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We describe a geometric (or gravitational) analog of the Laughlin quasiholes in fractional quantum Hall states.
Analogously to the quasiholes, these defects can be constructed by an insertion of an appropriate vertex operator
into the conformal block representation of a trial wave function; however, unlike the quasiholes these defects
are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wave function
in the presence of such defects and explain how to assign an electric charge and a spin to each defect and
calculate the adiabatic, non-Abelian statistics of the defects. The defects turn out to be equivalent to the genons
in that their adiabatic exchange statistics can be described in terms of representations of the mapping class
group of an appropriate higher genus Riemann surface. We present a general construction that, in principle,
makes it possible to calculate the statistics of Zn genons for any “parent” topological phase. We illustrate the
construction on the example of the Laughlin state and perform an explicit calculation of the braiding matrices.
In addition to non-Abelian statistics, geometric defects possess a universal Abelian overall phase, determined by
the gravitational anomaly.
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I. INTRODUCTION

The last two decades brought the rise of interest in
topological properties of materials. These properties (in two
spatial dimensions) manifest themselves in a number of ways:
fractionalized excitations, protected gapless edge modes, any-
onic statistics, degeneracy on higher genus surfaces, quantized
linear response functions, and many more. After the work of
[1] on non-Abelian anyons in fractional quantum Hall (FQH)
states the exotic FQH states took the spotlight. In the older ap-
proach the non-Abelian statistics is encoded into the properties
(more concretely, monodromy) of conformal blocks in a ratio-
nal conformal field theory (RCFT). Nowadays more abstract
methods are used to describe the non-Abelian statistics [2].

More recently we have learned that it is illuminating
to subject a topological phase of matter to a geometric
background. One completely academic way to accomplish
this is to formally couple the physical degrees of freedom
to the curvature of space [3–16]. There are many physical
ways to think about the geometry, for example, shears and
stresses in the material [17,18], inhomogeneous band curvature
[4,19], geometric defects such as dislocations and disclinations
[20–22], temperature gradients [23–26]; all can be modeled
by either homogeneous or singular perturbations in geometry.
Geometry provides new parameter (or moduli) spaces to study
Berry phases [27,28] and new tools to compute the linear
response functions of stress, energy current and momentum
[7,29]; induces a new type of gravitational Aharonov-Bohm
effect [3,30,31]; allows to incorporate extra symmetry re-
quirements such as nonrelativistic diffeomorphism invariance
[32–36]; provides a way to determine the central charge
beyond the mod 8 restriction of the topological quantum
field theory (TQFT) [8,27,28]; mimics the order parameter
of nematic phase transition [37,38]; and possibly describes
otherwise invisible, neutral degrees of freedom [4,16]. Geo-
metric background unveils the universal features of topological
phases of matter that are hidden in flat space.
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Laughlin introduced the quasiholes [39] as charge deple-
tions induced via adiabaticaly threading magnetic flux through
an infinitely thin solenoid perpendicular to the surface of FQH
sample. When magnetic flux is arbitrary, a defect is created;
however, when the magnetic flux is integer the defect can
be removed by a gauge transformation. Thus, the states with
and without defect are gauge equivalent; therefore, the defect
is an eigenstate of the Hamiltonian and its energy does not
depend on the position of the flux insertion as long as it is
far away from the boundary and other defects. In other words,
the defect is mobile and, yet, in other words, there is no Dirac
string connecting the defect to infinity. The wave function is
regular and single valued in electron coordinates. There is an
effective theory that encodes charge, spin, and statistics of
Laughlin quasiholes: a U (1) Chern-Simons theory, where the
quasiholes correspond to Wilson lines in some representation
of U (1).

In the present paper we wish to study the behavior of
analogous defects created by the fluxes of curvature. It is not
hard to imagine threading a “unit” flux of curvature through the
quantum Hall system and determine conditions under which
such defect behaves similarly to a quasihole (see Fig. 1). These
defects, as we will learn, are fundamentally different from the
quasiholes no matter how the curvature flux is quantized. Our
goal is to determine charge, spin, and statistics of such defects.
While it was not our original intention, these defects turn out to
be equivalent to the genons [40] when appropriate quantization
of the curvature flux is imposed. Thus, for the rest of the paper
we refer to these defects as genons. We find that the relevant
fluxes of curvature are negative integers in the units of 4π .
Such fluxes naturally occur on branched coverings. The branch
points of a covering correspond to the genons. It is possible to
assign a charge, a spin, and a primary field to a branch point.
The branch points have non-Abelian statistics determined by
a representation of the mapping class group (MPG) acting on
the space of ground sates. The representation is fixed by the
topological phase of matter “placed” on a branched covering.
There is an explicit representation for the action of the MPG
on the moduli space of any Riemann surface given in terms
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FIG. 1. (a) A quasihole created by a unit flux adiabatically
threaded through an infinitesimal solenoid, perpendicular to the
sample. (b) A genon created by adiabatically “threading” a unit
curvature flux through the sample.

of Sp(2g,Z) matrices, which we utilize to determine the braid
matrices of genons.

In addition to the universal non-Abelian statistics, the
genons appear to possess a universal Abelian U (1) phase
that is determined by the central charge. This universal
phase arises because the partition function and correlation
functions in conformal field theory (CFT) representation of a
topological phase of matter depend on geometry in a controlled
way fixed by the Weyl anomaly. Any branched covering is
topologically equivalent to a smooth Riemann surface, but
the geometry (metric, curvature distribution, and, perhaps,
group of automorphisms) is different. When a topological
phase of matter is constructed with the tools of CFT, it
“feels” the variations of geometry through the Weyl and
gravitational anomalies [11,13,27,28]. When it is constructed
via Chern-Simons theory, it feels the geometry through the
framing anomaly [41] (see [8] for FQH applications). The
universal U (1) phase that appears when two genons are
braided is a manifestation of these effects. This universal U (1)
phase depends on the “parent” quantum Hall state (or, more
generally, “parent” topological phase of matter) only through
the central charge.

Previously, the genons were introduced in a system of
n layers of an arbitrary topological phase of matter C. The
symmetry that interchanges the copies is Zn and genons are
introduced as twist defects of this symmetry [40]. It was also
realized that such system can be mapped to a one copy of C on
a Riemann surface with a genus that scales with the number
of genons; hence the name. In the present work we start from
the other end; we consider a gapped quantum system on a
higher genus surface with a Zn automorphism and study the
properties of the branch points. This correspondence is not too
surprising since in the simplest case the degeneracy of, say, a
Laughlin state at filling 1

q
grows with genus as qg , which can

also be interpreted as g copies of a Laughlin state on a torus.
This paper is organized as follows. In Sec. II we review

different approaches to quasiholes on the example of the
Laughlin state. While the material is standard, we pay extra
attention to how the traditional constructions generalize to the
curved space. Section II is organized into three parts. Each
part reviews an independent approach: plasma analogy, CFT
and topological quantum field theory (TQFT). Section III is
devoted to genons and is organized the same way as Sec. II to
help the reader to see the parallel in the construction and to
pinpoint the key aspects in which the genons differ from the
quasiholes. In Sec. IV we present discussions and conclusions.

Various appendixes are devoted to either computational details
or to the material that did not logically fit into the main
presentation.

II. QUASIHOLES

In this section we review the standard approaches to
quasiholes. The intuition we obtain in this section guides us
in the next section when we discuss the genons. There are
several standard approaches to quasiholes, all of which allow
to calculate quantum numbers and statistics leading, of course,
to the same results. These approaches are, however, quite
different at first sight, as they emphasize different physical and
mathematical ideas. In our presentation we allow the physical
space to be curved. The effects of curvature cannot be found
in classic reviews; thus, we feel that this review section is of
some value.

A. Coulomb plasma

In this section we study quasiholes as impurities in the
Coulomb plasma. We restrict our attention to the Laughlin
state. The plasma description of more sophisticated trial states
has been explored [42–44], but we do not need it in what
follows.

1. Plasma in curved space

In flat space the modulus squared of the Laughlin function
reads [39]

|�({zi})|2 =
∏
i<j

|zi − zj |2q exp −
N∑

i=1

|zi |2
2�2

= exp(−βU ),

(1)
where q determines the inverse filling q = ν−1, � is the
magnetic length fixed by the background magnetic field
�−2 = B̄, and

U = −2q2
∑
i<j

ln |zi − zj | + q
∑

i

|zi |2
2�2

, β = 1

q
, (2)

is the energy of the Coulomb plasma in external potential.
When the plasma is in the screening phase (for q < 70), the
electron density is homogeneous and can be found from the
Poisson equation [39]

ρ̄ = 1

4πq
�

( |z|2
2�2

)
= 1

q

1

2π�2
, (3)

where � = 4∂∂̄ is the Laplace operator.
The generalization to curved space (and constant magnetic

field) is straightforward [9,11,13]. First, we choose the
conformal coordinates so that the metric is diagonal, which
is always possible in 2D,

ds2 = √
gdzdz̄. (4)

Second, we replace the background charge [last term in Eq. (2)]
with a function that depends on the geometry

q
∑

i

|zi |2
2�2

−→ q
∑

i

K(zi,z̄i)

2�2
. (5)

085116-2



GEOMETRIC DEFECTS IN QUANTUM HALL STATES PHYSICAL REVIEW B 94, 085116 (2016)

Third, we demand the “generalized screening”

ρ̄ = 1

4πq
�g

[K(z,z̄)

2�2

]
= 1

q

1

2π�2
, (6)

where �g = 4√
g
∂∂̄ is the Laplace operator in conformal

coordinates. This condition means that the electron density
is still “constant,” but transforms as a scalar density under a
coordinate transformation.

From (6) we can read off

1
4�gK(z,z̄) = 1 or ∂∂̄K(z,z̄) = √

g. (7)

A function satisfying (7) is known as a Kähler potential.
To summarize, the (unnormalized) absolute value squared

of the Laughlin function in curved space and constant magnetic
field is given by [45]

|�({zi})|2 =
∏
i<j

(zi − zj )2q exp
N∑

i=1

−K(zi,z̄i)

2�2
. (8)

2. Defects in the plasma

When smooth deviations of magnetic field B and curvature
R are introduced on top of a fixed background, the density is
given by (we have divided by

√
g, so that both magnetic field

and curvature are defined appropriately) [3,7,9,11,46]

ρ = ρ̄ + ν
B

2π
+ νs̄

R

4π
+ o(�2), (9)

where we have introduced a new universal quantum number s̄

known as mean orbital spin [3]. Analogously to the filling
fraction ν, the mean orbital spin is related to a universal
transport coefficient known as Hall viscosity ηH [44] (see
also [32] for effective theory explanation of the relation)
and—in rotationally invariant systems—to the topological
shiftS [3,47,48]. In the Laughlin state the value of mean orbital
spin is usually cited as s̄ = 1

2ν
[17,44]; however, it is possible

to tweak the Laughlin state and change s̄ without changing ν

[28]. In a general situation, s̄ carries extra information about
the state [44]. This can be easily seen in the example of trial
conformal block states, where s̄ equals the conformal weight
(and conformal spin) of the electron operator. Mean orbital
spin s̄ has recently been measured in an integer QH system
of photonic Landau levels [49] as a fractional charge trapped
on a conical singularity. We also need an integrated version
of (9),

N = νNφ + χνs̄, (10)

where χ is the Euler characteristic and Nφ is total magnetic
flux, corresponding to B̄. From the plasma perspective, a
quasihole can be viewed as follows. Consider an adiabatic
insertion of a singular perturbation of magnetic field (on top
of B̄),

B = −2πpδ(z − a), (11)

with p being an arbitrary number for a moment. Then density
is inhomogeneous around z = a and there is a charge excess
or depletion given given by

δN =
∫

d2x
√

g(ρ − ρ̄) = −p

q
. (12)

When p is an integer, the extra magnetic flux is not seen
by other particles; therefore, the defect can be removed by a
singular gauge transformation. This defect is a quasihole. We
have not yet fixed the sign of p.

Next we are going to determine the wave function describ-
ing the quasihole by matching δN to a plasma computation.
Consider the Laughlin state (8) in the background (11). Clearly,
the particles will repel or attract to the point z = a. Thus, we
are led to the ansatz for the wave function

|�({zi},a)|2 =
∏

i

|zi − a|2n
∏
i<j

|zi − zj |2q exp
N∑

i=1

− K(zi,z̄i)

2�2
, (13)

where n must be a positive real number. We again demand
generalized screening:

ρ = 1

4πq
�LB

[∑
i

K(z,z̄)

2�2
− n

∑
i

ln |zi − a|2
]
. (14)

The Laplacian of the second term is easily evaluated,

n

4πq
�LB

∑
i

ln |zi − a| = −n

q
δ(z − a). (15)

Thus, particle excess around z = a is given by

δN ′ = −n

q
. (16)

Comparison of (12) and (16) shows that n = p and implies
that p is a positive integer. Thus, the Laughlin function in the
presence of one quasihole is

�({zi},a) =
∏

i

(zi − a)p
∏
i<j

(zi − zj )q exp
N∑

i=1

−K(z,z̄)

4�2
,

(17)

where we have also removed the absolute value and made a
gauge choice to fix the overall phase. The electric charge of
the quasihole is −p

q
.

From (17) we also see that p has to be positive; otherwise,
� is singular at the position of the quasihole, and p has to be an
integer; otherwise the wave function will not be single-valued
in electron coordinates. Notice that the plasma computation
only allowed us to derive the norm, not the phase of the wave
function; however, the two are tied to each other due to the fact
that the wave function is holomorphic (up to the background
charge factor).

Other values of flux are, of course, possible, but these
will result in either multivalued or singular (or both) “wave
functions.” Alternatively, the wave function can be made single
valued, but nonholomorphic when the flux is not quantized.
Since quasiholes admit a nice, holomorphic and single-valued
wave function, one can think of them as an intrinsic property
of the state or “excitations.”

3. Charge and statistics from an Aharonov-Bohm phase

We have already established the charge of a quasihole
in the previous section. We compute the charge from a
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Berry phase calculation. Consider a process when a quasihole
adiabatically travels (counterclockwise) in a closed loop C,
given parametrically by z0(t), that encircles a planar region �

of area A. It is absolutely crucial that the region � is in the
plane (or flat torus). In a seminal paper [50] it was shown that
in the end of the process the wave function (17) acquires a
Berry phase e2πiγAB , where γAB satisfies

dγAB

dt
= i

∫
d2zρ(z)

d

dt
ln[z − z0(t)], (18)

where ρ(z) is given by (9) and B is given by (11) (where the
δ function is slightly smoothed out in a rotationally invariant
way). Then writing ρ(z) = ρ̄ + δρ(z) we have

γAB = i

∮
dz0

∫
d2zρ(z)

1

z − z0

= −2πρ̄ + i

∮
dz0

∫
d2z

δρ(z − z0)

z − z0
. (19)

The last term can easily be shown to vanish in flat space. The
final answer for the AB phase is then

γAB = −2πρ̄ = −pν�(�), (20)

where �(�) is the total flux of magnetic field piercing the
surface �. Equation (20) is simply an Aharonov-Bohm effect
that determines the charge of the quasihole to be

Q = −νp = −p

q
. (21)

When the path C contains another quasihole of charge −νp′
inside, there is an extra “statistical phase,”

2γstat = −pνδ�(�) = pp′ν, (22)

where the factor of 2 is put to emphasize that we took one
quasihole completely around another. Then e2πiγstat gives the
exchange statistics.

4. Spin of a quasihole

In curved space we can go one step further than Ref. [50]
and calculate the spin of the quasihole. The spin is defined
through the curvature analog of the Aharonov-Bohm effect.
Namely, we consider the same adiabatic process described
before, but in curved space. Then on general grounds we have
to expect a geometric phase

� −→ e2πiSNR (�)�, (23)

where NR(�) is the curvature flux through � and the quantum
number S is defined to be the spin of a quasihole.

In fact, the presence of such phase is necessary to ensure
that quasihole braiding is self-consistent on a sphere (or any
curved surface for that matter). To see this [30,31], we note
that, given a closed path on a sphere, the notion of the interior
of the path is ambiguous (see Fig. 2). The interior can be
either to the left or to the right from the boundary of a path.
Self-consistency requires that the AB phase must not depend
on what is considered to be the interior of the path. To be more
precise, consider a sphere of radius 1. The total solid angle is
4π . Consider a closed path C that cuts out a solid angle � from
the sphere. The Aharonov-Bohm phase must satisfy

γAB(�) + γAB(4π − �) = 2πk, (24)

FIG. 2. A quasihole is dragged around a loop on a sphere. The
Berry phase should not depend on what is considered the inside
and outside of the contour γAB (�) = γAB (4π − �) mod 2π . This
condition alone leads to the presence of an extra intrinsic spin of a
quasihole and is used to derive its value.

where k is some integer. This relation implies

− pνNφ = k, (25)

which can only be satisfied when Nφ is proportional to ν−1.
This, however, contradicts (9) and (11) since the total magnetic
flux is given by

Nφ = ν−1N + 2s̄ − p. (26)

In order to resolve this contradiction, we require that there is
an extra AB phase:

γ ′
AB = �

4π

(
νp2

2
− νs̄p

)
. (27)

Inclusion of this phase allows the condition (25) to be satisfied:

− pν
(
Nφ − 2s̄ + p

) = −pνν−1N = −pN ∈ Z. (28)

We conclude that the total AB phase on a sphere is γAB + γ ′
AB .

When written covariantly, the second phase is simply

γ ′
AB =

(
νp2

2
− νs̄

)
NR(�), (29)

which implies that, on general grounds, the spin of the
quasihole is

S = νp2

2
− νs̄p. (30)

The first term in this relation is well known as the topological

spin θp = e
2πi

p2

2q . It appears due to a short distance effect –
interaction between charge and flux making up the quasihole.
The second term appears due to the interaction of the
quasihole with the curvature of the sphere; the “strength” of
this interaction is encoded in the quantum number s̄. Note
that the second term is responsible for the violation of the
“spin-statistics theorem.”

If we were to demand the “spin-statistics theorem” in
addition to (24), we would find an extra condition

2s̄νp ∈ Z, (31)

which holds identically for the Laughlin state if s̄ = 1
2ν

. This
was probably the case considered in Ref. [51]. In the general
situation, the quantum number s̄ can be tuned independently

085116-4



GEOMETRIC DEFECTS IN QUANTUM HALL STATES PHYSICAL REVIEW B 94, 085116 (2016)

[22,28] of the filling fraction. For example [52,53], consider
the electrons filling only the N th Landau level. In this case
ν = 1, but s̄ = 2N+1

2 ; that is, s̄ is fixed by the cyclotron orbital
angular momentum of the electron [relation (31) still holds in
this case]. Another example is provided by the Read-Reazyi
series [54], where s̄ = 1

2ν
+ hψ and in order to keep (31) valid

we would need either 2phψ ∈ Z or p = 0. Mean orbital spin
is not just a curiosity of the curved space; its effect can be
observed when the space is flat. For example, the Hall viscosity
is sensitive to the mean orbital spin ηH = s̄

2ρ [55].
Another check of (30) is provided if one chooses p = ν−1

and s̄ = 1
2ν

. In this case we find that the spin of a real hole
vanishes identically [56], which is the consequence of the sum
rule for second moment of density in the Coulomb plasma.

Direct Berry phase calculation of the spin S is also possible.
In fact, the spin-statistics relation violating second term in
(30) is easy to derive; it comes from (20) combined with (9).
It is much harder to derive the topological spin. It turns out,
perhaps surprisingly, that in curved space one cannot disregard
the second term in (19). The adiabatic drag of a smoothed-out
quasihole around a close loop induces a 2π rotation of the
quasihole “around itself,” which is reflected in the Berry phase;
we refer the interested reader to a computation of [31] that
carefully regulates the quasihole’s finite size. An independent
computation that involves functional integration can also be
found in [10,12]. We rederive the relation (30) two more times
in this section, using the effective approaches: Moore-Read
construction, generalized to curved space, and the Wen-Zee
construction. It seems to be a general theme for the topological
spin θ ; it can be seen in curved space, but only after short
distance manipulations.

B. Conformal field theory

The Laughlin state as well as many other states (but not
all known states) can be constructed as certain correlation
functions or conformal blocks in a CFT [1]. We, again, focus
on the Laughlin state. Our formulation slightly differs from the
original Moore-Read construction, but all of the results can be
obtained from either point of view.

1. Conformal field theory data

The relevant CFT for the Laughlin state is c = 1 boson.
Below we briefly list the objects of interest. We fix the topology
of a sphere with constant magnetic field B̄ = �−2 and round
metric that gives rise to constant curvature R. We consider a
theory in the presence of a background that breaks the scale
symmetry.

The “CFT” has a Lagrangian description given by [13,57]

S[ϕ] = 1

π

∫
∂ϕ∂̄ϕ + i

2
√

q
B̄ϕ + i

s̄

4
√

q
Rϕ. (32)

Strictly speaking, (32) is not a CFT since the scale � is
explicitly present in the action, but some of the CFT termi-
nology and ideas will hold for this very special “perturbation”
(it is not a conformal perturbation in the usual sense since ϕ

is not a primary field). We also note that the “perturbation” is
equivalent to the neutralizing background operator introduced

in [1] since the action can be rewritten as

S[ϕ] = 1

π

∫
∂ϕ∂̄ϕ + i

√
q

∫
ρϕ, (33)

where the density ρ is given by

ρ = ν

2π�2
+ νs̄

4π
R. (34)

The holomorphic stress tensor is (without background charge)
[58]

T = − 1
2 : ∂ϕ(z)∂ϕ(z) : . (35)

There are interesting primary fields in the “CFT” (32). Define
the vertex operators

Vp(z,z̄) =: e
i

p√
q
ϕ(z,z̄) : . (36)

The correlation function of the vertex operators is given by〈∏
i

Vpi
(zi,z̄i)

〉
=

∏
i<j

|zi − zj |2
pipj

q . (37)

The theory (32) has a (broken by the background charge)
U (1) shift symmetry ϕ → ϕ + α. This symmetry imposes
the neutrality condition on the vertex operator correlation
functions ∑

i

pi = q

∫
ρ, (38)

so that when (38) does not hold the correlation function
vanishes.

The field ϕ is chosen to be a compact boson with
compactification radius r = √

q:

ϕ ∼ ϕ + 2π
√

q. (39)

Then condition Vp ∼ e2πipVp implies that p is an integer.
With these choices the vertex operator is well defined. We also
define the electron operator setting p = q:

Vq = ei
√

qϕ(z). (40)

The electron operator has trivial monodromy with other
operators. This property ensures that the conformal block wave
function is single valued in the electron coordinates. There
is a finite number of well-defined primary vertex operators
Vp since p can always be shifted by q at the expense of
multiplying by the “trivial” operator. A CFT with a finite
number of primary fields is called rational. We must emphasize
that multiplication by an electron operator does not change
either braiding properties or topological spin; it does, however,
change the quasihole spin (30). It was suggested in [1] that
other primary operators will describe quasiholes. Since there
is only a finite number of primary fields, there will be only
a finite number of quasihole types (labeled by their fractional
charge).

The last term in (32) is known as the background charge
[59]. This term modifies the stress tensor by an additive term:

Tnew = −1

2
: ∂ϕ(z)∂ϕ(z) : −i

s̄√
q

∂2ϕ. (41)

This modification leads to the change in both conformal di-
mensions of primary fields and the central charge (defined from
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either two-point function of stress tensor T or, more generally,
through the trace anomaly). The conformal dimension of the
vertex operator Vp is given by

hp = p2

2q
− s̄p

q
= νp2

2
− νs̄p, (42)

which agrees with (30). This is probably the easiest way to
derive the spin of a quasihole and it follows directly from
the Moore-Read construction, provided that the neutralizing
background is interpreted as part of the action.

The central charge (dubbed “Hall central charge” and
denoted cH in [22,28]; dubbed “apparent central charge” and
denoted capp in [27]) is

cw = 1 − 12νs̄2. (43)

This quantity appears in the Ward identity for the Weyl
symmetry of (32). Alternatively, it can be derived from a
two-point function of the stress tensor (41). The first term can
be understood as a genuine Weyl anomaly of the functional
integration measure, whereas the second term is induced by
the neutralizing background. To be more precise, the Ward
identity for the Weyl symmetry takes the form

〈Tzz̄〉 = cw

24π
R. (44)

Equation (44) motivates the notation cw.

2. Laughlin function

The (absolute value) of the Laughlin function is given by
the correlation function of the electron operators [1,13]:〈

N∏
i=1

Vq(zi,z̄i)

〉
=

∏
i<j

|zi − zj |2q exp
N∑

i=1

−K(zi,z̄i)

2�2
. (45)

The neutrality condition (38) takes the form

N = νNφ + 2νs̄ = νNφ + 1, (46)

giving the correct relation between the number of magnetic
flux quanta, number of electrons, and the shift.

Quasiholes of electric charge −p/q are generated by
extra insertions primary fields Vp(a), giving the norm (17).
Quasihole wave functions can also be understood as correlation
functions of only electron operators evaluated on a singular
magnetic field background (11). Clearly, shifting the magnetic
field in the action (32) by a δ function inserts precisely the
operator Vp(a) into the correlation function.

The spin of a quasihole equals the scaling dimension of
the operator Vp(a). Due to the background charge [last term
in (32)] the spin does not equal to the statistical spin, but is
given by (30), where the last term comes precisely from the
background charge.

The computation of statistics can be done in a very elegant
way [1]. We can separate the vertex operators into chiral and
antichiral parts,

Vp(z,z̄) = Vp(z) ⊗ Vp(z̄), (47)

and calculate only the holomorphic part of the correlator with
two quasihole insertions VpJ

(aJ ). This yields the expression

�({zi},{aJ }) = 1√
N (aJ )

(a1 − a2)
p1p2

q

∏
i,J

(zi − aJ )pJ

×
∏
i<j

(zi − zj )qe−∑N
i=1

K(zi ,z̄i )

4�2 , (48)

where N (aJ ) is an appropriate normalization factor (single
valued in aJ and exponentially saturating to a constant as
|a1 − a2| increases). The gauge choice of Eq. (48) was first
suggested in [60]. The statistics can be read off from the
monodromy of the wave function under analytic continuation
of a1 around a2. Of course, the monodromy result agrees with
the previous computations. Miraculously, the CFT represen-
tation of the Laughlin wave function selects a nice gauge (in
the space of Berry connections) so that the Berry gauge field
vanishes along the quasihole trajectory and monodromy of the
wave function completely accounts for the adiabatic statistics.
This fact was first used in [1]. The detailed discussion of
conditions that ensure equality between the Berry phase and
the monodromy can be found in [44].

There are three important insights that the CFT construction
gave us. First, there is a relation between primary fields
and fractional anyonic excitations. Second, the statistics of
quasiholes can be read off from the monodromy of the wave
function. Third, the action (32) hints us that it is also possible to
produce a “vertex operator” insertions via choosing a singular
configuration of curvature R. These insertions are discussed
in the next section.

3. Moduli spaces on a torus

The previous construction can also be done on a torus
geometry. In writing the action (32) we were slightly imprecise
because we have integrated by parts the last two terms. We have
to be more careful in the case of a torus. First, we simplify the
action by choosing a flat torus, so that R = 0; however, the
stress tensor is still given by (41). The action takes the form

S[ϕ] = 1

π

∫
∂ϕ∂̄ϕ − i

2
√

q
Ā(0)dϕ + i

2
√

q
B̄ϕ, (49)

where we have kept the fluxes of the vector potential Ā(0).
More concretely we can break the vector potential into two
pieces, Ā and Ā(0), such that dĀ = B̄ and dĀ(0) = 0. On a
sphere the last condition would imply that Ā(0) contains no
information; however, on a torus Ā(0) parametrizes the fluxes
through the cycles of the torus as

�i = 1

2π

∮
ci

Ā(0), (50)

where ci is either a or b cycle of the torus. Thus, the correlation
functions of electron operators will parametrically depend on
the moduli �i . The space of �i is also known under the name
Jacobian variety and flux torus and is topologically a torus
with �i ∈ [0,1). The Berry phase in the space of �i computes
the Hall conductance [61].

There is another parameter space in the game. Fixing the
torus to be flat leaves an infinite number of inequivalent tori,
parametrized by a complex modular parameter τ defined in the
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complex upper half plane H. The simplest way to understand
where the modulus τ enters the equations is to notice that there
are infinitely many flat metrics parametrized as

ds2 = |dz + μdz̄|2, μ = i − τ

i + τ
. (51)

There is an SL(2,Z) redundancy in the definition of τ . Thus,
the space of τ is an orbifold H/SL(2,Z). The Berry phase
in the space of τ computes the Hall viscosity [17,62]. To
fix the terminology, we note that H (in the general genus g

case) becomes the Teichmüller space Tg , whereas the factor
T1(�)/SL(2,Z) is known as the moduli space M1.

When a quantum Hall system is placed on a surface of
higher genus g > 1, there is an extra novelty: The curvature
cannot be chosen to be 0 everywhere; instead the best one
can do is to choose it to be R = −1. Alternatively, the Euler
characteristic does not vanish. This leads to an extra term in
the Berry curvature on the space of 3g − 3 moduli. This extra
term computes the central charge cw [28].

The correlation functions of electron operators turn into
finite sums over the extended conformal blocks [59]. Each
conformal block corresponds to a good wave function; thus,
the space of “Laughlin states” is not one-dimensional like it
was on a sphere. In fact, there are precisely q independent
extended conformal blocks [63] and, thus, the degeneracy of
the Laughlin state is q [64]. A convenient choice of basis in the
space of the unnormalized degenerate ground states is [44,65]

�p = N0 [(Im τ )
1
2 η(τ )2]N

q

2
1

η(τ )
Fq

[
�1+p

q

�2

]
(Z|τ )

×
∏
i<j

θ1(zi − zj |τ )q

η(τ )q
e
−∑

i

(Im zi )2

4�2 , (52)

where Z = ∑
i zi and N0 is the normalization constant that

depends on τ only through the area of the torus, which is
held fixed in all computations. The factors of the Dedekind
function η(τ ) are needed to ensure that the right transformation
properties under the S generator of SL(2,Z), i.e., under
τ −→ − 1

τ
. In particular, the ratio θ1/η(τ ) is a modular form

of weight 0. The factors of (Imτ )
q

2 come from every insertion
of the vertex operator and there are N such insertions. The
combination (Imτ )

1
2 η2(τ ) is again a modular form with weight

0 and so is the wave function. This condition is necessary
since the norm should not transform when going between two
equivalent [in SL(2,Z) sense] choices of τ .

The center-of-mass factor Fq expressed in terms of θ

function with characteristics [66] as

Fq

[
a

b

]
(z|τ ) = θ

[
a

b

]
(qz|qτ ). (53)

The only information about the degeneracy is contained in the
center-of-mass factor. The θ function with characteristics is
defined as

θ

[
a

b

]
(z|τ ) =

∞∑
n=−∞

eπiτ (n+a)2+2πi(n+a)(z+b). (54)

Finally, θ1(zi − zj |τ ) = θ [1/2
1/2](zi − zj |τ ) is the odd θ function,

merely a doubly periodic generalization of the Jastrow factor
(zi − zj ).

It is possible to calculate the charge of a quasihole by
performing a large gauge transformation that affects only
�2. Consider a basis state �p with �1 = 0 and perform an
adiabatic change �2 −→ �2 + 1. Then

�p −→ e
2πi

p

q �p. (55)

Since there are as many ground states as there are types
of quasiholes we can restore the entire charge lattice by
performing the “flux insertions” in different ground states.
Since the charge is determined from a phase, we can only
obtain it up to an integer.

It is also possible to calculate the topological part of the
spin of a quasihole (30). For simplicity we assume �1 = 0.
We perform a large coordinate transformation known as Dehn
twist Ta . This coordinate transformation is equivalent to an
operation on the Teichmüller space τ −→ τ + 1. At this point
we have to be careful. When q is even (i.e., we are dealing
with the bosonic Laughlin state), Ta is diagonal in the basis
�p. Then we have (up to an overall phase)

Ta�p = e
2πi

p2

2q �p (56)

or

(Ta)pp′ = δpp′e
2πi

pp′
2q (57)

and we read off sstat = p2

2q
mod1.

However, when q is odd the Dehn twist is not diagonal
anymore. This happens because the second characteristic of
the θ function is shifted by the “spin” of the electron operator q

2
which is half integer. There are two ways to avoid this problem.
The first way is to reduce the SL(2,Z) to a normal subgroup
� generated by S and T 2

a . Then it is easy to see that that T 2
a

is diagonal since the problematic shift becomes 2 q

2 which is
now an integer [67]. Another way out is to make a large gauge
transformation shifting �2 to �2 + 1

2 together with Ta . The
combined transformation is diagonal in the �p basis. Then
(56) holds for the combined transformation; however, there is
an extra minus sign.

The states �p transform nontrivially under the S generator
of SL(2,Z) according to

�p =
∑
p′

Spp′�p′ . (58)

It is not hard to show that the basis functions (52) transform
by a unitary S matrix given by

Spp′ = 1√
q

e
−2πi

pp′
q , (59)

where we have dropped the overall U (1) phase which depends
on positions of the particles zi and their number N .

The (chiral) central charge c (and not cw!) can be determined
mod8 from the general relation (we have specified it for the
bosonic Laughlin state) [2]

e
2πi

8 c = 1√
q

q−1∑
p=0

e
2πi

p2

2q . (60)
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Fermionic version of this formula (i.e., odd inverse filling) is
also available [68]

e
2πi

8 c = 1√
q

q−1∑
p=0

e
2πi

(p+ 1
2 )2

2q , (61)

where the power (p + 1
2 )

2
is not accidental; it is the simplest

example of the so-called quadratic refinement [68] of the
bilinear form b(p1,p2) = 2p1p2.

In the next section we find that S and Ta (as well as their
generalization to higher genus) can also be related to the braid
matrices of genons.

C. Chern-Simons theory

In this section we also briefly review the Chern-Simons
effective approach to FQH states, emphasizing the role of
curved space. We restrict discussion to one-component states.

1. The action

The effective action reads

Seff =
∫

− q

4π
ada + 1

2π
adA + s

2π
adω + aμjμ, (62)

where a is the U (1) “statistical” gauge field, q is the inverse
filling and the level of Chern-Simons theory, and s is the spin
quantum number. The last term describes the quasihole current.
The action (62) is quadratic and the partition function can be
calculated exactly with ease. Omitting the details, we have

Z[A,jμ] = Z0 exp(iSCS[A,g]) exp 2πi

(
1

2q

∫
jμ�−1

μν j
ν

)
× exp

(
−i

1

q

∫
Aμjμ

)
exp

(
−i

s

q

∫
ωμjμ

)
,

(63)

where

SCS[A,g] = 1

q

1

4π

∫
AdA + 1

2π

s

q

∫
Adω + 1

4π

s2

q

∫
ωdω

− sgn(q)

96π

∫
Tr

[
�d� + 2

3
�3

]
. (64)

Z0 is the topological invariant known as Reidemeister torsion
and �−1

μρ is the propagator of the Chern-Simons theory

�μρ = εμρν∂ν, �μν�−1
νρ = δμ

ρ . (65)

2. Charge, spin, and statistics

Notice that apart from the constant Z0 the partition function
is a phase. Different factors in this phase describe different
quantum numbers discussed before. We start with charge and
spin first. In order to study one quasihole we choose the
quasihole current to be

j 0 = pδ(2)[x − x(t)], j i = pẋiδ(2)[x − x(t)], (66)

where x(t) is the trajectory of a quasihole. We choose the
trajectory to be a closed curve C so that region � is bounded

by C. Then the factor

exp −i
1

q

∫
Aμjμ = exp −i

p

q

∮
C
A = exp −2πi

p

q
�(�)

(67)

allows one to extract the charge of the quasihole −p/q.
The computation of spin is somewhat more sophisticated.

First, there is an obvious Aharonov-Bohm term

exp

(
−i

s

q

∫
ωμjμ

)
= exp

[
−2πi

sp

q
NR(�)

]
; (68)

notice that the phenomenological coefficient s matches s̄.
However, it turns out that it is not the whole story since the
factor

exp 2πi

(
1

2q

∫
jμ�−1

μν j
ν

)
(69)

also contributes to the phase. This term can be written as a limit
of the Gauss linking number of a thin ribbon with edges C and
Cε , where the latter is defined using a framing of the curve C.
The curve Cε is defined as follows. If the curve C is described
by �r = �r(t), then Cε is described by �rε = �r(t) + ε�n(t). The
vector field �n(t) is the framing. The Gauss linking number is
given by

I [C,Cε] = 1

4π

∮
C

∮
Cε

dxμdyνεμνλ

xλ − yλ

|x − y|3 , (70)

where one has to first evaluate the integral and then take the
ε −→ 0 limit. Careful analysis shows [69,70] that this limit is
given by the writhe of the curve C, which, in its turn, is given
by

W [C] = L[C] − 1

2π

∮
C
d �x · [�n × �̇n] = (L[C] − T [C]),

(71)

where the first term is the “self-linking” number and is a
topological invariant. The second term is a geometric invariant
(it depends on the choice of framing, however transforms in a
controlled way under the change of framing), known as twist of
a curve. When the framing is changed the twist changes by an
additive constant (see Fig. 3 for clarification of this statement).
We can choose the framing to be induced by the framing of
the ambient space. Then (up to an additive constant) the twist
is proportional to the curvature flux [71,72]:

T [C] = − 1

2π

∮
C
dxμωμ = − 1

4π

∫
�

d2x
√

gR = −NR(�).

(72)

Putting things together we get the phase factor [we have
dropped the phases that do not depend on NR(�)]

exp

(
2πi

p2

2q
W [C]

)
= exp

[
2πi

p2

2q
NR(�)

]
. (73)

The total phase factor proportional to the curvature flux is

e2πiSNR (�) = exp

[
2πi

(
νp2

2
− νsp

)
NR(�)

]
; (74)

thus, we again obtain (30).
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FIG. 3. (a) A Wilson loop that evaluates to the Aharonov-Bohm
phases times the geometric factor exp −2πiT [C]. (b) Framing of the
curve is shifted by one unit, relative to (a). This results in an extra

phase given by θp = e
2πi

p2

2q . (c) Framing of the curve is shifted by
two units, relative to (a). This results in an extra phase given by θ2

p .

To calculate the statistics, we choose the quasihole current
to be

j 0 = pδ(2)[x − x(t)] + p′δ(2)(x − x0), (75)

j i = pẋiδ(2)[x − x(t)]. (76)

The mutual statistics comes from the factor

exp 2πi

(
1

q

∫
jμ�−1

μν j
ν

)
= e

2πi
pp′
q , (77)

which agrees with previous sections.
Some clarification is required on the relation between the

spin and statistics, which is a delicate subject in quantum Hall
physics, due to the apparent absence of Lorentz invariance. In
the present paper we take a straightforward perspective. We
define the spin of a quasihole S through the “gravitational
Aharonov-Bohm effect” (23). When the effective Chern-
Simons theory is Lorentz invariant (which is not the case for
a realistic QH system), i.e., when s = 0 in (62), the spin S

satisfies the spin-statistics relation, as can explicitly be seen
from (22) and (30). However, when the Lorentz symmetry is
manifestly broken by the Wen-Zee coupling [the third term
in (62)] the spin-statistics relation does not hold. Now, the
topological spin is defined to be an eigenvalue of the Dehn
twist (56). The topological spin is insensitive to the value
of s and does not couple to curvature, so the “topological
spin-statistics relation” holds. The validity of the spin-statistics
relation depends on which object is called spin. We choose to
call S the spin since it is (i) the quantum number that appears in
the gravitational Aharonov-Bohm phase and (ii) the conformal
spin [which equals to the SO(2) spin] of the vertex operator
that creates a quasihole when the coupling to curvature is
included into the Moore-Read construction. Finally, the spin
can be defined for a particle-antiparticle pair. In the quasihole
case such spin equals p2

q
and satisfies spin-statistics theorem.

The terms linear in charge for particle and antiparticle cancel
between each other. There is an extensive literature on the spin
of quasiholes and anyons. We refer the interested reader to
[10,12,27,30,31,51,56,71,73–75].

III. GENONS

This section contains the results obtained in the present
paper. We introduce the curvature defect in a way that closely
resembles the previous section. We construct the wave function
in the presence of the defects, determine the quantization
conditions on the curvature flux and calculate charge, spin, and
statistics. We discover that these defects are the genons [40];
however, our approach allows us to obtain extra information
about the genons such as charge and spin. Since we restrict
our attention to the Laughlin state we will also make progress
in explicitly deriving the braiding properties of genons that
correspond to higher genus surface and outline the general
procedure that allows us to obtain (at least in principle) the
braiding matrices for any “parent” topological phase.

A. Coulomb plasma

In this section we study the local behavior of the Laughlin
state in the vicinity of a curvature defect. This will allow us to
make an ansatz for the wave function and compute the electric
charge of a single genon.

1. One defect

We start with a blunt brute force approach to the Coulomb
plasma. We have already learned that the singular config-
urations of magnetic field (11) with quantized flux behave
as particlelike local excitations. Now we consider a singular
configuration of curvature R on a sphere:

R = R̄ − 4παδ(z − a). (78)

Following the logic of Sec. II, we calculate the electric charge
depletion near z = a. We use (9) and find

δN =
∫ √

g(ρ − ρ̄) = − s̄α

q
. (79)

The unnormalized wave function with this concentration of
charge in the vicinity of z = a is

�({zi},a) =
∏

i

(zi − a)s̄α
∏
i<j

(zi − zj )qe−∑N
i=1

K(zi ,z̄i )

4�2 . (80)

The wave function is regular in the electron coordinates when
s̄α is a positive integer, and consequently, curvature flux is
a negative integer in the units of 4π . This flux is invisible
to the electrons since it leads to an Aharonov-Bohm phase
e−2πis̄α , provided that s̄ is an integer. This holds, for example,
for a bosonic Laughlin state. In the more general case the flux
quantization is affected to ensure that this Aharonov-Bohm
phase is trivial. We choose to parametrize α = n − 1 for the
reasons that will become clear shortly. Thus, the charge of the
curvature defect is

Q = −νs̄(n − 1). (81)

This is as far as we can go with Coulomb plasma. For the
remainder of the section we explore the geometry of the
defects.

2. Geometry

The geometric singularity that corresponds to a genon is
a conical singularity of degree n. Close to the singularity the
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metric in conformal coordinates is given by

ds2 = |z − a|2n−2dzdz̄. (82)

Curvature is found from
√

gR = −4∂∂̄ ln
√

g = −4π (n − 1)δ(z − a). (83)

The Kähler potential is given by

K(z,z̄) = 1

n2
|z − a|2n. (84)

Points of negative, quantized curvature usually appear on
branched coverings of Riemann surfaces and come in pairs
connected by a branch cut. In the present case z = a is a branch
point of degree n and there is another branch point at infinity.
First, we calculate the Euler characteristic of a surface with
many genons. Denote the surface with 2M branch points of
degree n as �n,2M , then the Riemann-Hurwitz theorem makes
it possible to calculate the Euler characteristic

χ (�n,2M ) = 2 − 2(n − 1)(M − 1), (85)

and the genus is

g(�n,2M ) = (n − 1)(M − 1). (86)

The first nontrivial case that we study in great detail is g = 0,
which implies M = 1 (n = 1 corresponds to the absence of a
singular point). In this case for any n the surface retains the
topology of the sphere; in other words, one pair of genons of
any charge does not change the topology; however, they do
change the geometry.

The next simplest case, four genons, has the Euler character-
istic χ (�n,4) = 2 − 2(n − 1) and the genus g(�n,4) = n − 1.
For M > 1 the genus increases with the charge of the genon.

A simpler description of the �n,4M surface can be given
in a different set of coordinates that we call ζ (see Fig. 4).
Locally, the mapping between ζ −→ z(ζ ) is n to 1 except at
the position of the genon and given by

ζ = (z − ai)
n. (87)

In these coordinates the metric is regular and takes the form

ds2 = dζdζ̄ =
∣∣∣∣∂ζ

∂z

∣∣∣∣2dzdz̄ = 1

n2
|z − ai |2n−2dzdz̄. (88)

The geometry is encoded in the boundary conditions: When z

is analytically continued around a, ζ travels around the origin n

times. In this representation it is clear that we are working with
a very special surface with an extra Zn automorphism. This
automorphism will play an important role in the derivation of
braiding statistics of genons.

B. CFT on a singular surface

Conformal field theory proved to be useful as an alternative
way to derive the wave function and in calculation of quantum
numbers of the quasiholes. In this section we use the CFT
on the singular geometry described above to derive some
properties of genons. We interpret the singular points as
primary fields in an orbifold CFT. This, in turn, will allow
us to calculate spin and statistics of the genons. We wish
to interpret the correlation function of electron operators
evaluated on the �n,2M surface as the wave function in the

FIG. 4. An example of the genon surface �3,4. In ζ variables
there is an explicit Zn automorphism of the surface. Every marked
point is a branch point of degree 3. Also, every sheet has 8π units
of curvature at infinity. The n to 1 map ζ �→ z is a projection that
creates conical defects of degree n in the z plane. This projection can
be understood as a factor of the genon surface by the action of Zn.

presence of genons. Then the full power of CFT can be
used to determine the correlation functions including the
dependance on the positions of the genons ai . This method
conceptually generalizes to any number of genons, but the
computations quickly escalate in difficulty due to the topology
change induced by the presence of genons. We take the
Moore-Read point of view and interpret the neutralizing
background as an extra insertion in the correlation functions.
The nonholomorphic factors are dropped for brevity. In this
section Vq(ζ,ζ̄ ) denotes an arbitrary electron operator in
a conformal block trial state; however, all of the explicit
calculations will be carried out for the compact boson at
R = 2π

√
q, i.e., for the Laughlin state.

1. Two genons

To make things simpler, we start with the surface �n,2. In
this case for any n the surface is topologically a sphere.

We consider the correlation function on the surface �n,2 in
coordinates ζ understood as a function of the coordinates z,

�2g({zi},ai) ≡
〈∏

i

Vq(ζi,ζ̄i)

〉
�n,2,ζ (z)

. (89)

To evaluate the correlation function, we make a coordinate
transformation from coordinates ζ to coordinates z. There is
no good global formula for the transformation; however, in a
vicinity of each branch point ai the transformation takes form
(87). Despite the lack of global formula for the transformation
law we can still write a “global” formula for the induced metric.
It is given by

ds2 = |z − a1|2n−2|z − a2|2n−2dzdz̄. (90)
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This formula works in a chart that does not include a small
vicinity of infinity. The curvature density is then given by

√
gR = −4π (n − 1)[δ(z − a1) + δ(z − a2)]. (91)

This equation is written in the chart that does not include
infinity. There is extra curvature at infinity that ensures that
the Euler characteristic comes out correctly [76],

χ (�n,2) =
∫

U (a1)

√
gR +

∫
U (a2)

√
gR +

∫
U (∞)

√
gR

= −(n − 1) − (n − 1) + 2n, (92)

where U (a) is a small neighborhood of z = a.
In the z coordinates we have

�2g =
N∏

i=1

(
∂z

∂ζ

)h∣∣∣∣
z=zi

(
∂z̄

∂ζ̄

)h̄∣∣∣∣
z̄=z̄i

〈
N∏

i=1

Vq(zi,z̄i)

〉
�n,2,z

. (93)

The first factor comes from the transformation of the electron
operator insertions. The correlation function is still difficult to
evaluate since the geometry of the space is both nontrivial and
singular. The next step is to remove the metric singularity by
a Weyl transformation

g′ = e−2σ (z)g, (94)

where σ (z) = (n − 1)(ln |z − a1| + ln |z − a2|) so that ds2 =
g′

zz̄dzdz̄ = dzdz̄. After the Weyl transformation, the correla-
tion function acquires an extra factor given by the integrated
Weyl anomaly,

�2g = e
c

48π
SL[σ ]

N∏
i=1

(
∂z

∂ζ

)h
〈

N∏
i=1

ei
√

qφ(zi )

〉
CP1,z

, (95)

where SL[σ ] is the Liouville action given by

SL[σ ] =
∫

∂σ ∂̄σ + R[g′]σ, (96)

where R[g′] = 0 is the curvature of the metric g′. The wave
function (95) is equivalent to the one used in [27] in the
presence of arbitrary smooth deformation of the metric. The
factors ( ∂z

∂ζ
)
h = √

g
h = ehσ can be regarded as “gravitational

dressing” of the electron operators Vq .
The Weyl transformation acts only on the metric and not on

the coordinates. The functional integration measure is not Weyl
invariant due to the Weyl anomaly, which leads to the Liouville
factor. The neutralizing background is explicitly not Weyl
invariant. Indeed, under a Weyl transformation the neutralizing
background [second term in (34)] transforms as

ρ ′ = ρ − νs̄

4π
�σ. (97)

There are two ways to do the Weyl rescaling. One (the more
traditional) is to simply allow the metric to change according
to (94) and the background density will transform according to
(97). Another way is to make a Weyl transformation keeping
the density ρ fixed. This can be achieved via accompanying
the Weyl transformation with a simultaneous transformation
of magnetic field B → B + s̄

2�σ . Then ρ ′ = ρ. Different
choices will correspond to slightly different prescription for
the braiding of the genons. In the first case the genons are

braided “as is,” while in the second choice the adiabatic
dragging of genons is accompanied by adiabatic variations
of magnetic field so that the combination B + s̄R is kept
constant [27]. These braiding processes are equivalent in a
sense that, knowing the result of one braiding experiment, one
can reconstruct the result of the other. We choose to accompany
Weyl variations with variations of magnetic field for aesthetic
reasons. In the case of CFT trial states, this choice will result
in replacing cw with c.

Finally, the correlation function has to be evaluated on CP1

with metric g′, which we have done in the previous section. We
are now left with the problem of evaluating the Liouville action
on the singular metric induced by the map z(ζ ). Fortunately,
the Liouville action has been evaluated on precisely this metric
in the study of orbifold CFTs [77] (see also Appendix B). We
have

e
c

48π
SL[σ ] = |a1 − a2|− c

6 (n− 1
n ). (98)

Putting things together and taking only the holomorphic
part we present the two-genon “wave function” on top of the
Laughlin state:

�2g = N0(ai)(a1 − a2)−
c

12 (n− 1
n

)
∏
i,k

(zi − ak)s̄(n−1)

×
∏
i<j

(zi − zj )qe−∑
i

K(zi ,z̄i )

4�2 . (99)

Following Ref. [27] we assume that the state (95) is normalized
when integrated with

√
g. The monodromy of conformal block

will equal the Berry phase acquired by the wave function when
a metric (i.e., ai) is varied adiabatically.

Adiabatic exchange of a1 with a2 produces a phase

γstat = c

24

(
n − 1

n

)
. (100)

This phase allows us to extract the central charge c (and cw)
from a braiding experiment. Notice that the braiding phase is
universal and depends on the “parent state” only through the
central charge c. There is an identical effect in the evaluation
of the entanglement entropy (EE) in 2D CFT; for a single
interval, EE is completely determined by the central charge.

We can also calculate the spin of the genon by evaluating
the conformal dimension of a branch point. This is a classic
computation that can be found in [78]; see also [79–82].
It is done by evaluating the expectation value of the stress
tensor 〈T (ζ )〉ζ on the �n,2 surface, using the same method we
described before, and comparing it to a general form of a the
two-point function of stress tensor with a primary field on the
plane. The result is

hn = c

24

(
n − 1

n

)
≡ S. (101)

Alternatively, this result can be deduced by inspecting (98)
and observing that it looks exactly like a two-point function
of primary fields with conformal dimension (and conformal
spin) given by (101). Thus, we have calculated charge, spin,
and statistics of genons associated with �n,2. Unlike the
quasiholes, the genons do satisfy the spin-statistics theorem.
We emphasize that the vertex operator corresponding to a
genon is not a primary in the original CFT used to construct
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the state; thus, genons do not correspond to excitations of the
system.

Single pair of genons is qualitatively different from any
other even number of genons in that for any n the exchange
of two genons leads to an overall phase; in other words, the
state in the presence of two genons is nondegenerate. A similar
effect happens when one considers a Moore-Read state with
only two quasiholes. It is possible to consider genons on a
noncompact manifold such as pseudosphere. In this case it
should be possible to have more than two “Abelian genons.”
We do not pursue that route in the present paper.

2. Four genons

Next we consider the case of four genons. The genus of
the surface �n,4 is n − 1. For simplicity, we choose n = 2 to
get the topology of the torus (however, with singular metric).
When more than two genons are present, the genus is increased
and, consequently, the Laughlin state becomes degenerate and
braiding can, in principle, induce non-Abelian monodromy
among the ground states. We find this to be the case.

Before proceeding with the computation of the correlation
functions, we warm up with an evaluation the partition function
for a compact c = 1 boson at the compactification radius
r = √

q on �2,4 and compare it to the torus partition function.
We think of a partition function as an unnormalized expectation
value of the identity operator Z�2,4 = 〈1〉�2,4,ζ . We have

Z�2,4 = 〈1〉�2,4,ζ = 〈1〉�2,4,z = e
c

48π
SL[σ ]〈1〉T ,z

=
∏
i<j

|ai − aj |− c
12 ZT , (102)

where we have used [77]

e
c

96π
SL[σ ] =

4∏
i<j

|ai − aj |− c
12 (103)

and ZT is the standard (diagonal) partition function on a torus
given by

ZT =
q−1∑
p=0

χp(τ )χ̄p(τ̄ ), (104)

where χp are the û(1)q characters given essentially by the
center-of-mass functions introduced in Sec. II:

χp(τ ) ∼ 1

η(τ )
Fq

[
p

q

0

]
. (105)

The final expression,

Z�2,4 =
∏
i<j

|ai − aj |− c
12

q−1∑
p=0

χp(τ )χ̄p(τ̄ ), (106)

must be understood as an implicit function of ai , with τ

expressed in terms of ai according to [77,82]

x ≡ (a1 − a3)(a2 − a4)

(a1 − a4)(a2 − a3)
=

[
θ3(τ )

θ4(τ )

]4

. (107)

We emphasize that the partition functions (and, conse-
quently, correlation functions) on �2,4 and T are not equal to

each other, but instead differ by a factor fixed by the conformal
anomaly.

Next we wish to compute the correlation function:〈∏
i

Vq(ζi,ζ̄i)

〉
�2,4,ζ

. (108)

Going through the same steps as in the case of two genons we
find the wave function as

�4g(ai) = e
c

48π
SL[σ ]

N∏
i=1

(
∂z

∂ζ

)h∣∣∣∣
z=zi

〈
N∏

i=1

Vq(zi)

〉
T ,z

, (109)

where the last expectation value has to be computed on a torus
and is precisely the torus wave function we studied in the
previous section. Any conformal block in the last factor is a
good choice for the four-genon wave function. Thus, the state
with four genons at n = 2 is q-fold degenerate. Increasing the
number of genons to 2M leads to qM−1-fold degeneracy (recall
that the genus of �2,2M is M − 1), which implies quantum
dimension

√
q for each genon [40].

When q = 2 the quantum dimension is
√

2 and scaling
dimension is h2 = 1

16 (when c = 1). The state with two Moore-
Read quasiholes is Abelian and the (Abelian) exchange phase
is e−2πi 1

8 , which appears to be different from (100). Thus
genons are similar to non-Abelian quasiholes that appear in the
Moore-Read state, since they have the same scaling dimension
and the same quantum dimension, but different overall braiding
phase. We later show that they have the same braid matrices,
up to a (fixed) phase.

The final expression for the degenerate four-genon wave
function is

�4g,p = N (a)
4∏

i<j

(ai − aj )−
c

24 ·
∏
i,k

(zi − ak)(n−1)s̄

·�p({zi}|τ ), (110)

where �p is given by (52) and τ is expressed in terms of
anharmonic ratio of ai through (107).

It is important to understand that ai do not live on a smooth
torus; instead, they live on the z plane with singular points that
is related to the smooth torus by a Weyl transformation. The
first and second factors in (110) describe the local behavior of
the wave function when either two genons or an electron and
a genon come close to each other. The third factor must be
understood as a function of zi and ak . This rewriting has an
advantage that now we can understand the braiding of genons
(action of the braid group on ai) in terms of the action of
the modular group on τ . To understand this correspondence,
we use the crucial Eq. (107). First, recall the properties
of the θ constants, θi(τ ) = θi(z = 0,τ ) [59]. We need the
transformation laws under the Dehn twist,

θ1(τ + 1) = e
2πi

8 θ1(τ ), (111)

θ2(τ + 1) = e
2πi

8 θ2(τ ), (112)

θ3(τ + 1) = θ4(τ ), (113)

θ4(τ + 1) = θ3(τ ), (114)
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and the transformation laws under S transformation,

θ2

(
− 1

τ

)
= √−iτθ4(τ ), (115)

θ3

(
− 1

τ

)
= √−iτθ3(τ ), (116)

θ1

(
− 1

τ

)
= −i

√−iτθ1(τ ), (117)

θ4

(
− 1

τ

)
= √−iτθ2(τ ). (118)

We will also need the Jacobi identity,

θ4
3 (τ ) − θ4

4 (τ ) − θ4
2 (τ ) = 0, (119)

θ1(τ ) = 0. (120)

Using these identities, it is not hard to derive the action of S
and Ta on the anharmonic ratio

Ta ◦ x = 1

x
, S ◦ x = x

x − 1
. (121)

It is now a matter of simple algebra to derive the braiding
matrices. First, consider B23, the braiding of a2 with a3. We
have

B23 ◦ x = x(a2 → a3,a3 → a2) = 1 − x. (122)

In terms of the modular transformations we have

B23 ◦ x = (STaS−1) ◦ x ≡ Tb ◦ x. (123)

We conclude that the braid B23 induces a Dehn twist around
the b cycle Tb. The S transformation induces an overall phase;
however, this phase cancels since B23 = ST S−1. The only
contribution to an overall phase comes from the Liouville
action that is given by (100).

Next, we consider B12, the braiding of a1 and a2. We have

B12 ◦ x = x(a1 → a2,a2 → a1) = 1

x
, (124)

which implies

B12 ◦ x = Ta ◦ x. (125)

We conclude that the braid B12 induces a Dehn twist around
an a cycle Ta . It is well-known that transformations Ta and Tb

generate the full modular group and, consequently, so do B12

and B23. These relations completely fix the non-Abelian part
of the transformation. Finally, we note that B34 = B12 = Ta .

To summarize, the braid matrices act on the space of ground
states as follows:

(B12�4g)p = (Ta)pp′�4g,p′ , (126)

(B23�4g)p = (Tb)pp′�4g,p′ . (127)

These relations, together with (57)–(59), give explicit braid
matrices for four genons on top of the Laughlin state. Note
that Eq. (107) does not care about the quantum Hall state
in question; thus, mapping between the genons and modular
group is going to hold for any “parent” topological phase.
Notice that relations (126) and (127) are general in that

they work whenever the action of the modular group on the
ground-state space is known. This observation hints that the
homomorphism between the braid group and mapping class
group is universal in that it is independent of the topological
phase. The only input from the topological phase comes in the
explicit form and size of the braid matrices.

We are led to conclude that braid matrices of genons form
q-dimensional representation of SL(2,Z). When q = 2 the
genon braid matrix calculated from (57)–(59) agrees with the
braid matrices for the Moore-Read quasiholes [40]. Curiously,
when q = 1 (IQH state) genons are Abelian for any n and M .
The braiding induces only a universal U (1) phase coming from
the Liouville action.

The reason we were able to be very explicit in this section
is due to the existence of Eq. (107). Regrettably, the situation
is different for g � 2. It does not appear to be possible to
directly derive a higher genus analog of (107); however, it
is possible to develop a “routine” procedure that derives the
inverse of (107), meaning the expression of the moduli in
terms of the cross ratios (as opposed to cross ratios in terms of
moduli). This procedure leads to very complicated expressions
and is explained in the Appendix C, where the g = 1 case
is explicitly worked out and higher-genus general (but quite
implicit) expressions are presented.

C. CFT on higher genus surfaces

In this section we explain how to calculate the adiabatic
statistics of genons beyond the toric geometry. To do so we are
inevitably led to a study conformal block trial state on higher
genus surfaces �n,2M with genus g(�n,2M ) = (M − 1)(n − 1).

Before going into any details, we informally outline
the general strategy. A smooth, compact Riemann surface
has 3g − 3-dimensional moduli space Mg , which can be
parametrized by a complex, symmetric period matrix �ij of
size g × g. Similarly to how τ ≡ �11 is acted on by the group
of large diffeomorphisms of a torus SL(2,Z), the period matrix
�ij is acted on by the group of large diffeomorphisms of
a higher-genus Riemann surface, which can be expressed as
Sp(2g,Z) matrices. The period matrix can be related to the
positions of the genons ai which are simply a different way
to parametrize the same moduli space (to be more precise,
they parametrize the moduli of Riemann surfaces with Zn

automorphism, which is a small corner in the entire moduli
space). This relation can be put in more or less explicit form
and provides a generalization of (107), which was crucial in
deriving the braiding matrices. With this relation at hand it
is, in principle, possible to translate braiding of genons into
the action of large diffeomorphisms. There are two ways to
derive this relation. One is based on algebraic geometry and
is presented below. Another one, based on calculus of cut
Abelian differentials, is presented in Appendix C. The latter is
much less transparent and involves complicated calculations,
whereas the former is very intuitive.

1. Some algebraic geometry

We start with an elementary introduction to algebraic
geometry of Riemann surfaces. An accessible review of these
issues can be found in [83,84]. Below we provide an absolute
minimum, mostly to fix the terminology and notations. Let
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FIG. 5. The homology basis consists of a and b cycles. The
mapping class group is generated by 3g − 1 Dehn twists Ta, Tb,
and Tc around a, b, and c cycles, correspondingly. Notice that there
is no Tc generator at genus 1.

� be a Riemann surface of genus g. Every such surface has
a nontrivial 2g-dimensional homology group H1(�). Loosely
speaking, the homology group describes the “independent”
closed curves (referred to as cycles) on a Riemann surface
and equips them with an intuitive multiplication law. The
simple illustration is a torus, which has two nontrivial cycles
traditionally denoted a and b. On a higher genus surface there
are g a cycles ai and g b cycles bi (see Fig. 5 for an example).
These cycles form a basis in the homology group H1(�). Every
curve can be decomposed in the basis of these cycles. Now
consider two curves C1 and C2. Let J (C1,C2) be an intersection
number of these curves, i.e., a number of times the curve C1

intersects the curve C2 with the sign assignment that depends
on the orientation (to clarify, at the intersection point tangent
vectors to the curves can form either left or right pairs; this
determines the sign assignment). The intersection number J

depends only on the homology class of curves Ci and not on
the details of their shape. When evaluated on the basis (ai,bi)
J becomes

J (ai,aj ) = J (bi,bj ) = 0, J (ai,bj ) = −J (bi,aj ) = δij ;

(128)

that is, J is a block diagonal 2g × 2g matrix

J =
[

0 Ig

−Ig 0

]
, (129)

where Ig is g × g unit matrix.
Intersection numbers are topological invariants of a pair

of curves and cannot depend on the choice of coordinates.
There are two types of (orientation preserving) coordinate
transformations: small and large. Small coordinate transfor-
mations are homotopic (can be smoothly deformed) to an
identity, whereas the large ones are not. Large coordinate
transformations form the mapping class group M(�). This
group will play the central role in the remainder of this section.
There is a natural set of generators of M(�); these are Dehn
twists around 3g − 1 cycles. In algebraic form these cycles
are the natural homology basis ai,bi , i = 1, . . . ,g and g − 1
cycles ci = −ai + ai+1. We denote the corresponding Dehn
twists as Tai

, Tbi
, and Tci

. In the case of a torus there are only
two generators Ta and Tb. The homology basis and the basic
Dehn twists are illustrated in Fig. 5 for the case g = 3.

It is clear that small coordinate transformations do not
change J ; however, the large ones change the homology
basis, so the invariance of the intersection numbers will give

a relation between the elements of M(�). For example, the
Dehn twist Ta changes b to b + a, while leaving a invariant. A
generic large coordinate transformation will induce a change
of basis described by an integer-valued matrix M , demanding
that intersection numbers do not change we arrive at

MT JM = J. (130)

Thus, large coordinate transformations represent the action of
the symplectic modular group Sp(2g,Z). When g = 0 there
are no moduli and when g = 1 we have an isomorphism
Sp(2,Z) ≈ SL(2,Z). When g � 2 there is a new phenomenon
[84]: We have a short exact sequence

1 −→ I(�) −→ M(�) −→ Sp(2g,Z) −→ 1. (131)

In other words, there are some nontrivial mapping classes that
map to the unit matrix. These mapping classes form a normal
subgroup known as the Torelli group I(�). The role of the
Torelli group in topological phases of matter is not clear.

Next we discuss forms on �. There is a natural choice of
basis in the first cohomology H 1(�), dual to (ai,bi) that we
denote (αi,βi) that satisfies∫

ai

αj =
∫

bi

βj = δij ,

∫
ai

βj =
∫

bi

αj = 0. (132)

There is, however, a more useful basis of Abelian differentials
of the first kind. To define these we first go to complex,
conformal coordinates so that the metric is given by ds2 =√

gdzdz̄. With the notion of complex conjugate at hand, we
can separate all one forms into two groups: ones that locally
look like f (z,z̄)dz and ones that locally look like f (z,z̄)dz̄.
In particular, there are forms that look like ω = ω(z)dz,
which are called holomorphic. We can choose a basis in the
space of holomorphic forms (there are g of those and g of
antiholomorphic ones) demanding∫

ai

ωj = δij ; (133)

then the integrals over the b cycles are fixed uniquely,∫
bi

ωj = �ij , (134)

where the matrix �ij is known as the period matrix and it
encodes the moduli. It is not hard to show [83] that the period
matrix is (i) symmetric and (ii) Im� > 0. The space of matrices
satisfying (i) and (ii) is known as Siegel upper half plane. Under
the large diffeomorphisms �ij transforms in a nontrivial way.
Given a Sp(2g,Z) transformation

M =
[
D C

B A

]
, (135)

the period matrix transforms as [83]

�′ = (A� + B)(C� + D)−1. (136)

With the period matrix at hand, one can generalize the
notion of θ functions [66]. Generalized θ function with
characteristics is defined as

θ

[
a
b

]
(z|�) =

∑
n∈Zg

eπi(n+a)�(n+a)+2πi(n+a)(z+b), (137)
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where the bold symbols denote g-dimensional vectors. The
characteristics themselves have become vectors since on a
higher genus there are many cycles through which a flux can be
threaded. The Laughlin state will generally be given in terms of
the generalized θ functions. Notice an unpleasant aspect: The
generalized θ functions are functions of g variables instead of
one; thus, we need a way to naturally introduce many variables
in the trial states.

2. Braid group vs mapping class group

It turns out that the success of the mapping class group
approach to braiding is not accidental. There is a deep and
beautiful relation between the mapping class group and various
braid groups Bm. In this section we explore this relation and
obtain an explicit geometric representation of the generators of
Bm (and a slight modification of Bm) in terms of the generators
of M(�). For this section we also fix the following notation:
A Riemann surface of genus g with m (indistinguishable)
punctures or marked points is denoted as Sg,m. The surface
S0,2M will always be regarded as a n-to-1 projection of �n,2M ,
given locally by z(ζ ) or, equivalently, as factor of �n,2M by the
action of the Zn automorphism �n,2M/Zn. All the braiding is
done in z variables, i.e., on a sphere with punctures.

We start by recalling that the (planar) braid group on
m strands, Bm, is a group on m − 1 generators that satisfy
relations

σiσj = σjσi, |i − j | � 2, (138)

σiσi+1σi = σi+1σiσi+1. (139)

The center of the braid group Z(Bm) is spanned by
(σ1 · · · σm−1)m. Braid generator σi acts by intertwining strand
i with strand i + 1. Another way to represent the (planar)
braid group is via the mapping class group of a disk with
m punctures Bm ≈ M(Dm). To make an explicit map we
index the punctures. Then braid generator σi maps to a Dehn
half-twist around a loop that surrounds two punctures i and
i + 1. The center of the braid group is then spanned by Dehn
half twists T∂D .

Instead of the (planar) braid group M(Dm) it is more
convenient to use the spherical braid group M(S0,m). To be
more precise, the spherical braid group is π1(S0,m) and there
is a short exact sequence

1 −→ Z/2Z −→ π1(S0,m) −→ M(S0,m) −→ 1, (140)

but in the following we disregard the kernel Z/2Z and do
not distinguish the spherical braid group from M(S0,m). The
defining relations are slightly different, but, conceptually, the
group is similar. Roughly speaking, the extra relations occur
because it is possible to rotate the sphere (see Fig. 6). Let ξi

be the generators. Then [85]

ξiξj = ξj ξi, |i − j | � 2, (141)

ξiξi+1ξi = ξi+1ξiξi+1, (142)

(ξ1 · . . . · ξm−1)m = 1, (143)

ξ1 · · · ξm−2ξ
2
m−1ξm−2 · · · ξ1 = 1. (144)

FIG. 6. The spherical braid group π1(S0,m) consists of the braids
defined on the surface of a sphere. The mapping class group M(S0,m)
allows for an extra relation not present in π1(S0,m): Two elements
obtained by a 2π rotation of the “inner sphere” are identified.

The generator ξi is a half twist around any curve that encircles
only the points i and i + 1 [86]. There is also an obvious
homomorphism M(Dm) → M(S0,m+1) under which M(Dm)
maps on the Dehn twists of M(S0,m+1) that preserve one
puncture.

The generators of the M(Sg,0) are the Dehn twists
Tai

,Tbi
,Tci

, which also satisfy the braiding relations (141)
and (142). Indeed, when two curves do not intersect,
the Dehn twists around these curves commute so (141)
obviously holds. However, when two curves γi,γi+1 ∈
{a1,c1,b1, . . . ,ag,cg−1,bg} do intersect it is not hard to see
that Dehn twists satisfy

Tγi+1Tγi
Tγi+1 = Tγi

Tγi+1Tγi
, (145)

which is precisely the braiding relation.
Next we are going to explain how the spherical braid group

embeds into M(Sg,0). The structure is different for g = 1,
g = 2, and g � 3. When g = 1 the only possible genon is
�2,4, which we project to S0,4. The mapping class group is
a (planar) braid group (divided by its center), i.e., there is an
isomorphism [84],

M(S1,0) ≈ B3/Z(B3) ↪→ M(S0,4). (146)

In fact, we have already constructed this isomorphism ex-
plicitly in the previous section. The (planar) braid generators
map to Dehn twists σ1 �→ Ta and σ2 �→ Tb = ST S−1. The
spherical braid generators homomorphically map to Dehn
twists ξ1,ξ3 �→ Ta and ξ1 �→ Tb. For the genus 1 the spherical
braid group is actually richer than the MPG of a closed
Riemann surface (see Fig. 7). This is the only case when it is
so and this is why a relation to the planar braid group (instead
of the spherical one) is present.

When g = 2 there are two possible genons �3,4 and
�2,6. Until specified otherwise, we consider n = 2 genons.
We start by projecting �2,6 to S0,6. Surprisingly, there is
an isomorphism [87–89] M(S2,0)/Z2 ≈ M(S0,6). Under this
isomorphism the generators map as (see Fig. 8)

ξi �−→ Tγi
. (147)
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FIG. 7. The projection of a torus S1,0/ι. Spherical braid generators
ξ1 and ξ3 each map to the Dehn twist Ta , while ξ2 maps to Tb. This is
the reason for the existence of a homomorphism from M(S1,0) to the
planar braid group B3.

This result is known as Birman-Hilden theorem [87,90]. In the
next section we will work out the �2,6 genons in great detail.
The reason we restrict to n = 2 is that Birman-Hilden theorem
cleanly works when a surface Sg,0 has a Z2 automorphism
(see Fig. 9). It did not have to be the case that Birman-Hilden
construction corresponds to the computation in the previous
section; however, it seems to be the general case that it does.

For g > 2 there are many different genon surfaces, but
for now we consider �2,2M projected to S0,2M . Birman-
Hilden theorem then states SM(Sg,0) ≈ M(�0,2g+2), where
SM(�g) ⊂ M(�g) is a special subgroup of the mapping
class group known as the symmetric mapping class group.
It consists of elements of the MPG that commute with the
Z2 automorphism. It can be explicitly described in terms of
generators. The precise map of generators is as follows. We
choose a set of curves {{ai},{bi},c1,cg−1}; then

ξi �−→ Tγi
, γi ∈ {{bi},{ci},a1,ag}, (148)

whereas other generators of MPG do not correspond to
braiding. So far we have established that braiding of branch
points maps into Dehn twists.

FIG. 8. The explicit mapping between the generators of the
mapping class group M(S2,0) and generators of the spherical braid
group M(S0,6) is exhibited. Every Dehn twist corresponds to a braid
and vice versa.

FIG. 9. Birman-Hilden representation of a surface with Z2

automorphism ι. The automorphism is realized as π rotation around
a fixed axis. Upon taking a factor by the action of ι the surface
is projected down to S0,2g+2 as there are 2g + 2 fixed points of ι.
Consequently, the elements of the mapping class group M(Sg,0) that
commute with the action of ι are projected to the generators of the
spherical braid group of M(S0,2g+2). In this example the Dehn twist
Ta2 does not correspond to braiding of genons.

That the spherical braid group does not span the entire MPG
can be easily seen from Fig. 9. Alternatively, we can count
the number of generators: There are 2g + 1 generators in the
spherical braid group M(�0,2g+2) and 3g − 1 generators in
the MPG M(�g). These numbers are equal to each other only
when g = 2. Introducing extra punctures would, of course,
increase the number of spherical braid group generators, but
given a genus g surface with a Z2 automorphism there is no
natural way to introduce more than 2g + 2 special points (see
Fig. 9).

It is also possible to establish a homomorphism from the
planar braid group to B2g+1 to M(Sg,1). In this case a small
circle around the removed point of Sg,1 becomes the boundary
of the disk, when B2g+1 is realized as M(D2g+1).

All we need now is the Sp(2g,Z) representation of the
relevant Dehn twists Tγi

. Fortunately, this problem has been
solved a long time ago by Birman [91]. She found that

Tai
�−→

[
Ig 0

Ai Ig

]
, Tbi

�−→
[
Ig Ai

0 Ig

]
, (149)

Tci
�−→

[
Ig 0

Bi Ig

]
, (150)

where

Ai = Eii, Bi = −Eii − Ei+1i+1 + Eii+1 + Ei+1i , (151)

where Eij is a matrix with all 0 entries except 1 on the
intersection of the ith row and the j th column.

Thus, we have a concrete algorithm for computation of the
genon braid matrices. It can be summarized as follows.

(i) Define a state (in z coordinates) in the presence of genons
via

�gen({z},{a}) =
N∏

i=1

(
∂z

∂ζ

)h∣∣∣∣
z=zi

〈
N∏

i=1

Vq(zi)

〉
z

. (152)
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(ii) Use Weyl transformation (accompanied by the change
in magnetic field) to remove the geometric singularities

�gen,p({z},{a}) = e
c

48π
SL[σ ]

N∏
i=1

(
∂z

∂ζ

)h∣∣∣∣
z=zi

�p({z}|�ij ).

(153)

(iii) The transformation law of �gen,p({z},�ij ) under the
action of MPG (the MPG acts on the period matrix �ij ),
combined with the map (148) generates the braid matrices for
Z2 genons. The overall phase is determined by the Liouville
prefactor.

We note that the relations (149) and (150) together with
(136) allow, in principle, to calculate the braid matrices of
genons on top of any “parent state” since the map between
the braid generators and the mapping classes is a geometric
property of Riemann surfaces with automorphisms and is
independent of the physical system placed on the surface.
The size of the braid matrices, their explicit form and quantum
dimension of genons will, of course, depend on the “parent
state.” We calculate the higher genus braid matrices explicitly
for the case when the “parent state” is the Laughlin state.
Before doing that we have to discuss the trial states on higher
genus Riemann surfaces.

3. FQH states on higher genus Riemann surface

We sketch the construction of the Laughlin state (or, any
conformal block trial state for that matter). Surprisingly, there
is next to nothing said about the FQH states on higher genus
surfaces in the literature. Some of the references we could find
include Refs. [92,93], where the Laughlin state is guessed on
a higher-genus surface, but the normalization is not discussed
and Ref. [94], where the wave functions of U (1)q Chern-
Simons theory are derived; but again, the normalization is not
explicitly calculated. For these reasons we briefly present a
CFT construction on a higher genus surface. We refer the inter-
ested reader to [95–99] and references therein for details about
free bosons and fermions on a general Riemann surface and to
[100,101] for details about rational CFTs on Riemann surfaces.

We are interested in the correlation function〈
N∏

i=1

Vq(zi,z̄i)

〉
, (154)

where Vq is the electron operator (in general, including the
neutral sector) and we have dropped the background charge. To
evaluate this correlator (we focus on the holomorphic sector),
we decompose the holomorphic field ϕ as

ϕ(z) = 2π

g∑
i=1

pi

∫ z

ωi + φ̂(z), (155)

where the first term accounts for the zero modes (ωi are the
holomorphic differentials) and the second term is orthogonal to
the space of zero modes. Then the correlation function reduces
to the sum over zero modes pi and functional integral over φ̂.
We start with the latter. The contribution of φ̂ works the same
way as on a sphere or torus, meaning that we only need to
perform the Wick contractions. The propagator is given by

〈φ̂(z)φ̂(w)〉 = ln E(z,w), (156)

where E(z,w) is a prime form. Roughly speaking, E(z,w) is a
generalization of θ1(z−w)

∂θ1(0|τ ) and z − w to the higher genus surface
in that it is antisymmetric and has first-order zero at z = w.
There is a somewhat explicit form available [66],

E(z,w) =
θ

[
a0
b0

]( ∫ z

w
ω|�)

h(z)h(w)
, (157)

where

h(z) =
√√√√ g∑

i=1

ωi(z)
∂

∂ui

θ

[
a0
b0

]
(u|�), (158)

where (a0,b0) is an odd characteristic [in the torus case we had
only one odd characteristic ( 1

2 , 1
2 ), which fixed the choice of

θ1] and h(z) is an analog of ∂θ1(0|τ ). On a torus h(z) does not
actually depend on z since the only holomorphic differential
is a constant. The prime form does not depend on the choice
of the odd characteristic [66] (there is more than one odd θ

function when g > 1).
Now we turn to the correlation function (154). Wick con-

tractions will produce the generalization of the Jastrow factor,∏
i<j

E(zi,zj )q . (159)

The sum over the zero modes is done over the momentum
lattice pi ∈ Zg that can be rewritten into a finite sum over the
extended conformal blocks. These are given by [99]

θ

[
1
q

p

0

](∫ Z

ω

∣∣∣∣q�

)∏
i<j

E(zi,zj )q, (160)

where Z is the center-of-mass coordinate. The neutralizing
background should produce the exponent of K(zi,z̄i). Thus,
putting things together,

�L, p = N (�)θ

[
1
q

p

0

](∫ Z

ω

∣∣∣∣q�

)∏
i<j

E(zi,zj )qe−∑
i

K(zi ,z̄i )

4�2 ,

(161)

where N (�) is a normalization factor. This factor is not
holomorphic in � [it explicitly depends on Im(�)] and it
ensures that �L is a modular form of weight 0 in that it
transforms, at most, by a unitary matrix under any Dehn twist.
This factor is calculable from the CFT representation of the
wave function (under the screening assumption); however,
presently it has never been calculated even for the Laughlin
state. Fortunately, we do not need an explicit form of N (�);
however, we point out that is should satisfy

dd̄N (�) = −2ηH�WP , (162)

where the exterior derivative is taken with respect to the
3g − 3 moduli (encoded in �) and �WP is the Weil-Peterson
form [28]. Notice that �L is labeled by an integer-valued
vector p; thus, there are qg of such states as usual. With (161)
at hand we can find an explicit the representation of the MPG
and, consequently, compute the braid matrices of genons.
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4. Genus 2

In this section we calculate explicitly the braid matrices
for �2,6 genons on top of the Laughlin state using all of the
ideas discussed in the previous sections. We take the Laughlin
state to be defined via (152). The non-Abelian piece of the
statistics is fixed by the last factor in (153) given by (161).
Thus, to calculate the braid matrices we only need to calculate
the action of Sp(2g,Z) on (161) for g = 2.

We start with the generators of Sp(2g,Z). There are five of
those:

Ta1 =

⎡⎢⎣1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

⎤⎥⎦, Ta2 =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

⎤⎥⎦,

Tb1 =

⎡⎢⎣1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦, Tb2 =

⎡⎢⎣1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤⎥⎦,

Tc1 =

⎡⎢⎣ 1 0 0 0
0 1 0 0

−1 1 1 0
1 −1 0 1

⎤⎥⎦. (163)

Notice that the generator Tc1 has no analog on a torus. As a
helpful tool we introduce a matrix suggestively denoted S ,

S =
[

0 I2

I2 0

]
, (164)

where I2 is a 2 × 2 unit matrix. This matrix is a g = 2 analog
of the modular S transformation in that it exchanges the a and
b cycles; i.e.,

Tbi
= S Tai

S −1. (165)

Now, since the map M(Sg,0) −→ Sp(2g,Z) is a homomor-
phism we only need to evaluate the action of Tai

, Tci
, and S

on the Laughlin state. Then we can obtain Tbi
by multiplication

of matrices just like we did in the case of g = 1. Indeed, recall
that for g = 1 the action of Tb was very complicated, but easily
calculable from the action of S and Ta .

Next we need the transformation laws of the period matrix

� = [�11 �12

�21 �22
]. Using (136) we have

Tai
� =

[
�11 �12

�21 �22

]
+ Eii, (166)

Tc1� =
[
�11 �12

�21 �22

]
+ B1, (167)

S � = �−1. (168)

Notice that the action of S is a simple generalization of S
that sends τ → −τ−1. Also, the action of Tai

is a simple
generalization of τ → τ + 1. We will discover the meaning
of Tc shortly.

We consider the genus 2 version of the Laughlin wave
function (161). In the calculation we drop all of the U (1) phases
and assume that all of the factors of the type detIm� are taken
care of by the normalization factor N (�). The only factor

in (161) that contributes to non-Abelian braiding statistics of
genons is

X p
q

≡ θ

[
1
q

p

0

](∫ Z

ω

∣∣∣∣q�

)
. (169)

At the expense of an overall phase in the statistics we can also
change the first argument to 0. Thus, we are interested in the
transformation laws of

X p
q

= θ

[
1
q

p

0

](
0

∣∣∣∣q�

)

=
∑
l∈Zg

exp πi

(
l + p

q

)
q�

(
l + p

q

)
. (170)

There are q2 of such factors and, consequently, the braid
matrices are q2 by q2. It is easy to see that

Tai
X p

q
= e

2πi
p2
i

2q X p
q
, (171)

which is the straight forward generalization of (56) and gives
the braid generators ξ1 and ξ5.

The S transformation acts as

S X p
q

= 1

q

∑
p′

e
−2πi

p p′
2q X p′

q

=
∑

p′
S p p′X p′

q

. (172)

Thus, the “S matrix” has two vector indices. The summation
goes over values p′

i = 0, . . . ,q − 1. This can be derived
using the multidimensional Poisson resummation formula
analogously to the g = 1 case. Thus, we also know Tbi

from
(165).

Finally, we have

Tc1X p
q

= e
2πi

(p1−p2)2

2q X p
q
, (173)

the phase corresponds to the topological spin of a “composite”
anyon (p1, − p2), which is not too surprising since c1 =
−a1 + a2.

Relations (171)–(173), together with (165) and the corre-
spondence

ξ1 → Ta1 , ξ5 → Ta2 , ξ2 → Tb1 , ξ4 → Tb2 , (174)

ξ3 → Tc1 , (175)

are sufficient to write out the braid matrices for genons. The
braid matrices for ξ1,ξ5,ξ3 are given by (171) and (173),
while the braid matrices for ξ2,ξ4 require multiplying S and
Ta , which is not particularly illuminating; the braid matrices
have tensor product form as components of p can be varied
independently.

We note in passing that the Torelli group acts trivially on
the Laughlin states (up to an overall phase); however, it acts
nontrivially if the Zn symmetry is gauged [99].

The method described here is applicable to any “parent”
topological phase as long as the action of the mapping class
group of Sg,0 on the space of ground states is known.
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FIG. 10. When the automorphism group of a surface is more
complicated than Z2, the generators of the spherical braid group lift
to triple (or, in general, n-tuple) products of Dehn twists. The simples
case �3,4 with g = 2 is illustrated.

5. Generalization to n > 2

The case n = 2 turns out to be simpler since (some) Dehn
twists on the surface Sg,0 map to Dehn half-twists around pairs
of genons. With extra difficulties it is possible to move beyond
n = 2. First, we recall how things work for n = 2 [90]. To
construct a homomorphism from M(S0,2g+2) to M(Sg,0), we
consider a version of Sm,0 with Z2 automorphism ι realized as
in Fig. 9. The symmetric mapping class group SM(Sg,0) we
mentioned above is a subgroup ofM(Sg,0) that commutes with
ι. The action of ι leaves 2g + 2 points fixed. Consider Sg,0/ι;
it is not hard to see that this factor space is exactly S0,2g+2,
where each “puncture” is a cone with negative curvature −4π .
Now consider a curve γ on Sg,0 preserved by ι. Dehn twist
around γ commutes with ι and thus descends to a Dehn twist
on S0,2g+2. In fact, it descends to a Dehn half twist around a
curve that is an image of γ in S0,2g+2.

When n > 2 we have to consider a cyclic n-fold covering.
See Fig. 10 for an example of a smooth surface with a Z3

automorphism ι. In this case the same construction goes
through; however, there is a difficulty. The lift of a braid
to the covering surface is not unique. It depends on the
explicit representation of the covering. However, the following
statement is true [87]. The mapping class group M(�n,2M )
of a n-fold cyclic (i.e., with Zn symmetry) covering of a
sphere is isomorphic to the (noncentral) group extension
of the cyclic group Zn by the braid group M(S0,2M ); i.e.,
M(�n,2M )/Zn ≈ M(S0,2M ). More explicitly, let ξi be the
generators ofM(S0,2M ) and letTsi

be lifts of ξi intoM(�n,2M ).
Then [87] Tsi

satisfy (141), (142), and (143) with m = 2M plus
the condition

(Ts1 · · · Ts2M−2T 2
s2M−1

Ts2M−2 · · · Ts1 )n = 1; (176)

that is, ξi lifts into a set Dehn twists around mutually
intersecting curves. While the relations satisfied by Tsi

depend
only on the the integers n and 2M , the curves si depend on the
realization of the covering space, meaning that the (homology
classes of) curves si may transform under the covering
transformations. This is somewhat similar to what happens

in classification of SET phases. In Zn lattice gauge theories
one also is forced to consider the (noncentral) extensions of
the global symmetry group by the gauge group.

The simplest example of a Z3 surface is �3,4. There are two
braid generators, ξ1 = ξ3 and ξ2. The best we can do explicitly
is to map the Dehn twist (not half-twist) (ξ1)2 to Ta1Ta2Tc

and the Dehn twist (ξ2)2 maps to Tb1Tb2T−b1+b2 . Despite this
complication, the previous argument guarantees that the half
twists map to some elements of the MPG.

IV. DISCUSSIONS AND CONCLUSIONS

A. Discussions

We have provided an algorithm that relates the braid
matrices of genons to the elements of the mapping class
group of a Riemann surface with automorphism. In the cases
when the action of the mapping class group on the space of
ground-state wave functions of the “parent” topological phase
of matter is explicitly known, the braid matrices can be readily
derived. Such explicit representation is available when there
is a representation of the ground states in terms of generalized
θ functions as well as other elliptic functions. This is not
always the case. In order to make progress in understanding
the genon statistics, it is important to understand how the
mapping class group acts on the ground-state space when
such a representation is not available. In fact, the non-Abelian
statistics of the genons has to be encoded in the RCFT data:
braiding and fusion matrices. The action of the mapping class
group on the conformal blocks of a RCFT has been worked out
in [101] and, in principle, can be applied to general conformal
block trial states.

The universality of the overall U (1) phase deserves further
clarification. One way to think about the genons [20,40] is
to imagine a lattice dislocation that connects two different
sublattices. If such a setup is to be experimentally realized,
the dynamics of the defects—governed by the theory of
elasticity—will lead to a diabatic correction to the overall
phase. Braid matrices of non-Abelian vortices in a p + ip

superconductor have a similar Abelian phase ambiguity. Here
we suggest a somewhat different point of view. In the present
case the braiding phase can be thought of as an extreme
case of the linear response. A singular configuration of an
external field is applied to a system and varied adiabatically
along a closed path in the field space. A simple example
of such process is an adiabatic braid of a pair of—not
necessarily integer—singular (i.e., localized on the scale of
magnetic length) magnetic fluxes. The Berry phase acquired
by such process is controlled by the Chern-Simons term in
the induced action for the FQH state. Then there are no
attractive forces between the fluxes and, thus, the overall
phase has no diabatic correction, provided the fluxes are
well-separated and moved sufficiently slow. In the case of—not
necessarily integer—curvature defects the overall phase is
controlled by the exponent of the Liouville action (96) and
(98) and has no diabatic corrections for the same reason.
We emphasize that such a phase will appear in the case of
arbitrary conical singularities that, in general, do not lead
to a degeneracy. Sadly, we do not know how to create
mobile, local fluxes of curvature in an experiment. There is,
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however, a realistic way to probe the Liouville factor. When
the background geometry is singular, the second moment
of density, M2 = ∫

d2x r2

2�2 [ρ(r) − ν
2π�2 ], has a contribution

coming from the Liouville factor [22]. It should be possible to
measure the second moment M2 and extract this contribution
in the setup of Ref. [49] after the precision is increased. Then
the overall U (1) braiding phase can be deduced indirectly
from knowing that (i) it is controlled by the Liouville
factor and (ii) knowing the coefficient from the measurement
of M2.

In the present paper we have focused on the surfaces with
the simplest Abelian Zn symmetry. It is possible to imagine
a generalization to an arbitrary finite symmetry group G.
The reason we believe that such generalization is possible is
that every finite group can be realized as an automorphism
group of a Riemann surface. Given a Riemann surface �

with an action of G given by an automorphism ιG, there is
always a corresponding factor space �/ιG with singular points.
When an anyon, represented by a primary field, is analytically
continued around such point, it is transformed by the action
of the group G. The G-invariant mapping class group should
implement the braiding of the defects, although the details
remain to be worked out.

There is another representation for the genons developed
in [40]. Instead of placing a topological phase of matter C on
a branched covering, one can consider n copies of C. Then Zn

symmetry is implemented as a symmetry that interchanges
the copies, rather than isometry of a Riemann surface. Genons
are introduced then as defects of the Zn symmetry. This
way of thinking about genons actually suggests a possibility
to implement them in a physical setting by allowing
quasiparticles to tunnel between different layers of C. Detailed
discussion of this mechanism for Laughlin states can be
found in [40]. As was emphasized by the authors of [40],
this opens an exciting opportunity to implement topological
phases on higher genus surfaces in a planar physical sample.
The general framework for braiding and fusion of symmetry
defects has been developed in [102] and goes under the name
of G-crossed unitary modular tensor category.

We have not discussed an essential property of quasiholes
or genons, namely, fusion. It is easy to visualize the fusion
of quasiholes as their charges simply add. In other words, the
magnetic fluxes that created quasiholes simply add. Roughly
speaking, the fusion rules are Abelian:

e
i

p1√
q
ϕ × e

i
p2√

q
ϕ → e

i
p1+p2√

q
ϕ
. (177)

In the case of genons the fusion rules are somewhat mysterious,
since, geometrically speaking, the fusion of genons would
correspond to a change in topology of the physical space.
Moreover, in higher genus cases one can imagine a new type
of genons that connect, say, every mth sheet of the surface
instead of each sheet. Presumably, such genons will have
interesting fusion rules. At the same time genons can be
understood as twist defects of the Zn symmetry. Fusion rules
of the symmetry twist defects have been studied extensively
[102–105] and are conceptually similar to those of the fusion
of quasiholes, interestingly the fusion rules of Zn twist defects
are non-Abelian. It would be interesting to understand the

fusion of genons from the geometric perspective, which should
correspond to pinching the Riemann surface.

B. Conclusions

We have investigated the properties of the geometric defects
created by the curvature fluxes adiabatically threaded through
a quantum Hall state. These defects or genons can be assigned
an electric charge, a spin, and statistics. The charge and
spin can be evaluated via the plasma mapping and CFT
methods, whereas the non-Abelian statistics is determined by
a representation of mapping class group of a Riemann surface
with an automorphism on a space of ground states. There is a
universal, Abelian, part of the statistics that is determined by
the gravitational anomaly.

Note added in proof. Recently, two preprints appeared
on the arXiv, where related issues are investigated [22,106].
Reference [22] studies the Laughlin state on surface with
topology of a sphere with an arbitrary number of conical
singularities, while Ref. [106] studies the action of the mapping
class group via a topological charge projection.
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APPENDIX A: STATISTICS FROM THE
INDUCED ACTION

1. Quasiholes

In this Appendix we calculate the statistics of the quasiholes
in the Laughlin state using the induced action, meaning we
show that

γstat = 2πi
p1p2

q
(A1)

follows from the induced action

Sind = 1

4πq

∫
AdA. (A2)

We consider a gauge field configuration that corresponds to
moving a flux 2πp1 around a flux 2πp2:

A = p1

[
dz

z − z1(t)
− dz̄

z̄ − z̄1(t)

]
+ p2

(
dz

z − z2
− dz̄

z̄ − z̄2

)
.

(A3)

It is clear that with the help of

d̃
dz

z
= −

(
∂̄

1

z

)
dzdz̄ = −πδ(z)dzdz̄, (A4)

where d̃ is spatial exterior derivative d̃ = dz∂ + dz̄∂̄ . Next we
evaluate the Chern-Simons action on this field configuration.
We have (we write out only the relevant terms)

dA ≈ p1

[
ż1

(z − z1)2
dtdz − ˙̄z1

(z̄ − z̄1)2
dtdz̄

]
. (A5)
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Then (again, only cross terms are relevant)

1

4πq

∫
AdA

≈ p1p2

4πq

∫ {
ż1(t)

[z − z1(t)]2

1

(z̄ − z̄2)
− c.c.

}
dtdzdz̄

= p1p2

4q

∫ {
ż1(t)

[z − z1(t)]
δ(z − z2) − c.c.

}
dtdzdz̄

= p1p2

4q

∫ {
ż1(t)

[z2 − z1(t)]
− c.c.

}
dt

= p1p2

4q

∮ [
dz1

(z2 − z1)
− c.c.

]
= 2πi

p1p2

2q
. (A6)

Strictly speaking, this computation holds for general p1 and
p2; however, it only corresponds to quasiholes when fluxes
are integer. We expect that the adiabatic phase makes sense
and is universal even for a generic magnetic flux, despite the
fact that the computation is outside of applicability of the
induced action.

2. Genons

It is possible to compute the statistics of generic curvature
fluxes using the same method. The result, however, does
not agree with monodromy computations of Sec. III. The
difference in the computation of the statistics of curvature
fluxes is that singularities may change the topology of the
space. To avoid this we place extra curvature flux at infinity.
We consider the spin connection configuration of the form

ω = ω1 + ω2 + ω∞, (A7)

where

ω1 = α1

[
dz

z − z1(t)
− dz̄

z̄ − z̄1(t)

]
, (A8)

ω2 = α2

(
dz

z − z2
− dz̄

z̄ − z̄2

)
, (A9)

ω∞ = (2 − α1 − α2)

(
dz

z − z∞
− dz̄

z̄ − z̄∞

)
. (A10)

The spatial curvature 2 form is

R1 = 2d̃ω1 = −4πα1{δ[z − z1(t)] + δ(z − z2)}dzdz̄,

R∞ = 2d̃ω∞ = 4π (2 − α1 − α2)δ(z − z∞)dzdz̄,

and the Euler characteristic comes out correctly χ = 2.
Evaluation of the gravitational Chern-Simons action proceeds
the same as in the quasihole case

cw

48π

∫
ωdω = 2πi

cw

24
α1α2. (A11)

We assumed that infinity point is not encircled by the path
z1(t). This result agrees with [22]; however, it disagrees with
the monodromy computation. It is amusing to note that if the
contour happens to include z∞, then the braiding phase does
not depend on α2 (or, more generally, on any cone that is

enclosed by the contour),

γstat = cw

24
α1(α1 − 2) = cw

24
(n2 − 1); (A12)

in the last equality we took α1 = −(n − 1), which is the case
discussed in the main text. In this case the statistics comes out
without a factor of 1

n
= 1

α1+1 . This statistics does not satisfy
the spin-statistics theorem. It appears that the induced action
computation only agrees with monodromy computation when
0 < α1 � 1.

APPENDIX B: EXPLICIT EVALUATION OF
THE LIOUVILLE ACTION

In this Appendix we are going to elaborate on the derivation
of (98). We need to evaluate the Liouville action on a singular
geometry described by the metric

ds2 = n2|z − a1|2n−2|z − a2|2n−2dzdz̄. (B1)

To do so, we cut a small disk of radius ε around the points
where curvature becomes singular and replace it with a flat
patch with regular metric

ds2 = 4εdzdz̄. (B2)

The Liouville action is evaluated in ζ coordinates. We consider
the Liouville action in ζ space, with discs removed, �′. First,
since there is no curvature in ζ coordinates, the term Rσ does
not contribute. Second, we integrate by parts in the kinetic
energy term

c

96π

∫
�′

−σ�σ + c

96π

∫
∂�′

σnμ∂μσ, (B3)

where the first term vanishes because �σ is a sum of δ

functions with support outside of �′. Thus,

SL[σ ] = c

96π

∫
∂�′

σnμ∂μσ. (B4)

There are two types of points that we have removed from
�. The first type consists of the points ai . These points
contained negative curvature. The second type consists of the
points that map to z = ∞. In order to study these points, we
need to specify the covering map ζ (z). A convenient choice
is

ζ = a
zn

zn − (z − s)n
, (B5)

where the branch points in ζ space are located in ζ = 0 and
ζ = a. The zeros of denominator are

zk = s

1 − αk

(B6)

and lie in a strip parallel to the imaginary axis. We can consider
the parameter s as a regulator that, upon the limit s → ∞,
places all of the zeros to infinity. The curvature at finite s is

√
gR = −4π (n − 1)δ(z) − 4π (n − 1)δ(z − 1)

+ 4π

n−1∑
k=1

δ(z − zk) + 4πδ(z − z∞). (B7)

Thus, we need to evaluate the boundary integral around z = 0,
z = 1, z = zk , z = ∞. Integrals around 0 and 1 are equal to
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each other, as are the integrals around zk’s; the integral around
z = ∞ vanishes. We start with the integral around 0,

c

96π

∫
∂�′

σnμ∂μσ

= c

96π

∫
dθε

1
n
n − 1

ε
1
n

ln |a2n2z2n−2| + c.c.

× c

48
ε

1
n
n − 1

ε
1
n

ln
∣∣∣a− 2

n n− 2
n ε

2n−2
n

∣∣∣ + c.c. (B8)

= − c

6

n − 1

n
ln |a| + · · · , (B9)

where we kept only the dependence on ln a. When it comes to
points z = zk , each of these points has degree 1 instead of n,
but computation goes in an identical way. We have

c

96π

∫
∂�′

σnμ∂μσ = − c

6
(n − 1) ln |a| + · · · . (B10)

Adding the contributions together, we have

SL[σ ] = − c

6

n2 − 1

n
ln |a|. (B11)

The result does not depend on s, and upon replacing a →
a1 − a2 we recover (98).

APPENDIX C: SINGULAR SURFACES WITH
Zn-SYMMETRY

The genon surfaces �n,2M can be described in yet another
way. Consider a set of points (ζ,z) ∈ C2 that satisfies equation

zn =
2M∏
i=1

(ζ − ai). (C1)

This curve is exactly the same curve we have studied before.
To see this, it is sufficient to assume that all ai are sufficiently
far apart and consider a neighborhood of a point ζ = ai . In
this neighborhood, Eq. (C1),

zn = C(ζ − ai), (C2)

where C is an overall constant C = ∏
i �=j (ai − aj ). This is

precisely the coordinates we have used in Eq. (87). In this
neighborhood ζ is the multivalued coordinate we used to
set up the computation of the correlation functions. Globally,
the Riemann-Roch theorem ensures that the genus comes out
correctly.

There is a natural, albeit not canonical, set of holomorphic
differentials fi on the algebraic curve (C1). These are [79]

fi,l = ζ i−1

zl
dζ, (C3)

where l = 1, . . . ,n − 1 and i = 1, . . . ,M − 1, so there are
precisely g(�n,2M ) of them. This basis can be transformed
back to the canonical basis of holomorphic differentials ωi ,

ωi = Lijfj , (C4)

where we have denoted fj a g-dimensional vector made from
the matrix fj,l . We also define

Aij =
∮

ai

fj , Bij =
∮

bi

fj . (C5)

An explicit expression for Lij is derived by applying
∮
ak

to
both sides of (C4),

Lij = A−1
ij . (C6)

Now the period matrix can be expressed in terms of fj and,
consequently, in terms of ai . We have

�ij =
∮

bi

ωj = A−1
jk

∮
bi

fk = A−1
jk Bki . (C7)

To illustrate this abstract approach, we consider case of torus
�2,4. Then (C7) reduces to

τ =
∮
b
f∮

a
f

, f = dζ√
(ζ − a1)(ζ − a2)(ζ − a3)(ζ − a4)

. (C8)

These integrals are contour integral representations of hyper-
geometric function F (x) = 2F1(1/2,1/2,1; x), with x being
the anharmonic ratio, provided we fix three of ai to be at 0, 1,
and ∞. Thus, we get

τ = i
F
(

1
x

)
F
(
1 − 1

x

) , (C9)

which is the inverse of (107). While it is far from obvious that
(107) and (C9) are inverse of each other, it can be checked
with Mathematica.

Despite the apparent simplicity, Eq. (C7) is not very friendly
to work with since each entry in A and B matrices is an elliptic
integral of the form∮

ci

ζ i−1

(ζ − a1)
l
n (ζ − a2)

l
n · · · (ζ − a2M )

l
n

dζ, (C10)

where ci is either ai or bi . Arnold derived an explicit
representation for braid matrices in the case �2,6 using
Pickard-Lefshetz theory [107]. We refrain from the detailed
analysis of matrices A and B and their monodromies; instead,
we discuss some general geometric features of �n,2M .

There are two extreme cases we can consider. The first case
is �n,4. This surface has genus n − 1 and there are 3g − 3 =
3n − 6 moduli; however, there is only one anharmonic ratio
x and there are only two independent braids. In this case the
relevant elliptic integrals are of the type∮

ci

dζ

ζ
l
n (ζ − 1)

l
n (ζ − x)

l
n

. (C11)

These integrals can be expressed in terms of the hypergeo-
metric function 2F1( l

n
,1 − l

n
,2(1 − l

n
); x).

The opposite extreme case is the surface �2,2M . In this
case the genus is M − 1 and there are 3M − 6 moduli. At the
same time there are 2M − 3 independent anharmonic ratios.
This is the case with the biggest number of anharmonic ratios
available and the surface is still not generic. The reason is
that even Z2 symmetry conflicts with deformations in some
directions in the moduli space and even more so for Zn case.
Interestingly, in the genus 2 case, when M = 3 the surface is
generic as there are as many anharmonic ratios as moduli. For
all such surfaces the scaling dimension of a branch point is
1/16 and when q = 2 they still should describe Moore-Read
quasiholes.
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In principle, the route to calculation of the braiding matrices
is clear. Equation (C7) translates braiding of ai to modular

symplectic Sp(2g,Z) transformations. The latter act on the
Laughlin state on the genus g surface and are known explicitly.
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[19] S. Johri, Z. Papić, P. Schmitteckert, R. N. Bhatt, and F. D. M.
Haldane, New J. Phys. 18, 025011 (2016).

[20] M. Barkeshli and X.-L. Qi, Phys. Rev. X 2, 031013 (2012).
[21] G. Y. Cho, O. Parrikar, Y. You, R. G. Leigh, and T. L. Hughes,

Phys. Rev. B 91, 035122 (2015).
[22] M. Laskin, Y. H. Chiu, T. Can, and P. Wiegmann,

arXiv:1602.04802.
[23] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[24] M. Stone, Phys. Rev. B 85, 184503 (2012).
[25] A. Gromov and A. G. Abanov, Phys. Rev. Lett. 114, 016802

(2015).
[26] B. Bradlyn and N. Read, Phys. Rev. B 91, 125303 (2015).
[27] B. Bradlyn and N. Read, Phys. Rev. B 91, 165306 (2015).
[28] S. Klevtsov and P. Wiegmann, Phys. Rev. Lett. 115, 086801

(2015).
[29] B. Bradlyn, M. Goldstein, and N. Read, Phys. Rev. B 86,

245309 (2012).
[30] T. Einarsson, Mod. Phys. Lett. B 5, 675 (1991).
[31] T. Einarsson, S. Sondhi, S. Girvin, and D. Arovas, Nucl. Phys.

B 441, 515 (1995).
[32] C. Hoyos and D. T. Son, Phys. Rev. Lett. 108, 066805 (2012).
[33] D. T. Son, arXiv:1306.0638.
[34] A. Gromov and A. G. Abanov, Phys. Rev. Lett. 113, 266802

(2014).
[35] K. Jensen, arXiv:1408.6855.

[36] M. Geracie, K. Prabhu, and M. M. Roberts, J. High Energy
Phys. 08 (2015) 042.

[37] J. Maciejko, B. Hsu, S. A. Kivelson, Y. J. Park, and S. L.
Sondhi, Phys. Rev. B 88, 125137 (2013).

[38] Y. You and E. Fradkin, Phys. Rev. B 88, 235124 (2013).
[39] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[40] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Phys. Rev. B 87,

045130 (2013).
[41] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[42] V. Gurarie and C. Nayak, Nucl. Phys. B 506, 685 (1997).
[43] P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83,

075303 (2011).
[44] N. Read, Phys. Rev. B 79, 045308 (2009).
[45] In fact, there is extra freedom in introducing the coupling to the

curved space. One can always multiply the wave function by a
factor

∏
i

√
g(zi)

j
. In this paper we take j = 0, but in general

j will change the geometric spin.
[46] M. R. Douglas and S. Klevtsov, Commun. Math. Phys. 293,

205 (2010).
[47] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
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