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Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in
molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge
for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very
strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters,
and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation
(MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons
in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which
provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model
can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean
absolute relative error of only 3%, without suffering size-dependent error. We show that the nonadditivities of
the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably
well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make
the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures,
advancing the development of better vdW corrections to conventional density functional theory.
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I. INTRODUCTION

Due to the high computational efficiency and useful
accuracy, Kohn-Sham density functional theory (DFT) has
reached a high level of sophistication and has become a
standard electronic-structure theory [1,2]. In this theory,
only the exchange-correlation energy component has to be
approximated as a functional of the electron density. Most
density functionals have been developed from the constraint
satisfaction approach [3] or by fitting a designed functional
form to a set of experiments or a combination of both. These
conventionally developed density functionals can describe
chemical bonds or short-range interactions [4] arising from
the density overlap well for quantum chemistry [5–8] or
condensed-matter physics [9,10] or both [11,12] but often
fail to describe phenomena due to the long-range van der
Waals interaction, such as physisorption [13,14], sublimation
of molecular solids [15–17], and binding energies between
layered materials [18,19]. In recent years, some attempts
[20,21] have been made to develop computationally efficient
semilocal density functionals that extend the short-range
description, but in general, a long-range van der Waals (vdW)
correction is needed. This failure due to the absence of vdW
interactions seriously limits the applicability of conventional
DFT to a broad class of systems such as molecular solids
[22–28] and complexes as well as biological systems [29]
in which the long-range vdW interaction plays an important
role. A quick remedy for this inadequacy is to develop a vdW
correction for the missing long-range part and add it to the DFT
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part. This combined DFT+vdW approach has become one of
the most popular methods in electronic-structure calculations.

In the large-separation (d → ∞) limit, the vdW interaction
takes a simple asymptotic expression [30]

EvdW = −C6/d
6 − C8/d

8 − C10/d
10 − · · · , (1)

where d is the distance between centers of density fragments,
which may or may not belong to part of the same object.
C6, C8, and C10 are the vdW coefficients, describing dipole-
dipole (C6), dipole-quadrupole (C8), and dipole-octupole and
quadrupole-quadrupole (C10) interactions, respectively. In the
development of the vdW correction, there are two important
tasks: One is to remove the unphysical divergence when
the separation between objects is small, and the other is to
calculate vdW coefficients. The first issue can be addressed
by properly designing a damping function [31,32] for each
asymptotic term [30]. Quite a few well-designed damping
functions have been proposed and widely used [31,33,34]
in vdW corrections. The second issue involves complicated
many-body effects. These effects can be accurately captured
with standard wave-function-based many-body methods, such
as the time-dependent Hartree-Fock method (TDHF), time-
dependent Møller-Plesset second-order perturbation theory
(TDMP2), coupled-cluster methods [e.g., coupled-cluster with
single, double, and partially triple excitations, CCSD(T)],
and random-phase approximation (RPA) methods or their
combinations, but these methods are usually limited to small
and middle-size molecules due to high computational cost.
As such, accurate modeling of vdW coefficients has been
highly desired. Many atom-pairwise-based models have been
proposed [34–38]. Due to their simplicity and good accuracy,
some of them have been widely used in electronic-structure
calculations. However, the errors of atom-pairwise-based
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models are usually size dependent [39] and can be large for
nanostructures. This size-dependent error arises from many-
body interactions and cannot be solved through a damping
function. Although in practical applications it is not necessary
to use the absolutely accurate vdW coefficients, it is highly
desired to use them. The reason is that absolutely accurate vdW
coefficients can reflect the correct many-body effects contained
in these coefficients and thus enable us, to a great extent, to
reveal the true physics informed by the vdW correction.

In recent years, several methods beyond atom-pairwise-
based models for the calculation of vdW coefficients have
been developed [40–51]. A common feature of these beyond-
atom-pairwise-based methods is that they treat the electrons to
be distributed over the whole system, rather than partition them
in terms of atoms in a molecule. In other words, the electron
density in a whole system is used as input, and therefore, many
effects, such as nonadditive many-body interactions and elec-
tron delocalization, that are missing in atom-pairwise-based
models can be accounted for either implicitly or explicitly by
these models. As a result, the error of these models can be
nearly size independent. For example, Tkatchenko et al. [39]
proposed a model dipole polarizability based on a system of
coupled quantum harmonic oscillators, which goes beyond the
atom-pairwise-based model of Tkatchenko and Scheffler [35].
The former does not show size-dependent error, but the latter
does. Recently, we have applied [16] the Rutgers-Chalmers
[41] vdW-DF to calculate the sublimation energies of several
small fullerenes. We found that the electron-gas-based vdW-
DF obtained from the fluctuation-dissipation theorem yields
consistently accurate sublimation energies, without suffering
size-dependent error. Tao and coworkers [47,49] proposed two
molecular-based models, the solid-sphere model and hollow-
sphere model. The former was proposed for the calculation
of vdW coefficients between atoms and/or molecules, while
the latter is more flexible and valid for molecular pairs that
may or may not have any cavity. It has been shown that these
two models are accurate for nanostructures [52]. Since the
inputs to these two models are the accurate static multipole
polarizability and the electron density of a whole system,
they are multicenter based. (Atom-pairwise-based models
are one center based.) As a result, the errors of the two
models are nearly size independent, as confirmed by vdW
coefficients for nanoclusters [49,50,52]. More recently, one
of the present authors [50] applied the solid-sphere model
to calculate both the leading-order and higher-order vdW
coefficients between small molecules, within the modified
single-frequency approximation (see discussion below). The
results are in very good agreement with expensive TDMP2 or
TDHF calculations, with mean absolute relative errors of 6%
for C6, 5% for C8, and 7% for C10. This is very encouraging.

Fullerenes are related to nanotubes and graphene. They can
be used as a clean energy storage (e.g., hydrogen storage [53]).
The high sublimation energies of fullerenes can make them
attractive candidates as rapid coolant [54] for astronauts. In
this work, we apply the hollow-sphere model in the modified
single-frequency approximation to study the vdW coefficients
between fullerenes, fullerene and alkali atoms, and fullerene
and sodium clusters. We find that the model can generate vdW
coefficients C6 in excellent agreement with highly accurate ab
initio calculations, with a mean absolute relative error of only

3%. We also show that the nonadditivities of vdW coefficients
C6 between fullerenes and between a fullerene molecule (e.g.,
C60) and sodium clusters revealed by the model agree very well
with the accurate ab initio prediction, both of which display
oscillating nonadditivity but in opposite trends.

II. HOLLOW-SPHERE MODEL

The starting point of the hollow-sphere model is the
classical conducting spherical shell of density that is uniform
inside and zero outside the shell. It was constructed to
model the dynamic multipole polarizability of a shell of
inhomogeneous density that allows for a cavity. The model
combines the advantages of the solid-sphere model [46,47]
and the classical shell model [48,55] and is equally valid for
molecules with and without a cavity. It recovers the classical
shell model in the uniform-gas limit with a sharp physical
boundary and the solid-sphere model when the cavity of a
molecule vanishes. So this unified hollow-sphere model is
quite flexible and can be used in different situations to study
the vdW interaction (e.g., vdW interaction between fullerenes
and atoms or clusters without cavity). The model satisfies the
exact zero- and high-frequency limits for each order and takes
the simple expression [16,49]

αl(iu) = 2l + 1

4πal

∫ Rl

Rl−tl

d3r

(
r2l−2a4

l ω
2
l

a4
l ω

2
l + u2

)
1

1 − βlρl

, (2)

where iu is the imaginary frequency, Rl is the effective vdW
outer radius of the shell, and Rl − tl is the effective vdW
inner radius. βl(r) = ω2

l (r)ω̃2
l (r)/{[ω2

l (r) + u2][ω̃2
l (r) + u2]}

describes the coupling of the local sphere and cavity plasmon
oscillations, and ρl = (1 − tl/Rl)2l+1 describes the shape of
the shell, with tl being the shell thickness [49,56]. ωl(r) =
ωp(r)

√
l/(2l + 1) is the generalized local plasmon frequency

of a sphere, ω̃l(r) = ωp(r)
√

(l + 1)/(2l + 1) is the generalized
local plasmon frequency of a cavity, and ωp(r) = √

4πn(r)
is the local plasmon frequency of the extended electron
gas. (Atomic units are used.) The parameters Rl and al

are determined by the static and high-frequency limits [52],
leading to the coupled equations

Rl = [alαl(0)]1/(2l+1), (3)

al =
{∫ ∞

0
dr4πr2ln(r)

/∫ Rl

Rl−tl

dr4πr2ln(r)

}1/3

. (4)

III. SINGLE-FREQUENCY APPROXIMATION

To simplify the calculation, the single-frequency approx-
imation (SFA) was proposed [49], which assumes that only
valence electrons are polarizable and that the density is uniform
inside the shell and zero otherwise. In the SFA, dl = 1 and the
model polarizability of a molecule is simplified as

αSFA
l (iu) =

(
R2l+1

l

ω2
l

ω2
l + u2

)
1 − ρl

1 − βlρl

, (5)

where Rl = [αSFA
l (0)]1/2l+1, with αSFA

l (0) = αl(0) being the
accurate static multipole polarizability. βl , the shape function
ρl , and the plasmon frequency ωl are defined below Eq. (2), but
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with the local electron density replaced by the average valence
electron density n̄. The average valence electron density can
be calculated from n̄ = N/Vl , where N is the number of
valence electrons and Vl is the shell volume given by Vl =
(4π/3)[R3

l − (Rl − tl)3]. In SFA, the accurate static multipole
polarizability αl(0) is the only required input, which can be
calculated from ab initio methods such as TDHF or TDMP2
or time-dependent DFT [57] (TDDFT). Compared to the
full-frequency calculation required in the wave-function-based
many-body calculations [58] of the dynamic polarizability, the
single-point-frequency calculation of the static polarizability
is much cheaper and very practical for large molecules and
nanomaterials. The hollow-sphere model within the SFA is
rather similar to the classical shell model. However, there is
an important distinction. The former has no sharp physical
boundary, while the latter does. The hollow-sphere model
is exact in the zero-frequency limit and more correct in the
high-frequency limit. As a result, the hollow-sphere model
within the SFA is more accurate than the classical shell model.

However, there is an ambiguity in the SFA when we count
the number of valence electrons of an atom in a molecule. In
previous work [49], the number of valence electrons included
all electrons in the outermost shell of an atom. As argued
recently by Tao and Rappe [50], valence electrons should only
include those in the outermost subshell because electrons in
the outermost subshell have the greatest probability to appear
in valence regions rather than core regions and thus are diffuse
and much more easily deformed by external fields or polarized.
For example, electrons in the np orbital are much more likely
to be deformed by an external electric field than electrons in
the ns orbitals. Furthermore, the difference in the shape of ns

and np orbitals in an atom leads to the larger deformation of
the outermost np valence electrons than ns valence electrons.
This counting method has been adopted in the Slater-Kirkwood
method [59]. We call this counting method the modified
single-frequency approximation (MSFA). Figure 1 shows a

FIG. 1. Comparison of the dynamic dipole polarizability as a
function of the imaginary frequency iu of C60 evaluated with
the hollow-sphere model within the original single-frequency ap-
proximation [49] (SFA) and modified SFA (MSFA) to the TDHF
value [60].

comparison of the model dynamic dipole polarizability in the
SFA and MSFA to the TDHF calculation. From Fig. 1 we
can see that, in the zero-frequency limit, SFA and MSFA
are exact. However, in the high-frequency region, only the
full hollow-sphere model is exact, suggesting that the full
hollow-sphere model has a good chance of being more accurate
than MSFA (see Table IV below). This can be understood by
regarding the model as an interpolation of imaginary frequency
between the zero- and high-frequency limits. Nevertheless, in
the important middle range of frequencies, MSFA is closer to
the TDHF value than SFA. Therefore, MSFA should be more
accurate than SFA. (For alkali atoms, MSFA and SFA are the
same.)

To have a better understanding of the cavity effect, we apply
the solid-sphere model [46,47]

αl(iu) = 2l + 1

4πal

∫ Rl

0
d3r

(
r2l−2a4

l ω
2
l

a4
l ω

2
l + u2

)
, (6)

to study molecules with a cavity. For such molecules, the
electron density is zero outside the shell. Thus, we can rewrite
Eq. (6) as

αl(iu) = 2l + 1

4πal

∫ Rl

Rl−tl

d3r

(
r2l−2a4

l ω
2
l

a4
l ω

2
l + u2

)
. (7)

From Eqs. (2) and (7), we can see that the solid-sphere model
is just the hollow-sphere model in which coupling to the cavity
plasmon is dropped. In the static or zero-frequency limit, we
obtain [49]

αl(0) = R2l+1
l − (Rl − tl)

2l+1. (8)

With the parameter set l = 1, R1 = 8.703, and t1 = 3.4, we
can easily find αl(0) = 510.1 from Eq. (8), while the TDDFT
value is 659.1, as given in Table I. This suggests that
the solid-sphere model noticeably underestimates the static
polarizability and thus the vdW coefficients. However, if the
accurate-input static polarizability employed in the hollow-
sphere model is also used in the solid-sphere model of Eq. (6)
and we imagine a fullerene or cage molecule as a solid
sphere (i.e., tl = Rl), the leading-order vdW coefficient C6

will increase by only 3% (relative to the prediction of the
hollow-sphere model in Table II) for the C60-C60 pair and by
4% for C84-C84. For C10, it will increase more (5% for the
C60-C60 pair and 6% for the C84-C84 pair), leading to a mean
absolute relative error (MARE) of >6% for the solid-sphere
model. Clearly, coupling to the cavity plasmon is important
and should be considered in any case for accurate modeling of
vdW coefficients between cage molecules.

IV. VDW COEFFICIENTS

The vdW coefficients can be generated with the dynamic
multipole polarizability αl(iu) using the second-order pertur-
bation theory expression or the Casimir-Polder formula [61],

CAB
2k = (2k − 2)!

2π

k−2∑
l1=1

1

(2l1)!(2l2)!

∫ ∞

0
duαA

l1
(iu)αB

l2
(iu). (9)

Within the SFA or MSFA, the sixfold integral in position
space is reduced to a two-fold integral, which can be
done analytically. This approximation significantly reduces
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TABLE I. Input static multipole polarizabilities (in a.u.) of
fullerenes, alkali atoms, and sodium clusters.

Atom N α1(0) α2(0) α3(0)

C60 120 536.6a 35434b 2339833b

C70 140 659.1a 49917b 3780533b

C78 156 748.3a 61677b 5083663b

C80 160 798.8a 68770b 5920460b

C82 164 779.7a 66051b 5595397b

C84 168 806.1a 69820b 6047476b

Li 1 164.1c 1424d 39688d

Na 1 162.6c 1878d 55518d

K 1 290.2c 5000d 176940d

Na2 2 259.5e 10558b 429524b

Na4 4 511.5e 32715b 2092376b

Na6 6 743.9e 61074b 5014189b

Na8 8 883.9e 81409b 7497918b

Na10 10 1053e 108988b 11280617b

Na12 12 1342e 163275b 19865029b

Na14 14 1652e 230861b 32261912b

Na18 18 1725e 248112b 35686824b

Na20 20 1988e 314312b 49694107b

aFrom [60].
bEstimated from the conventional formula αl(0) = [α1(0)](2l+1)/3. See
text for discussion.
cFrom [62].
dFrom [63].
eFrom [49,64]

the computational cost, which is particularly important for
nanostructures. The analytic expression for the integrated vdW
coefficients over the frequency can be found in Ref. [52].

Now, we apply the hollow-sphere model in the MSFA
to calculate the vdW coefficients for fullerene pairs, for
which accurate reference values are available for comparison.
In our calculations, we set the thickness t = 3.4 bohrs, as
suggested in Ref. [56]. The input static dipole polarizabilities
of fullerenes are taken from the TDHF calculations [60], while
the static higher-order multipole polarizabilities are estimated
from the conventional formula αl(0) = [α1(0)](2l+1)/3. (For
convenience, all the input static polarizabilities are listed in
Table I.) For carbon atoms, the number of valence electrons
in the outmost subshell is 2. (In previous studies [49], the
number of valence electrons is taken to be 4, which includes the
electrons in all the outmost subshells with the same principal
quantum number). The results are given in Table II. From
Table II, we observe that MSFA can yield C6 consistently, in
excellent agreement with the expensive TDHF calculations,
with a MARE of only 3%, which significantly improves the
accuracy of the original SFA [49]. This accuracy benefits from
the fact that the electrons on the surface of fullerenes are nearly
uniform due to the full delocalization of π electrons. This can
be understood from the low-energy gap of fullerenes. (The
largest energy gap of fullerenes is about 2 eV, which occurs for
C60.) The good performance of the model on vdW coefficients
for fullerene pairs is expected. The more slowly varying the
electron density is, the more accurate the model polarizability
will be. In the uniform-gas limit, the model becomes exact.
In addition, fullerenes also have quasispherical symmetry.

TABLE II. The vdW coefficients C6, C8, and C10 (in a.u.)
for 21 fullerene pairs calculated using the hollow-sphere model
(HSM) within the modified SFA (MSFA). The input static dipole
polarizabilities of fullerenes are taken from Ref. [60], while the
static quadrupole and octupole polarizabilities are estimated from the
conventional formula αl(0) = [α1(0)](2l+1)/3. The reference values of
C6 are taken from Ref. [60]. MRE = mean relative error. MARE =
mean absolute relative error.

Cref
6 /103 CMSFA

6 /103 CMSFA
8 /105 CMSFA

10 /107

C60-C60 100.1 98.91 356.9 1059
C60-C70 119.0 121.5 470.5 1497
C60-C78 133.5 137.9 559.4 1862
C60-C80 138.7 147.2 611.9 2086
C60-C82 140.4 143.7 591.9 2000
C60-C84 144.2 148.6 619.6 2119
C70-C70 141.6 144.7 601.8 2057
C70-C78 158.8 164.3 713.4 2545
C70-C80 165.0 175.4 779.2 2844
C70-C82 166.9 171.2 754.1 2729
C70-C84 171.5 177.0 788.8 2888
C78-C78 178.2 184.2 836.1 3119
C78-C80 185.1 196.6 912.4 3479
C78-C82 187.3 191.9 883.3 3341
C78-C84 192.4 198.4 923.6 3533
C80-C80 192.5 205.4 975.3 3805
C80-C82 194.6 200.5 944.3 3655
C80-C84 199.9 207.3 987.2 3864
C82-C82 196.8 200.7 937.0 3596
C82-C84 202.2 207.5 979.6 3801
C84-C84 207.7 213.3 1019 4002

MRE (%) 3.3
MARE (%) 3.4

All these characteristics make fullerenes very suitable for the
model.

Next, we apply the model to calculate the vdW coefficients
between fullerene C60-alkali atoms and C60-sodium cluster
pairs. For atoms and sodium clusters with no cavity, we set the
shell thickness to be the conventional vdW radius (i.e., the vdW
cutoff radius of a solid sphere), tl = [αl(0)]1/(2l+1). For alkali
atoms, we take the highly accurate static dipole polarizabilities
from Ref. [62] and higher-order multipole polarizabilities
from Ref. [63]. For sodium clusters, only the static dipole
polarizabilities from ab initio calculations are available in
the literature. Since the electron density in sodium clusters
is much slower than in atoms, to a good approximation, we
estimate the static higher-order multipole polarizabilities from
the conventional formula αl(0) = [α1(0)]3/(2l+1), as given in
Table I. Here the number of valence electrons of each atom
is only 1 in the ns orbital. The results are given in Table III.
We observe from Table III that the vdW coefficients generated
from the hollow-sphere model consistently agree very well
with the reference values, achieving the same MARE of 3%
as found for fullerene pairs.

Finally, we apply the hollow-sphere model to study the vdW
coefficients between C60 and alkali atoms, with and without
MSFA. Since the dynamic polarizability of C60 within SFA
agrees well with the TDHF value within the whole frequency
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TABLE III. The vdW coefficients C6, C8, and C10 (in a.u.) for C60-
alkali atom and C60-sodium cluster pairs (no cavity) calculated from
the hollow-sphere model within the modified SFA (MSFA). For alkali
atoms and sodium clusters, we set tl = Rl = [αl(0)](2l+1)/3 and ρl =
0. The input static multipole polarizabilities of alkali atoms are taken
from Refs. [62,63], while the static dipole polarizabilities of sodium
clusters are from Ref. [64]. For sodium clusters, the quadrupole and
octupole polarizabilities are estimated from the conventional formula
αl(0) = [α1(0)](2l+1)/3. The reference values of C6 are taken from
Refs. [64,65]. MRE = mean relative error. MARE = mean absolute
relative error.

Cref
6 /103 CMSFA

6 /103 CMSFA
8 /105 CMSFA

10 /107

C60-Li 8.07 8.80 17.70 28.85
C60-Na 8.52 8.75 18.28 31.27
C60-K 12.95 12.14 27.66 52.98
C60-Na2 15.72 15.37 42.97 99.22
C60-Na4 30.24 30.49 104.4 296.0
C60-Na6 43.92 44.91 175.8 567.7
C60-Na8 54.72 55.99 234.2 806.4
C60-Na10 66.60 68.03 305.5 1125
C60-Na12 82.08 84.58 421.1 1709
C60-Na14 98.28 101.8 556.6 2464
C60-Na18 113.4 115.8 645.9 2914
C60-Na20 127.2 131.5 783.9 3762

MRE (%) 1.9
MARE (%) 3.3

range, as shown by Fig. 1, in this study, we use αMSFA
l (iu) of

Eq. (5) for C60 while the dynamic multipole polarizability of
atoms (tl = Rl) with and without MSFA is used. The results
are given in Table IV. From Table IV, we observe that the vdW
coefficients generated with the full hollow-sphere model (i.e.,
without MSFA) are more accurate than those with MSFA.

V. NONADDITIVITY OF C6

Despite considerable progress in the development of vdW
corrections, calculation of vdW coefficients between nanos-
tructures remains a difficult task due to the nonadditivity.
Nonadditivity of the vdW interaction has been an important
issue that hinders the development of universally accurate vdW
corrections. Many efforts have been made to understand this
problem [39,48,49,60,66–68]. This is particularly important
for molecules with full valence electron delocalization, such
as metallic systems (e.g., alkali clusters) and conjugated
molecules, in which vdW coefficients display very strong
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FIG. 2. Variation of the vdW coefficient C6 per carbon atom pair
for fullerene pairs vs the number of carbon atom pairs formed between
fullerene molecules.

nonadditivity. In this work, we study the nonadditivity of
the vdW coefficients between small fullerene molecules and
fullerene C60 and sodium clusters Nan.

Figure 2 shows that C6 per carbon atom is oscillatingly
increasing for fullerene pairs. This suggests that the error of
simple atom-pairwise-based models grows with system size
for molecular pairs involving fullerenes. The nonadditivity
of C6 between fullerene pairs including identical as well as
nonidentical pairs is quite different from that of C6 between
only identical pairs, the latter of which was found to be
monotonically increasing [48,49,60]. Interestingly, we find
that C6 per sodium atom decreases with the increase of the
number of sodium atoms between a fullerene and sodium
clusters, as shown in Fig. 3. A similar trend was observed
for identical sodium cluster pairs [49,52], but the decreasing
rate between fullerene and sodium clusters is slower than that
between identical sodium clusters. In both cases, the trends
revealed by our model agree well with those displayed by
TDHF [60,64].

VI. CONCLUSION

In summary, we have applied the hollow-sphere model
within the MSFA to the calculation of the vdW coefficients
between fullerenes, fullerene and alkali atoms, and fullerene
and sodium clusters. The results are in excellent agreement
with the expensive TDHF calculations, with an overall MARE
of only 3%. Compared to the original SFA, the MSFA yields

TABLE IV. The vdW coefficients C6, C8, and C10 (in a.u.) between C60 and alkali atoms calculated from the hollow-sphere or solid-sphere
model with and without the modified SFA (MSFA) for alkali atoms while the dynamic polarizability of C60 of Eq. (5) is used. For atoms,
tl = Rl (no cavity). FHSM = full hollow-sphere model of Eq. (7). MRE = mean relative error. MARE = mean absolute relative error.

Cref
6 /103 CFHSM

6 /103 CMSFA
6 /103 CFHSM

8 /105 CMSFA
8 /105 CFHSM

10 /107 CMSFA
10 /107

C60-Li 8.07 8.19 8.80 17.14 17.70 29.72 28.85
C60-Na 8.52 8.86 8.75 18.96 18.28 33.83 31.27
C60-K 12.95 13.93 12.14 31.84 27.66 62.71 52.98
MRE (%) 4.4 1.8
MARE (%) 4.4 6.0
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FIG. 3. Variation of the vdW coefficient C6/103 per sodium atom
pair between C60 and sodium clusters vs the number of sodium atoms
in sodium clusters.

the dynamic dipole polarizability in better agreement with the
TDHF values for fullerene C60, in particular in the important
low-frequency region. This accuracy is consistent with a recent
application to diatomics and small molecules [50], where it
was found that the MSFA yields accurate vdW coefficients,
with a MARE of 6% for C6, 5% for C8, and 7% for C10.
This small relative error difference is largely due to the
fact that the electron density on the surface of fullerenes
and in sodium clusters is not rapidly varying, but it is for
small molecules, in particular diatomics. Another difference
between fullerenes and sodium clusters and small molecules
is that the former have higher symmetry. But this geometrical
effect is relatively small, compared to the spatial variation
of the electron density. This can be seen from the vdW
coefficients involving atoms calculated within the MSFA in
Refs. [50,52] and this work (Table III). Atomic densities are
of spherical symmetry, but they are rapidly varying. However,

the error of the vdW coefficients involving atoms is larger than
those with lower symmetry but slower spatial variation of the
electron density, such as molecules, suggesting that the spatial
variation of the density is more important than the symmetry
of the system, making the model particularly attractive for
intermolecular applications. As such, the hollow-sphere model
seems to provide a promising way to accurately treat the vdW
coefficients.

Since the surface electrons of fullerenes are fully nonlocal
and thus display strong nonadditivity [48,49,60], as further
demonstrated in this work, this model will play an impor-
tant role in the simulation of vdW corrections/interactions
involving fullerenes, such as adsorption of fullerenes on metal
surfaces as well as atoms and molecules on the surface of
fullerenes. Because the model is valid for all thicknesses t ,
including ending points, it is also valid for molecules without
a cavity [50]. Therefore, it can also be used to simulate vdW
interactions between molecules, regardless of whether there is
any cavity or not. This flexibility allows us to treat different
situations on the same footing. Taking the simplification one
step further without knowledge of the true electron density
should be very useful for large nanostructures.

In addition, our model may serve as a starting point for
a better fundamental understanding of nanostructures such
as nanotubes, graphene, and other vdW layered materials
and complexes. In particular, it can be used to investigate
the nonadditivity of vdW coefficients due to its very good
accuracy, size-independent error, and flexibility.
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[53] T. T. Vehviläinen, M. G. Ganchenkova, L. E. Oikkonen, and

R. M. Nieminen, Phys. Rev. B 84, 085447 (2011).
[54] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of

Fullerenes and Carbon Nanotubes (Academic, London, 1995).
[55] J. P. Perdew, J. Tao, P. Hao, A. Ruzsinszky, G. I. Csonka, and

J. M. Pitarke, J. Phys. Condens. Matter 24, 424207 (2012).
[56] G. K. Gueorguiev, J. M. Pacheco, and D. Tománek, Phys. Rev.
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