+1q1

(2π )d+1

dd+1q2

(2π )d+1

1

�∞(q1,0)

1

q4
2 (q1 + q2)2

= 1

N

1

�∞(0,0)

∫
dd+1q1

(2π )d+1

1

�∞(q1,0)

∫
dd+1q2

(2π )d+1

1

q4
2

(
1

(q1 + q2)2
− 1

q2
1

)
. (B4)

Note that �∞(0,0) is really infrared divergent, but it can be regulated, and it cancels out of physical values [28]. In this case,
using dimensional regularization, we notice that

∫
dd+1q2

(2π )d+1

1

q4
2

(
1

(q1 + q2)2
− 1

q2
1

)
=

(
q2

1

)(d+1)/2−3

(4π )(d+1)/2

�
(

d−3
2

)
�

(
d−1

2

)
�(d − 2)

d=2−−→ 0. (B5)

So r is of order 1/N2 at the critical point in two spatial dimensions, and from Eq. (B1), the critical coupling is of order 1/N2 in
dimensional regularization. Therefore there is no 1/N correction to the finite volume gap equation (15).

085134-14



TRANSITION FROM THE Z2 SPIN LIQUID TO . . . PHYSICAL REVIEW B 94, 085134 (2016)

We can now calculate the self-energy corrections to the zα in a finite volume. These are given by a similar calculation to the
one above, but now with loop sums,

G−1(k,iω) = ω2 + k2 + �2 + 1

NA
∑

q

∫
d�

2π

D(q,i�)

((ω + �)2 + (k + q)2 + �2)

− D(0,0)

NA2

∫
d�1d�2

4π2

∑
q1,q2

D(q1,i�1)

(�2
2 + q2

2 + �2)2((�1 + �2)2 + (q1 + q2)2 + �2)
. (B6)

The spectrum is then obtained by solving G−1(k,E(k)) = 0.
There are also 1/N corrections to the singlet states. To compute these, we need the nonlinear terms in the effective action for

λ, (24). To order 1/N , these are

S1 = − i

6
√

N

1

A3

∑
k1,k2,k3

∫ 3∏
i=1

(
dωi

2π

)
K3(p1,p2,p3)λ(p1)λ(p2),λ(p3)δ(p1 + p2 + p3)

− 1

24N

1

A4

∑
k1,k2,k3,k4

∫ 4∏
i=1

(
dωi

2π

)
K4(p1,p2,p3,p4)λ(p1)λ(p2)λ(p3)λ(p4)δ(p1 + p2 + p3 + p4) (B7)

using condensed notation where pi represents ki and ωi . The functions in the action are given by

K3 = 2
∑

q

∫
d�

1

(�2 + |q|2 + �2)((� + ω1)2 + |q + k1|2 + �2)((� − ω2)2 + |q − k2|2 + �2)
,

K4 = 6
∑

q

∫
d�

1

(�2 + |q|2 + �2)((� + ω1)2 + |q + k1|2 + �2)

× 1

((� + ω1 + ω2)2 + |q + k1 + k2|2 + �2)((� − ω4)2 + |q − k4|2 + �2)
. (B8)

The propagator for λ can then be computed from these interactions terms. One finds that the order 1/N correction to the inverse
propagator is given by

D−1(k,iω) = �(k,iω) + 1

2NA
∑

q

∫
d�

2π
[K3(k,q,|k + q|)]2D0(|k + q|,iω + i�)D0(q,i�)

+ 1

2NA
K3(k, − k,0)

�(0,0)

∑
q

∫
d�

2π
K3(q, − q,0)D0(q,i�)

+ 1

6NA
∑

q

∫
d�

2π
[K4(k,q, − k, − q) + 2K4(k, − k,q, − q)]D0(q,i�), (B9)

and the spectrum of the singlet states is found by solving D−1(k,E(k)) = 0.
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Theory, Graduate Texts in Contemporary Physics (Springer,
New York, 1997).

085134-16

http://dx.doi.org/10.1143/JPSJ.69.1
http://dx.doi.org/10.1143/JPSJ.69.1
http://dx.doi.org/10.1143/JPSJ.69.1
http://dx.doi.org/10.1143/JPSJ.69.1
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.92.205131
http://dx.doi.org/10.1103/PhysRevB.92.205131
http://dx.doi.org/10.1103/PhysRevB.92.205131
http://dx.doi.org/10.1103/PhysRevB.92.205131
http://arxiv.org/abs/arXiv:1602.02839
http://dx.doi.org/10.1103/PhysRevB.93.165139
http://dx.doi.org/10.1103/PhysRevB.93.165139
http://dx.doi.org/10.1103/PhysRevB.93.165139
http://dx.doi.org/10.1103/PhysRevB.93.165139
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevLett.89.277004
http://dx.doi.org/10.1103/PhysRevLett.89.277004
http://dx.doi.org/10.1103/PhysRevLett.89.277004
http://dx.doi.org/10.1103/PhysRevLett.89.277004
http://arxiv.org/abs/arXiv:1603.03042
http://dx.doi.org/10.1103/PhysRevLett.72.2089
http://dx.doi.org/10.1103/PhysRevLett.72.2089
http://dx.doi.org/10.1103/PhysRevLett.72.2089
http://dx.doi.org/10.1103/PhysRevLett.72.2089
http://dx.doi.org/10.1016/0550-3213(94)90023-X
http://dx.doi.org/10.1016/0550-3213(94)90023-X
http://dx.doi.org/10.1016/0550-3213(94)90023-X
http://dx.doi.org/10.1016/0550-3213(94)90023-X
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevB.86.155131
http://dx.doi.org/10.1103/PhysRevB.86.155131
http://dx.doi.org/10.1103/PhysRevB.86.155131
http://dx.doi.org/10.1103/PhysRevB.86.155131
http://dx.doi.org/10.1016/0550-3213(85)90379-7
http://dx.doi.org/10.1016/0550-3213(85)90379-7
http://dx.doi.org/10.1016/0550-3213(85)90379-7
http://dx.doi.org/10.1016/0550-3213(85)90379-7
http://dx.doi.org/10.1103/PhysRevB.86.054508
http://dx.doi.org/10.1103/PhysRevB.86.054508
http://dx.doi.org/10.1103/PhysRevB.86.054508
http://dx.doi.org/10.1103/PhysRevB.86.054508
http://dx.doi.org/10.1103/PhysRevB.40.11328
http://dx.doi.org/10.1103/PhysRevB.40.11328
http://dx.doi.org/10.1103/PhysRevB.40.11328
http://dx.doi.org/10.1103/PhysRevB.40.11328
http://dx.doi.org/10.1103/PhysRevLett.70.2483
http://dx.doi.org/10.1103/PhysRevLett.70.2483
http://dx.doi.org/10.1103/PhysRevLett.70.2483
http://dx.doi.org/10.1103/PhysRevLett.70.2483
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004



