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Majorana approach to the stochastic theory of line shapes
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Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the
Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we
demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show
that the leading contribution to the self-energy can reproduce most of the observed line-shape features including
splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically
included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk
charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum
of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured
line shape.
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I. INTRODUCTION

Resonant spectroscopy of two-level systems is a powerful
tool to study the environment in which they are embedded, and
includes photo- and x-ray absorption, electron spin resonance,
nuclear magnetic resonance, and even current spectroscopy
of a quantum dot. An important example is Mössbauer
spectroscopy [1], where nuclear transitions in a solid are
studied by the recoil-free resonant absorption/emission of
γ -ray photons, providing a sensitive probe of low-frequency
electric charge fluctuations and the magnetic field texture in the
material. Recently, the advent of synchrotron-based radiation
as a new source of hard x rays [2] has opened up a wide range
of materials to Mössbauer study, with the possibility of new in-
sights into strongly correlated systems, such as YbAlB4 [3–5].

The theory of line shape is one of the classic topics in
condensed matter physics [6]. The stochastic theory based
on the seminal works of Anderson, Kubo, and later Blume
on the topic [7–11] has been extensively used over the
years to successfully interpret and understand experimental
line shapes of multiple-level systems in solids and liq-
uids [11,12]. However, the classic theory is model-based,
providing information about the line shapes in environments
with specialized Gaussian or Markovian dynamics [6]. A
number of works [13–17] have been put forward over the
subsequent years to generalize the theory to more variety
of line shapes, using the method of moment expansion and
the auxiliary memory function [18–20]. However, their scope
of applicability is limited to the phenomenologically chosen
auxiliary function which obstructs a systematic approximation
scheme. Interestingly, in spite of the general applicability of the
theory and recent demands, the theory of line shape has been
largely unchanged since the above works. This motivates us to
revisit the problem of spectral line shapes in two level systems,
recasting the problem in a modern framework. Our work
leads us to conclude that there is a wide parameter regime in
Mössbauer spectroscopy, in which the entanglement between
two-level system and the environment is weak enough for the
measured absorption line shape to provide model-independent
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information about the spectrum of charge fluctuations in the
surroundings.

II. THE MODEL

Here, we study the spectroscopic line shape of a two-
level system (probe) immersed in a fluctuating environment
[Fig. 1]. Quite generally, the Hamiltonian of a two-level
system can be described by a pseudospin variable Iz = ±1/2
in a Zeeman field which is modulated by another degree of
freedom

H = (ω0 + λσf )(I z + 1/2) + Hrest{σf }. (1)

The level spliting is modified by the fluctuating bosonic
variable σf whose dynamics is governed by Hrest. I z commutes
with both Hrest and σf but the latter two do not commute,
resulting in resonance-frequency fluctuations. A main as-
sumption is that the level splitting (which corresponds to a
nuclear excitation energy in Mössbauer spectroscopy) is large
enough (ω0 � T ) that the two-level system is in its ground
state. Without much restriction, we assume that 〈σf 〉 = 0
and its average is absorbed in ω0. Most of our discussion is
applicable to arbitrary σf and Hrest and the latter can be quite
complicated. However, we will make a distinction between the
cases when σf is a continuous variable and when it has discrete
eigenvalues. The latter occurs, for example, when σf = ±1 is a
digital variable caused by the capacitive coupling of the probe
to the occupation of a nearby fermionic f level. On the other
hand, if the probe is coupled to many independent f levels,
the average becomes a continuous variable which according
to the central limit theorem will have Gaussian dynamics.

In spectroscopic studies, the above system is coupled to an
additional photonic degree of freedom, H ′ = H + g(I+a +
H.c.) + ωa†a, which is used to probe the line shape of the
excited state at absorption energies ω ∼ ω0. The absorbed
power (positive) is written (see Appendix A) in terms of the
retarded Green’s function of the spins

P (ω) = −ω�2χ ′′
−+(ω + iη), (2)

where χ ′′
−+(ω + iη) denotes the imaginary part of the

Fourier transform of the retarded function χR
−+(t) =

−iθ (t)〈[I−(t),I+(0)]〉, evaluated in thermal equilibrium, and
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FIG. 1. The setup considered in this paper. The resonance
frequency of the two-level system as probed by gamma-ray absorption
(middle panel) is modulated by the quantum/thermal fluctuations
of an additional degree of freedom (left panel), resulting in a
modification of the spectral line shape (right panel). The average
resonance frequency ω0 is much larger than any other energy scale
in the problem and the temperature is low enough that the two-level
system is mostly at its ground state.

�2 is the field strength of the incoming radiation. Such a
relation between the absorbed power and the spin suscepti-
bility is well known [8,9]. The calculation of the dynamic
susceptibility is, however, challenging as the perturbation
theory to any finite order is sometimes divergent [21,22]
and generally not sufficient to capture the line shape. The
noncanonical commutation relations of the spin inhibit the
use of diagrammatic resummations and the application of
Bloch equations [13] and the memory functions [19,20] to
remedy the problem is limited to the phenomenologically
chosen relaxation rate and the auxiliary function without a
framework for systematic calculation.

III. MAJORANA REPRESENTATION
AND THE SELF-ENERGY DIAGRAMS

To use the machinery of field theory, we need to represent
the spin in terms of canonical fields. We use a Majorana
representation of the spin [23,24], �I = − i

2 �η × �η, which
expresses the spin in terms of three [26] Majorana fermions ηi ,
i = 1,2,3 obeying the anticommutation relation {ηi,ηj } = δij .
The advantage of this representation is that it avoids the use
of a constraint and furthermore, the spin dynamics can be
directly read off from the one-particle Green’s function of
the Majorana fermions [23,24]. This is because the Majorana
composite φ = −2iη1η2η3 commutes with the spin [φ, �I ] = 0
and the Hamiltonian [φ,H ] = 0, and is thus a constant of
motion. Moreover, since 2φ �I = �η and φ2 = 1/2, it follows
that

〈I a(t)I b(t ′)〉 = 1
2 〈ηa(t)ηb(t ′)〉. (3)

It is convenient to combine two of the Majoranas into a single
Dirac fermion, d† ≡ (η1 + iη2)/

√
2, so that I z = d†d − 1/2

and I+ = √
2η3d†. The occupied/unoccupied states of the d

level correspond to the up/down states of the probe isospin,
Iz. By Eq. (3) I−(t)I+ = d(t)d† and I+I−(t) = d†d(t) are
true at all times and therefore, 〈I−(t)I+(0) − I+(0)I−(t)〉 =
〈d(t)d†(0) − d†(0)d(t)〉. The Fourier transform of the left side

is the imaginary part of the spin susceptibility, whereas the
right side has the “wrong” sign to be a fermionic retarded
function. Instead, it is the Keldysh function of the d level,
and by the fluctuation-dissipation theorem can be related to
the imaginary part of the retarded function. Therefore, we
obtain [23] (see Appendix B)

χ ′′
−+(ω + iη) = tanh(βω/2)G′′

d (ω + iη). (4)

Here, β = 1/T is the inverse temperature and G′′
d (ω + iη)

is the imaginary part of the Fourier transform of the re-
tarded Green’s function, GR

d (t) = 〈−iθ (t){d(t),d†(0)}〉. Quite
generally, we expect the absorption function, ∝ G′′

d (ω + iη),
to be a narrow function centered at ω0, so combining
Eqs. (2) and (4), we have P (ω) ∝ −G′′

d (ω + iη) and the
proportionality constant is c ≈ ω0 tanh(βω0/2)�2. The area
under the resonance is constant, leading to the sum rule∫

dωP (ω) = −c
∫

dωG′′
d (ω + iη) = πc{d,d†} = πc. A sim-

ilar relation between linear conductance and Gd appears in
current spectroscopy of quantum dots [25].

The advantage of the Majorana representation is that
one can apply standard field theory techniques, developing
a Feynman expansion for the one-particle Green’s function
Gd (τ ) ≡ −〈Tτd(τ )d†(0)〉, which we can immediately convert
to a spin correlation function of the probe isospin using
Eq. (4). Taking advantage of the Dyson’s equation for the
Green’s function, Gd (z) = [z − ω0 − �d (z)]−1, the d-fermion
Green’s function is described in terms of the self-energy �d (z)
of the d fermion [Fig. 2(a)]. The calculation of the spin
dynamics then reverts to a calculation of the self-energy of
the d fermion. The relevant diagrams in the expansion of the
self-energy to order O(λ4) are shown in Fig. 2(b). Assuming
that temperature is much smaller than ω0, we have f (ω0) ≈ 0,
where f (ω) = [eβω + 1]−1 is the Fermi-Dirac distribution.
Therefore, to a good approximation, it suffices to consider

FIG. 2. (a) Diagrammatic representation of the Dyson’s equation.
(b) Perturbative expansion of the self-energy to order O(λ4).
The set of diagrams corresponding to the (leading) single-photon
approximation, the Gaussian approximation, and the forward-time
d-propagator approximations are indicated. (c) The self-energy can
be obtained self-consistently from the leading order by including the
vertex correction and upgrading the d propagator to a full Green’s
function. (d) The leading contribution to the vertex correction, used
in the text.
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an exclusively forward-time bare d-level propagator gd (τ ) =
[−θ (τ ) + f (ω0)]e−ω0τ ≈ −θ (τ )e−ω0τ in the calculations. This
considerably simplifies the diagrams, because it eliminates
all diagrams that involve fermions propagating backwards in
time, i.e., any diagrams with additional fermion loops [e.g.,
the last two Feynman diagrams of Fig. 2(b)]. Physically, this
approximation means that there is no back-action from the d

level on the charge fluctuations, e.g., by the last diagram in
Fig. 2(b). The forward-time restriction on the d propagator
limits us to a single d-fermion branch in the Green’s function,
and these diagrams resum to [7]

Gd (τ ) = −e−ω0τ
〈
Tτ e

−λ
∫ τ

0 dτ ′σf (τ ′)〉. (5)

Alternatively, this formula can be obtained using the methods
similar to the orthogonality catastrophe problem by writing
d(τ ) = eτH−de−τH+ where H± correspond to the Iz = ±1/2
sectors of the Hamiltonian, respectively.

Expanding the exponent inside the bracket of Eq. (5),
we have to evaluate n-point correlation functions of σf .
These have a disconnected part [sum of all possible Wick’s
contractions, the Gaussian subset in Fig. 2(b)] and a connected
part caused by the interaction vertices of Hrest. For a continuous
σf variable with Gaussian dynamics, the connected-part
contribution to Eq. (5) is zero and the bracket becomes
exp[ 1

2λ2
∫ τ

0 dτ1
∫ τ

0 dτ2〈Tτσf (τ1)σf (τ2)〉] (see Appendix C).
We can simplify this to write [7]

Gd (τ ) → −e−ω0τ exp

[
−λ2

∫ τ

0
dx(τ − x)χC(x)

]
. (6)

Here, χC(τ ) = −〈Tτσf (τ )σf (0)〉 is the correlation function
of the fluctuations and we used that χC(−τ ) = χC(τ ). This
formula, due to Anderson [7], is quite precise within the
Gaussian-action assumption, but unfortunately due to the
appearance of the χC within an integral in the exponent, it
is difficult to use it to extract the susceptibility χC(ω) from the
spectrum.

On the other hand, for a discrete σf = ±1 variable we
cannot use Anderson’s Gaussian formula due to the importance
of interaction vertices. For example, replacing the composite
charge bosons by the population of a fermionic f level σf =
2f †f − 1, we see that Hrest can be strongly interacting with
O(1) vertex corrections. In this case, the resummation of the
Gaussian subset of diagrams to infinite order is too arbitrary.
A special case in which the discrete problem can be solved is
when the discrete σf has (classical) Markovian dynamics; i.e.,
its probability of being ±1 at any given time, �p(t) = (p+ p−)T ,
obeys a rate equation �̇p = ` �p with the transition matrix
`. Interpreting Eq. (5) as a statistical average, we follow
Anderson [7] and divide the integral in Eq. (5) into N → ∞
segments and use the rate equation to derive (see Appendix D)

Gd (τ ) → −e−ω0τ {�1 T · exp[−τ (λσ z + i`)] · �pst }. (7)

Here, σ z is in the same space as `. The vector �pst contains
steady-state probabilities and is the solution to` �pst = 0. Much
of the stochastic theory is about diagonalizing the exponent
in this formula and generalizing it to multiple levels [10–12].

Here, we propose a simpler approach that has the advantage
that it is model-independent. To gain some insight we consider
the limiting case where Hrest = 0 (equivalent to ` = 0). By

ensemble-averaging over σf = ±1 we can write

Gd (ω + iη) = 1

2

1

ω + iη − ω0 + λ
+ 1

2

1

ω + iη − ω0 − λ

= 1

ω + iη − ω0 − �d (ω + iη)
,

where we have absorbed the statistical mixture into a per-
turbative self-energy �d (ω + iη) = λ2/(ω + iη − ω0) for the
ensemble-averaged Green’s function. Note that this agrees
with Eq. (5) and Eq. (7), while it disagrees with Eq. (6)
using χC(τ ) = −1. The structure of the Gd function here
is reminiscent of the zero-coupling limit of the Anderson
impurity problem. Indeed, for the case of Hrest = ∑

k εkf
†
k fk

with a bandwidth �, we have an Ising Kondo (in a Zeeman
field) which can be solved exactly [22] and χ−+(ω) exhibits
orthogonality catastrophe physics. Usually, there is an energy
scale T∗(�,λ) ∼ �, below which a coherent entanglement
between the probe and Hrest is established. However, at
the weak-coupling limit T � T∗ there is little entanglement
and a perturbative self-energy accurately matches the exact
nonperturbative result [22,23].

One of observations of this paper is that the simplest
“single-photon” exchange approximation to the self-energy
of the d fermion provides an interpolation between motionally
narrowed and double-line limits of the absorption line, and
is capable of reproducing most of the observed features of
the line shape for general Hrest in the T � � limit. This is
the leading order contribution to the self-energy, �d (τ ) =
−λ2gd (τ )χC(τ ), which to order λ2 is exact and thus it goes
beyond both forward-time propagator and Gaussian-action
approximations mentioned earlier. Note that this O(λ2) ex-
pansion of �d (ω) enables us to capture nonperturbative effects
of the charge fluctuations on the line shape, whereas a O(λ2)
calculation of the original χ−+(ω) is unsatisfactory. Taking
the Fourier transform, and using gd (iωn) = [iωn − ω0]−1 and
analytically continuing to real frequencies, we obtain (see
Appendix E)

�′′
d (ω0 + ω + iη) = λ2[f (ω0) − nB(−ω)]χ ′′

C(ω + iη), (8)

where nB(ω) = [eβω − 1]−1 is the Bose-Einstein distribution.
Equation (8) is the central result of this paper. We have related
the retarded function of the fluctuations to the imaginary
part of the self-energy. The latter is related to the absorbed
power by �′′

d (ω) = −cP (ω)/[P 2(ω) + P ′2(ω)], where c is the
proportionality constant introduced after Eq. (4) and P ′(ω) is
the Hilbert transform of the absorbed power P (ω) ≡ P ′′ so
that P ′ + iP ′′ obeys the Kramers-Krönig relation

P ′(ω) = P
∫

dω′

π

P (ω′)
ω′ − ω

.

Having obtained �′′
d one can then use Eq. (8) to extract the

charge susceptibility from the line shape. A main assumption
is that the fluctuations have a small bandwidth � � T � ω0.
Thus, we can drop f (ω0) and do a high-temperature expansion
of nB(−ω) ≈ −1/βω to write �′′

d (ω0 + ω) ≈ λ2χ ′′
C/βω. This

together with the Kramers-Krönig relation for χC(ω + iη)
provides another sum rule that relates the area under the
dissipative part of self-energy (or χ ′′

C/βω) to the static charge
susceptibility

∫
dω�′′

d (ω) = πλ2T χ0
C . Moreover, combining
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these equations we find the simple and useful inverse formula

χC(ω) ≈ c

λ2T

ω

P ′(ω) + iP (ω)
. (9)

This formula can be used to directly extract the charge
susceptibility of the medium from the observed line shape.

We have explained our approach to the line-shape theory
which enables the use of Feynman diagrams for the calcula-
tions and approximations. In the rest of the paper we provide
two examples, one reproducing known results as a proof of
principle and the other one showing the generality of the
approach.

IV. EXAMPLES

As a first example, we look at the case when χ ′′
C/βω =

−πδ�(ω) is a �-broadened delta function at the origin. A
Lorentzian δ�(ω) function, defined in Eq. (D12), corresponds
to an exponential decay in the time domain 〈σf (t)σf (0)〉 ∼
e−�t and a single-rate Markovian process in which � is
the rate of switching between the two σf = ±1 states (see
Appendix D). In this case, the Kramers-Krönig relation
is trivial and we obtain �d (ω0 + ω + iη) = λ2[ω + i�]−1.
Inserting this into the Green’s function gives us the Archer-
Anderson formula:

G′′
d (ω0 + ω + iη) = − λ2�

(ω2 − λ2)2 + ω2�2
, (10)

previously [7] obtained from the completely different approach
of Eq. (7) (see Appendix D). This agreement is a remarkable
observation whose origin is unclear to us at the moment.
Equation (10) is plotted in Figs. 3(a) and 3(b). In the slow-
switching case x ≡ λ/� � 1, we have two well-separated δ

peaks at ω = ±λ, whereas in the fast-switching case x � 1,
and on a rescaled frequency axis ω̃ = (ω − ω0)/�, we get
a single peak at the origin �G′′

d (ω̃) → x2[ω̃4 + ω̃2 + x4]−1

which is Lorentzian within ω̃ � x and has non-Lorentzian
ω̃−4 tails at ω̃ � x.

It is instructive to compare Eq. (10) to the Gaussian result,
Eq. (6), which can be computed with little effort in this
special case. Defining α = x2 and from χ (τ ) = −ei�τ , it is
straightforward (Appendix D) to find

�G′′
d (ω̃) = −πeα

∑
n�0

fn(α)δ(n+α)(ω̃). (11)

This is a summation of (n + α)-broadened δ functions
all centered at ω̃ = 0 with the coefficients fn(α) ≡∑

m Jm(−α)In−m(−α), given in terms of ordinary Jm(x) and
modified Im(x) Bessel functions. This function is plotted in
Figs. 3(c) and 3(d) along with Eq. (10). The two functions
agree at x � 1, which can be understood, qualitatively, by the
fact that the time-averaged σf in both continuous and discrete
cases spend most of the time around zero. We argue below
that the rainbow diagrams [e.g., second diagram of Fig. 1(b)]
and vertex corrections [e.g., third diagram of Fig. 1(b)] that are
included in the Gaussian subset but not in Eq. (8) are negligible
for x � 1 but become important at finite x in agreement with
these plots.

To account for the vertex correction one has to solve
the Bethe-Salpeter equation for the vertex function (see

FIG. 3. The resonance line shape from a Lorentzian charge
susceptibility from Eq. (10). (a), (b) For a fixed λ varying � leads
to line-shape narrowing. Panels (c) and (d) compare Eq. (10) with
a (Markovian-)Gaussian calculation. Agreement at λ/� � 1 and
disagreement at finite λ/� are transparent. Panel (c) also includes
the noncrossing approximation as well as the first two iterations of
dressing the Green’s function in Eq. (10), showing that the splitting
disappears and the result becomes more and more similar to the
Gaussian result.

Appendix F). To the leading order, and from Fig. 2(d), we
can estimate these vertex corrections to be λ2 → κλ2 where
κ ≈ 1 − λ2

∫ τ

0 dτ1χC(τ1)
∫ τ1

0 dτ2 ≈ 1 − x2. This is analogous
to Migdal’s theorem in superconductivity and confirms that
vertex corrections are negligible in the fast regime x � 1 but
important in the slow regime.

The rainbow diagrams are part of the so-called noncrossing
approximation (NCA) class and can be included within our
formalism by self-consistently upgrading the bare propagator
gd in the self-energy to the exact Green’s function Gd . This
is schematically shown in Fig. 2(c) and can be implemented
iteratively. Figures 3(c) and 3(d) include the first two iterations
as well as the NCA result, starting from Eq. (10). While
nothing changes for x � 1, in the opposite regime of finite
x the line shape becomes closer to the Gaussian result.
To the leading order we can see this, by expanding the
self-energy as �d (ω) = �d (ω0) + (ω − ω0)∂ω�d (ω0) + · · ·
and only keeping the leading terms. Therefore, gd (iωn) is
replaced by Gd (iωn) ≈ Z[iωn − ω0 + i�sgn(n)]−1, where
Z = [1 − ∂ω�d (ω0)]−1 is the wave-function renormalization
of the d level and � = −Z�′′

d (ω0) is its broadening. We
can estimate �/� ∝ x2 and Z = [1 − x2]−1 in our example.
Calculating the self-energy with this propagator has the
effect of renormalizing the coupling constant λ2 → λ2Z, but
more importantly the self-energy is blurred by a convolution
with a �-broadened delta function δ�(ω) (see Appendix E).
Therefore, in the limit of fast/slow charge fluctuations rainbow
diagrams have a negligible/important effect, in agreement with
the numerical result. The fact that rainbow diagrams and
vertex corrections drive the line shape towards the Gaussian

085113-4



MAJORANA APPROACH TO THE STOCHASTIC THEORY OF . . . PHYSICAL REVIEW B 94, 085113 (2016)

FIG. 4. The effect of nontrivial charge fluctuations on the reso-
nance line shape where there are two (slow with the width �S and fast
with the width �F ) contributions to the charge susceptibility. Panels
(a) and (b) correspond to the charge susceptibility. We have varied
the relative strength of the two proportional to sin2 θ and cos2 θ , and
calculated the resulting line shape (c) and (d).

result is not surprising, since these additional diagrams can
be understood as if the two-level system is coupled to many
independent mutually noninteracting f levels which average
into a Gaussian line shape.

The second example is when a combination of fast and
slow switching processes are involved and where the power of
the field theoretical approach shows up. These more complex
scenarios happen for example in Kondo systems as spin-flip
processes involve fast charge switching between unpaired
single-spin and empty or doubly occupied states [27]. In Fig. 4,
we have considered a case where χ ′′

C/βω contains a slow peak
at the origin with the width �S and a fast mode at a finite
frequency with the width �F . The charge susceptibility is then

χ ′′
C(ω)

βω
= −π cos2 θδ�S

(ω) − π sin2 θδ�F
(|ω| − ωF ), (12)

where ωF , �S , and �F are kept constant and θ is varied in
Figs. 4(a) and 4(b) to change the relative strength of fast and
slow fluctuations for different ratios of �F < �S and �F = �S .
Figures 4(c) and 4(d) show the corresponding line shapes we
would expect from such a medium. A direct consequence of
the sum rules is that the total area under χ ′′

C/ω is a constant.
As is clear from these results, the existence of the fast mode
and its breadth can have significant effects on the line shape,
a detailed study of which we leave for the future.

V. CONCLUSION

To conclude, we have revisited the classic stochastic theory
of line shapes and used a Majorana representation of the spin
to recast it in a field-theoretical language. We have shown
that the leading contribution to the self-energy provides an
interpolation between Markovian and Gaussian results as well
as featuring a flexibility to study nontrivial charge fluctuations.
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APPENDICES

The following appendices include the proof of some of the
statements or formulas given in the paper.

APPENDIX A: ABSORBED POWER FORMULA

From Fermi’s golden rule, the absorption rate is related to
the transition rate, given by

�(ω) =
∑
f

2π

�
|〈f |δH |i〉|2δ(Ef − Ei). (A1)

Here δH = g(a†I− + H.c.) and Ei and Ef are the exact many-
body energies of H0 = H + ωa†a where H is the Hamiltonian
in Eq. (1). Then using

δ(Ef − Ei) = 1

2π�

∫ +∞

−∞
dte−it(Ef −Ei )/� (A2)

we can write

�(ω) = 1

�2

∫ ∞

−∞
dte−it(Ef −Ei )/�

∑
f

〈i|δH |f 〉〈f |δH |i〉

= 1

�2

∫ ∞

−∞
dt

∑
f

〈i|eitH0/�δHe−itH0/�|f 〉〈f |δH |i〉

= 1

�2

∫ ∞

−∞
dt〈i|δH (t)δH (0)|i〉, (A3)

where we have employed completeness
∑

f |f 〉〈f | = 1 and
written the perturbation

δH (t) = eitH0/�δHe−itH0/�

in the interaction representation with respect to H0 = H +
ωa†a. As a result of this interaction representation I±, a, and
a† in δH develop time dependence. Doing a thermal average
over the initial states, the total transition rate is then given by
[the frequency dependence on the right is implicit in the time
evolution of the δH (t)]

�(ω) = 1

�2

∫ +∞

−∞
dt〈δH (t)δH (0)〉 (A4)

which can be written as

�(ω) =
(

g

�

)2 ∫ +∞

−∞
dt{neiωt 〈I−(t)I+(0)〉

+(1 + n)e−iωt 〈I+(t)I−(0)〉}
= ig2[nχ>

−+(ω) + (1 + n)χ<
−+(ω)], (A5)

where n ≡ 〈a†a〉 as the average number of photons created at
the steady state (a measure of input power). We have used the
definitions of the greater/lesser functions

χ>
−+(t) = −i〈I−(t)I+(0)〉, χ<

−+(t) = −i〈I+(0)I−(t)〉.
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We assume in this paper that the two-level system (described
by the spin �I and weakly probed by the gamma photons) is in
thermal equilibrium with its surroundings and considering the
ω0 � T condition, it is mainly in its ground state. Therefore,
the greater/lesser susceptibilities are related to the imaginary
part of retarded susceptibility by the fluctuation-dissipation
theorem

χ>
−+(ω) = 2i[1 + nB(ω)]χ ′′

−+(ω),

χ<
−+(ω) = 2inB (ω)χ ′′

−+(ω). (A6)

Anticipating that χ ′′
−+(ω) is a narrow resonance at ω0 � T , we

can approximate the Bose function nB(ω) = [eβω + 1]−1 ≈
θ (−ω). Therefore, χ<

−+(ω � T ) ≈ 0 and χ>
−+(ω � T ) ≈

2iχ ′′
−+(ω). Inserting these into Eq. (A5) we conclude

�(ω) = −2�2Im[χR
−+(ω)], (A7)

where we have defined � ≡ g
√

n. Equation (A7) is the total
number of transitions. Dividing this by two (absorptions) and
writing P (ω) = 1

2 �ω�(ω) gives Eq. (2).

APPENDIX B: MAJORANA REPRESENTATION
OF THE SPIN

1. Commutation relations

Using the index notation Sl = −(i/2)εlabη
aηb, and using

the anticommutation algebra {ηa,ηb} = δab, we can confirm
that the spin operators faithfully reproduce the SU(2) algebra

[Sl,Sm] = − 1
4εlabεmcd [ηaηb,ηcηd ]

= − 1
4εlabεmcd{δbcηaηd − δbdηaηc

+ δacηdηb − δadηcηb}
= 1

2 [ηlηm − ηmηl] = iεlmpSp, (B1)

and that furthermore, (Sa)2 = 1/4, �S2 = 3
4 , confirming that

this is a faithful representation of a spin-1/2 operator.

2. Relation between Keldysh and retarded functions

As a reminder, we can write the Kelydsh GK and the
difference between retarded GR and advanced GA functions
as

GK
d = G> + G<, G> − G< = GR − GA, (B2)

in terms of the greater and lesser functions, defined by

G>
d (t) = −i〈d(t)d†(0)〉, G<

d (t) = +i〈d†(0)d(t)〉.
Using the cyclic properties of the trace, G>

d (t − iβ) = −G<
d (t)

or equivalently, G<
d (ω) = −e−βωG>

d (ω) in the frequency
domain. Combining these with Eqs. (B2) gives GK

d (ω) =
[1 − 2f (ω)]2iG′′

d (ω) which leads to Eq. (4).

APPENDIX C: DIAGRAMMATIC PROOFS

The Hamiltonian (1) in the d-level representation is

H = (ω0 + λσf )d†d + Hrest{σf } (C1)

and we are interested in Gd (τ ) = −〈Tτd(τ )d†(0)〉. A brute
force perturbation theory in λ is

Gd (τ ) = −
∞∑

n=0

(−λ)n

n!

∫ β

0
dτ1 · · · dτn〈Tτd(τ )d†(0)

× [d†(τ1)d(τ1)σf (τ1)] . . . [d†(τn)d(τn)σf (τn)]〉.
The d operators commute with Hrest{σf } and therefore, there
is no additional interaction vertex and the above correlation
function factorizes into d and σf parts. Therefore, we can
write

Gd (τ ) = −
∞∑

n=0

(−λ)n

n!

∫ β

0
dτ1 . . . dτn〈Tτd(τ )d†(0)d†(τ1)

× d(τ1) · · · d†(τn)d(τn)〉〈Tτσf (τ1) · · · σf (τn)〉. (C2)

We can apply Wick’s contraction to these noninteracting d

levels, but before that we introduce an approximation that
simplifies the resulting diagrams.

1. Forward-time propagators and single-branch simplification

The propagator for the free d level is

gd (τ ) ≡ −〈Tτd(τ )d†(0)〉
= {−θ (τ )[1 − f (ω0)] + θ (−τ )f (ω0)}e−ω0τ

= [f (ω0) − θ (τ )]e−ω0τ ≈ −θ (τ )e−ω0τ . (C3)

We have used that the (average) resonant frequency is much
larger than temperature (ω0 � T ) and therefore

f (ω0) = 1

eβω0 + 1
≈ e−ω0/T ≈ 0. (C4)

In the following, we show that this approximation significantly
simplifies the Wick’s contractions. We can categorize the
Feynman diagrams with the number of inter-disconnected
d-level propagators. If going from d(0) to d(τ ) we pass
through all the d-level propagators, there is only one branch.
Inter-disconnected diagrams may appear for example to order
λ2 as the tadpole diagram or λ4 as the fermion bubbles
inside the propagator of the σf charge fluctuation [Fig. 2(b)].
The simplification of the forward-time approximation is that
d-fermion bubbles are suppressed. For example, the fermion
bubbles’ contribution is proportional to g(τ1 − τ2)g(τ2 −
τ1) ≈ θ (τ1 − τ2)θ (τ2 − τ1) = 0. Therefore, the single-branch
assumption is justified.

Moreover, since gd (τ < 0) = 0, in doing Wick’s contrac-
tion, we must have the ascending order τ1 < τ2 < · · · < τn and
they are all connected in one branch. If the order is violated
even once, e.g., g(τ1 − τ3), the result will be zero because τ2

will appear somewhere else and make the time argument of
the propagator negative and zero result due to forward-time
approximation. With this, we have

Gd (τ ) =
∞∑

n=0

λn

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn

× g(τ − τ1)g(τ1 − τ2) · · · g(τn−1 − τn)g(τn − 0)

×〈σf (τ1) · · · σf (τn)〉. (C5)
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Using Eq. (C3) we find

Gd (τ ) = −e−ω0τ

∞∑
n=0

(−λ)n
∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn

×〈σf (τ1) · · · σf (τn)〉

= −e−ω0τ

∞∑
n=0

(−λ)n

n!

∫ τ

0
dτ1

∫ τ

0
dτ2 · · ·

∫ τ

0
dτn

×〈Tτσf (τ1) · · · σf (τn)〉
= −e−ω0τ 〈Tτ e

−λ
∫ τ

0 dτ ′σf (τ ′)〉, (C6)

which is Eq. (5).

2. Orthogonality catastrophe proof

An alternative proof of Eq. (C6) is by writing the evolution
operator of the d(τ ) = eτH de−τH , where H is given by
Eq. (C1). To have a nonzero result, the d state has to be filled
prior to the acting with the annihilation operator and empty
afterwards. Therefore, we can write

d(τ ) = eτHrestde−τ [Hrest+(ω0+λσf )]. (C7)

After this replacement, the d operator has done its job and can
be dropped out [22]:

Gd (τ ) = −〈Tτd(τ )d†〉
≈ −〈

eτHreste−τ [Hrest+(ω0+λσf )]
〉
Hrest

= −e−ω0τ
〈
eτHreste−τ (Hrest+λσf )

〉
Hrest

. (C8)

We have added a subindex Hrest to the first correlator to indicate
the Hamiltonian that appears in the corresponding Boltzman
factor. Also, we have used the forward-time approximation to
drop a factor proportional to e−βω0 in the expansion of the
partition function

Z = Tr
[
e−βHrest

] + e−βω0 Tr
[
e−β[Hrest+λσf ]

]
≈ Tr

[
e−βHrest

]
. (C9)

The product of the two exponents U (τ ) ≡ eτHreste−τ (Hrest+λσf ) in
Eq. (C8) is the definition of the time evolution in the interaction
picture with respect to Hrest. To see that, just take its derivative
with respect to τ and observe the corresponding Schrödinger
equation that it obeys:

d

dτ
U (τ ) = eτHrest [Hrest − (Hrest + λσf )]e−τ (Hrest+λσf )

= −λσ̂f (τ )U (τ ), (C10)

where σ̂f (τ ) = eτHrestσf e−τHrest . Integrating this equation, we
can write

Gd (τ ) ≈ −e−ω0τ
〈
Tτ e

−λ
∫ τ

0 dτ ′σf (τ ′)〉. (C11)

3. Gaussian subset

Generally, the n-point functions of σf ’s can all have non-
trivial connected and disconnected ones. If Hrest is Gaussian,
all the connected terms vanish. The set of all disconnected
terms (exact for Gaussian Hrest), e.g., the diagram shown in

FIG. 5. (a) An example of an O(λn) diagram within Gaussian (and
forward-time propagator) approximation. (b) The diagrams obtained
from the leading self-energy contribution.

Fig. 5(a), can be written as Anderson wrote,

GD
d (τ ) = −e−ω0τ exp

[
λ2

2

∫ τ

0

∫ τ

0
dτ1dτ2〈Tτσf (τ1)σf (τ2)〉

]

= e−ω0τ exp

[
−λ2

∫ τ

0
(τ − x)χC(x)dx

]
. (C12)

This contains all order of λ2n, each being the sum of all possible
two-point contractions of 2n σf -operators. Some of these are
shown in Fig. 5.

APPENDIX D: MARKOVIAN CASE

1. Proof of Eq. (7)

In the Markovian case, the main assumption is that the
reduced density matrix of a single σf is diagonal and it obeys
the classical rate equation. Then Eq. (4) has to be interpreted
as a statistical average. Following Anderson we divide the
interval (0,τ ) into N segments and write Eq. (4) as

〈
Tτ e

−λ
∫ τ

0 dτ ′σf (τ ′)〉 =
〈

exp

[
−λ

τ

N

N∑
m=1

σf,m

]〉

=
∑

σf,1=±1

· · ·
∑

σf,N=±1

p(σf,N ; σf,N−1;. . . ; σf,1)

×
N∏

m=1

exp

[
−λ

τ

N
σf,m

]
. (D1)

p(σf,N ; σf,N−1; . . . ; σf,1) is the probability that the variable σf

is equal to σf,1 at time τ/N , σf,2 at time 2τ/N , σf,n at time
nτ/N , and so on. The Markovian assumption means that the
probability of the state σf,n only depends on the state σf,n−1

and hence

p(σf,N ; σf,N−1; . . . ; σf,1)

= p(σf,N |σf,N−1,τ/N )p(σf,N−1|σf,N−2,τ/N ) . . .

×p(σf 2|σf 1,τ/N )p(σf 1). (D2)
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Using the (imaginary time) rate equation d �p/dτ = −i` �p, one
can write

p(σf,m|σf,m−1,τ/N ) = 1 − i
τ

N
`

≈ exp

[
−i

τ

N
`

]
. (D3)

This can be combined with Eq. (D2) to write Eq. (D1) as a
product of matrices

〈
Tτ e

−λ
∫ τ

0 dτ ′σf (τ ′)〉 = �1 T ·
[

exp

(
−i

τ`

N

)

× exp

(
−λ

τσ z

N

)]N−1

�p1,

where σ z is a Pauli matrix containing the two possible states
of each time slot. We can combine the two matrices and drop
the commutator term of order 1/N2. Replacing �p1 with the
steady-state probabilities and using N → ∞ limit we get the
desired result

Gd (τ ) → −e−ω0τ {�1 T · exp[−τ (λσ z + i`)] · �pst }. (D4)

2. Archer-Anderson formula

To calculate the Green’s function from this method, one has
to diagonalize the matrix M = λσ z + i` in the exponent and
expand the �pst in terms of the eigenstates of that matrix. For a
single-rate Markovian model,

` = �

2

(−1 1
1 −1

)
, (D5)

from which using ` �pst = 0 we have

M = �

2

(
2x + i −i

−i −2x + i

)
, �pst = 1

2

(
1
1

)
, (D6)

where x = λ/� as before, and the (right) eigenvalue/vectors
of M, defined by M�u± = v±�u± are

v± = �

2
[−i ∓

√
4x2 − 1], �u± = 1√

2

(
i
√

1 ∓ y

−√
1 ± y

)

with y ≡
√

1 − 1/4x2. In the slow limit x � 1 the first term
of the eigenvalue is the width and the second term is the
splitting, but in the fast limit x � 1 they merge into one peak.
Substituting in Eq. (D4) we get

Gd (τ ) = −e(−ω0+i�/2)τ
[
q ′

+q+e+(τ�/2)
√

4x2−1

+q ′
−q−e−(τ�/2)

√
4x2−1

]
. (D7)

Here, q± are the coefficients of the expansion �pst = q+�u+ +
q−�u−, given by

q± = ±1

2
√

2y
[
√

1 ± y − i
√

1 ∓ y], (D8)

and q ′
± = �1T · �u± are related to them by q ′

± = ±2yq±.
Substituting these into Eq. (D7), Fourier transforming, and

doing the analytical continuation gives

Gd (ω + ω0 + iη) = ω + i�

ω(ω + i�) − x2�2
= 1

ω − λ2/(ω + i�)
,

(D9)

in agreement with our self-energy result. The imaginary
part gives the Archer-Anderson formula, Eq. (10). Note that
we assumed that x > 1 in our proof. Interestingly, exactly the
same result is obtain in the opposite regime of x < 1. While
this comes as a surprise [7] in the the present derivation, our
self-energy derivation in the paper makes it clear that indeed
there is no analytical difference between these two limits.

3. Markovian charge susceptibility

We can obtain this from the rate equation for the probabil-
ities p± of being in the states σf = ±1, i.e., ṗ± = �±p∓ −
�∓p±. Writing �± = 1

2�(1 ± 〈σf 〉
s
), and combining the two

equations to describe the dynamics of 〈σf 〉 = p+ − p−, we
obtain the Bloch equation

d

dt
〈σf 〉 = −�[〈σf 〉 − 〈σf 〉s], (D10)

where 〈σf 〉
s
= �+ − �− is the steady-state value given by

the mismatch in tunneling rates. A small slowly varying
polarizing field h(t)σf changes the probabilities to p± →
e∓βh(t)/(eβh(t) + e−βh(t)) ≈ [1 ∓ βh(t)]/2 and leads to the
steady-state value 〈σf 〉

s
= χ0h(t) with χ0 = −β. Therefore,

taking the Fourier transform of Eq. (D10), the susceptibility
can be obtained from the ratio

χC(ω + iη) = 〈σf 〉ω
h(ω)

= − iβ�

ω + i�
(D11)

so that χ ′′
C(ω + iη)/βω = −πδ�(ω), where

δ�(ω) ≡ �/π

ω2 + �2
. (D12)

In time domain, the retarded function is χR
C (t) = θ (t)χ0�e−�t .

4. Markovian-Gaussian formula, Eq. (11)

The retarded charge susceptibility can be obtained from the
imaginary-time function χC(τ ) = −ei�τ . Inserting this into
Eq. (6) and doing the integral we find

Gd (τ ) = −eα−ω0τ+iα�τ e−α exp[i�τ ], (D13)

where α = x2. We can expand the last exponent as
e−α exp[i�τ ] = ∑

n ein�τ fn(α), where the coefficients fn(α) ≡∑
m Jm(−α)In−m(−α) are given in terms of ordinary Jm(x)

and modified Im(x) Bessel functions. fn(α) are real and they
are zero for n < 0. Fourier transformation and analytical
continuation gives Eq. (11).

APPENDIX E: MATSUBARA SUM

We start from �d (τ ) = −λ2Gd (τ )χC(τ ) and do a Fourier
transform to write

�d (iωn) = −λ2

β

∑
m

Gd (iωm)χC(iωn − iωm), (E1)
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where ωn = (2n + 1)π/β are fermionic Matsubara frequen-
cies. Following the standard procedure, the summation on
fermionic Matsubara frequencies is written as a contour
integral around the poles of f (z) and the contour is deformed
to move the integration parallel to the real frequency axis.
The poles of Gd (z) and χC(iωn − z) are along Im[z] =
0 and Im[z] = ωn, respectively. Therefore, after analytical
continuation of �d (iωn) to real frequency and taking the
imaginary part, we obtain

�′′
d (ω) = λ2

∫ +∞

−∞

dω′

π

[
f (ω′)G′′

d (ω′)χ ′′
C(ω − ω′)

−nB(−ω′)G′′
d (ω − ω′)χ ′′

C(ω′)
]
. (E2)

The part proportional to f (ω) can be safely dropped in the T �
ω0 limit. Assuming that Gd (ω + iη) is the bare propagator
gd (ω + iη) = [ω − ω0 + iη]−1 we arrive at Eq. (8).

Self-consistent calculation

Equation (E2) can be used iteratively for a self-consistent
calculation together with the Dyson equation Gd (z) = [z −
ω0 − �d (z)]−1. To get a rough idea of the effect of this self-
consistent calculation, we give the d level a natural linewidth
and a wave-function renormalization factor by approximating
Gd (ω + iη) ≈ Z[ω − ω0 + i�]−1. Inserting this into Eq. (E2)
leads to

�′′
d (ω0 + ω) = −λ2Z

∫ +∞

−∞
dω′δ�(ω − ω′)nB(−ω′)χ ′′

C(ω′).

Therefore, we see that applying the self-consistency leads to
broadening of the features in the self-energy. As we showed
in the main part of the paper, the self-consistency requires
�/� ∼ x2 and therefore, the slow fluctuation case x � 1 is
affected more by the self-consistent calculations than the fast
fluctuation case.

APPENDIX F: VERTEX CORRECTION

Taking into account the vertex correction, Eq. (E1) becomes

�d (iωn) = −λ2

β

∑
iνp

χC(iνm)Gd (iωn − νp)�(iωn,iνp), (F1)

where νp = 2πp/β are bosonic Matsubara frequencies. In
time domain this is

�d (τ ) = −λ2
∫ τ

0
dτ1

∫ τ1

0
dτ2χC(τ − τ2)

×Gd (τ − τ1)�(τ1,τ1 − τ2),

FIG. 6. (a) Diagrammatic representation of Eq. (F1). (b) Dia-
grammatic representation of Eq. (F2), assuming that there are no
interaction vertices between charge fluctuations in Hrest.

and assuming that there are no interaction vertices for the
charge fluctuation in Hrest, the vertex function � obeys the
equation

�(τ1,τ1 − τ2) = δ(τ1)δ(τ2)

− λ2
∫ τ2

0
dτ ′

1

∫ τ1

τ2

dτ ′
2

∫ τ ′
1

0
dτ ′

3

∫ τ ′
3

0
dτ ′

4

× [Gd (τ ′
1 − τ ′

3)Gd (τ1 − τ ′
2)χC(τ1 − τ ′

4)

×�(τ ′
3,τ

′
3 − τ ′

4)�(τ ′
2 − τ ′

1,τ
′
2 − τ2)]. (F2)

This is shown diagrammatically in Fig. 6.
The leading correction is obtained from the first iteration

[shown in Fig. 2(d)]

�d (τ ) = −λ2Gd (τ )χC(τ )

+λ4
∫ τ

0
dτ1

∫ τ1

0
dτ2[χC(τ1)χC(τ − τ2)

×Gd (τ − τ1)Gd (τ2)Gd (τ1 − τ2)].

Assuming that Gd (τ ) = gd (τ ) is the bare propagator and we
use the forward-time approximation, the second term becomes

λ4gd (τ )
∫ τ

0
dτ1

∫ τ1

0
dτ2χC(τ1)χC(τ − τ2)

≈ λ4gd (τ )χC(τ )
∫ τ

0
dτ1

∫ τ1

0
dτ2χC(τ1),

where we have approximated χC(τ − τ2) ≈ χC(τ ) + · · · .
Assuming that χC(τ ) has a time scale of 1/�, we obtain

�d (τ ) = −λ2(1 − λ2/�2)gd (τ )χC(τ ), (F3)

resulting in the leading vertex correction λ2 → λ2(1 − x2).
Again we see that the fast fluctuation case (x � 1) is not
affected by the vertex corrections. In the opposite limit of fast
fluctuations, the result is negative suggesting the break down
of the leading order calculation.
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