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Recent work has shown that a variety of novel phases of matter arise in periodically driven Floquet systems.
Among these are many-body localized phases which spontaneously break global symmetries and exhibit novel
multiplets of Floquet eigenstates separated by quantized quasienergies. Here we show that these properties
are stable to all weak local deformations of the underlying Floquet drives—including those that explicitly
break the defining symmetries—and that the models considered until now occupy submanifolds within these
larger “absolutely stable” phases. While these absolutely stable phases have no explicit global symmetries,
they spontaneously break Hamiltonian-dependent emergent symmetries, and thus continue to exhibit the novel
multiplet structure. The multiplet structure in turn encodes characteristic oscillations of the emergent order
parameter at multiples of the fundamental period. Altogether these phases exhibit a form of simultaneous
long-range order in space and time which is new to quantum systems. We describe how this spatiotemporal order
can be detected in experiments involving quenches from a broad class of initial states.

DOI: 10.1103/PhysRevB.94.085112

I. INTRODUCTION

The elucidation of phase structure is a major theme
in condensed matter physics and statistical mechanics. An
early paradigm for doing so, associated most with Landau,
characterizes phases through the spontaneous breaking of
global symmetries present in the microscopic Hamiltonian;
i.e., phases are either paramagnetic or spontaneously symme-
try broken (SSB). In modern parlance, the phases obtained
thereby are symmetry protected since their distinctions are
erased if the symmetries are not present microscopically. More
recently, it has been found that this characterization is too
coarse—not all paramagnetic phases should be considered
identical. Indeed, there exist paramagnetic symmetry protected
topological (SPT) phases which do not break any symmetries,
but which nevertheless cannot be adiabatically connected to
one another in the presence of the protecting global symmetry
[1]. Remarkably, we now know of other phases, such as
those with topological order, which do not even require a
global symmetry and are absolutely stable—their ground state
(and sometimes even low temperature) properties are stable to
arbitrary weak local perturbations [2–4]. Equally remarkably,
there are also examples of systems whose entire many-body
spectrum displays some absolutely stable property, namely
many-body-localized [5–10] (MBL) systems which robustly
exhibit a full set of emergent local conserved quantities
[11–18]. One can also combine MBL with the above quantum
orders to obtain MBL phases in which individual highly ex-
cited eigenstates show SSB, SPT, or topological order [19–24].

The ideas above assume time translation invariance (TTI)
or energy conservation since they involve describing the
eigensystem of a time-independent many-body Hamiltonian.
What happens if we relax this constraint, considering instead
time-dependent Hamiltonians H (t)? Generically, it is expected
that an interacting, driven many-body system absorbs energy
indefinitely and approaches a dynamic approximation to the
infinite-temperature equilibrium state. However, for Floquet
systems with periodic time dependence H (t + T ) = H (t),
this fate can be avoided in the presence of sufficiently strong
disorder (or in the absence of interactions [27–37]) as was

shown in recent work extending the physics of MBL to Floquet
systems [38–42]. This in turn allowed phases to be defined for
MBL-Floquet systems [25] via a generalization of the idea of
eigenstate order first discussed for undriven MBL systems. In
very recent work, a classification was given for phases that
either preserve [43–45] or spontaneously break [26] unitary
global symmetries [46].

In the present paper we build on the latter work and show
that a subset of the SSB phases identified therein are stable
to arbitrary weak local perturbations, including those that
explicitly break any of the defining global symmetries. Thus
this subset is absolutely stable—a remarkable outcome for
a driven system. The apparent puzzle that SSB phases can be
stable absent Hamiltonian-independent symmetries is resolved
elegantly: at general points in these absolutely stable phases,
the drives (in the infinite-volume limit) are characterized by
a set of Hamiltonian-dependent emergent unitary and antiuni-
tary symmetries. Ex post facto, we see that the symmetric mod-
els in Refs. [25,26] live in lower dimensional submanifolds
(characterized by Hamiltonian-independent symmetries) of a
much higher dimensional absolutely stable phase—we sketch
the resulting structure in Fig. 1. This analysis uncovers a much
richer symmetry structure than the global unitary symmetries
used in previous work.

Strikingly, the out-of-equilibrium dynamics in these phases
exhibits sharp universal signatures associated with oscillations
of an emergent order parameter; these generalize the multiple-
period oscillations uncovered in previous work [25,26] on
symmetric drives. For example, we show that starting from ar-
bitrary short-range correlated initial states, the late-time states
show sharp oscillations of generic local operators at multiples
of the fundamental period. This particular dynamical feature
is a great boon to a future experimental detection of these
phases as experimentalists are required to fine-tune neither the
Hamiltonian nor the starting state to observe a sharp signature.

These longer periods raise the question of whether they
should be thought of as representing spontaneous breaking of
yet another symmetry—that of time translations by a period of
the drive [47]. We note that the idea that time translations might
be analyzed in this fashion was first mooted by Wilczek [48]
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FIG. 1. (a) Schematic depiction of the manifold of Floquet
unitaries that are absolutely stable and characterized by Hamiltonian-
dependent emergent symmetries (gray area). Special submanifolds
(colored lines) within the absolutely stable manifold are characterized
by Hamiltonian-independent unitary (Ui) and antiunitary (Ti) symme-
tries. Special models (black stars) can lie at the intersection of several
submanifolds with exact symmetries. As an example, the πSG model
defined in Refs. [25,26] is absolutely stable and possesses the Ising
unitary symmetry P and an antiunitary symmetry T = KP , where K

is complex conjugation. (b) Schematic depiction of the spatiotemporal
long-range order found in absolutely stable phases–the order looks
“antiferromagnetic” in time and glassy in space.

for time-independent Hamiltonians; there is, however, now a
proof [49] that such “time crystals” do not exist for undriven
systems in equilibrium. We analyze this question further and
find that strictly speaking all MBL systems, driven or undriven,
exhibit some eigenstate correlations characteristic of temporal
glasses—an aperiodic breaking of time translation invariance
(TTI). For the Floquet broken-symmetry phases, however, the
long-distance correlations simultaneously exhibit spin glass
order in space and multiple-period oscillation in time. These
lead to the characteristic space-time snapshot illustrated for the
simplest such phase in Fig. 1(b). Evidently the system exhibits
spatiotemporal [50] long-range order in both space and time.
The modulation in time, which is antiferromagnetic, does
indeed break time translation symmetry but it preserves the
combination of a translation and emergent Ising reversal. We
note that a similar spatiotemporal order—now ferromagnetic
in space—was previously exhibited in the large-N Floquet
theory [51] and discussed in the terminology of a lack of
synchronization with the drive.

We note that the discovery of these absolutely stable Floquet
phases can also be viewed as the realization that while a
Hamiltonian that lacks any symmetries (inclusive of time
translation invariance) exhibits only a trivial phase, introducing
discrete time translation invariance alone is sufficient to
introduce a nontrivial phase structure. This would appear to be
the minimum symmetry condition for this purpose.

In the rest of the paper we describe these results in more
detail. We begin with the simplest example of a SSB phase
that is absolutely stable—this is, the Ising π spin glass, or
πSG, first described in Refs. [25,26]. In Sec. II we establish
its absolute stability and analyze its emergent symmetries,
correlations, and characteristic spectral features within the
paradigm of eigenstate order. Next, in Sec. III we study the
nature of dynamical correlations in the πSG in individual
eigenstates and starting from generic short-ranged entangled
states, and discuss why the πSG should be identified as a

Floquet space-time crystal. We then discuss the catalog of
other absolutely stable Floquet phases in Sec. IV, and show
how some Floquet SPT phases exhibit time crystallinity at
their boundaries. We end with some concluding remarks in
Sec. V.

Before proceeding we note that a recent paper by Else,
Bauer, and Nayak [52] studies one of the submanifolds of our
primary example of an absolutely stable phase, the πSG, and
identifies it as a pure time crystal on the grounds that the drives
break the unitary Ising symmetry. Our work clarifies that the
order in the πSG and its cousins is always spatiotemporal and
never purely temporal. Indeed the specific submanifold studied
in [52] turns out to be protected by an antiunitary symmetry
[see Eq. (7)] and thus exhibits spatial order in a particularly
transparent form as we discuss below.

II. THE π SPIN GLASS: ABSOLUTE STABILITY AND
EMERGENT SYMMETRIES

We consider systems with time-periodic local Hamiltonians
H (t) = H (t + T ). The Floquet unitary is the time evolution
operator for one period U (T ) ≡ T e−i

∫ T

0 dtH (t). The Floquet
eigenstates |α〉 of U (T ) have eigenvalues e−iεαT , where εα

are the quasienergies defined modulo 2π/T . Indeed, the
Floquet eigensystem in phases with special forms of eigenstate
order/quasienergy spectral pairing will form a central part of
our discussion.

A. Properties of the πSG phase

References [25,26,43] discussed various SSB/SPT phases
with Floquet eigenstate order, but not all of these phases are
absolutely stable to arbitrary perturbations. In this work, our
canonical example of an absolutely stable Floquet phase will
be the π spin glass (πSG) phase [25]. A concrete model
Floquet unitary in this phase in 1d is

Uf 0 = Px exp

[
−i

L−1∑
r=1

Jrσ
z
r σ z

r+1

]
, Px =

∏
r

σ x
r , (1)

where L is the system size, the σα
r for α = {x,y,z} are

Pauli spin 1/2 degrees of freedom on site r , P ≡ Px is
the global Ising parity symmetry (Py,z analogously defined),
and the Jr ’s are random couplings drawn uniformly from
[J − δJ,J + δJ ]. We note several properties of this model,
some of which were deduced in previous work [25,26]:

(1) Uf 0 commutes with the unitary symmetry P . Defining
antiunitary operators Tα = PαK where K is complex conju-
gation, Uf 0 also has T ≡ Tx symmetry: T Uf 0T −1 = U−1

f 0 . It
similarly has Ty,z symmetry for systems with an even number
of sites [53]. Thus, this model lies at the intersection of
several special submanifolds with Hamiltonian-independent
symmetries (Fig. 1) and is extremely robust to a large class of
perturbations which preserve some exact symmetry. Note that
the antiunitary symmetries T are a combination of K and a
spatial Ising flip.

(2) The eigenspectrum of Uf 0 can be found by noting that
all the domain wall operators Dr ≡ σ z

r σ z
r+1 commute with

Px , Uf 0 and with one another. Thus, the eigenstates look
like symmetric/antisymmetric global superposition states (also
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called cat states) of the form

|±〉 ∼ |{dr},p = ±1〉 = 1√
2

∣∣{σ z
r

}〉 ± 1√
2

∣∣{σ z
r

}〉
,

where {σ z
r } = {↑↓↓ · · · ↑} labels a frozen spin glass configura-

tion of z spins (and hence the domain wall expectation values
dr ), {σ z

r } is its spin-flipped partner, and p = ±1 is the Ising
parity eigenvalue of the eigenstates.

(3) The eigenstates above have corresponding unitary
eigenvalues u(d,p) = pe−i

∑L−1
r=1 Jrdr . Note that the opposite-

parity cat-state partners have unitary eigenvalues differing by
a minus sign u(d, − 1) = −u(d, − 1) and hence quasienergies
differing by π/T . We refer to this phenomenon as a π spectral
pairing of cat states.

(4) The Floquet eigenstates exhibit long-range connected
correlations (LRO) and spin glass [54,55] (SG) order in σ z

i ,
but show no long-range order in σx

i and σ
y

i .
(5) The order parameter for the πSG model oscillates with

frequency π/T or period 2T , as indicated by the stroboscopic
equation of motion σ z

r (nT ) = (−1)nσ z
r [25,26]. This follows

directly from the fact that σ z
r anticommutes with Uf 0. While

〈σ z
r (nT )〉 = 0 in the Floquet eigenstates, the observable shows

a periodic time dependence with period 2T in short-range
correlated states of the form |{σ z

r }〉 ∼ |+〉 + |−〉. On the
other hand, the σx and σy operators do not show period-2T

oscillations.

B. Absolute stability and emergent symmetries

How robust are the above properties to perturbations of the
form H (t) → H (t) + λV (t)? Numerical results have already
demonstrated the stability of Uf 0 to weak Ising [25] symmetric
perturbations. We will provide evidence that this phase is,
in fact, absolutely stable to all generic weak perturbations—
we will define dressed spin operators (Floquet l-bits) for
the perturbed system and show that it displays emergent
symmetries with the same effect on eigenspectrum properties
as the exact Ising symmetry.

The first step in the argument is to observe that the stability
of the localization of the unperturbed unitary to arbitrary weak
local perturbations (for sufficiently strong disorder) is itself
not a consequence of symmetries. More technically, call the
corresponding perturbed Floquet unitary Uf λ where λ is the
strength of the perturbation. We expect that the stability of
localization implies the existence of a family of local unitaries
[56] Vλ which relate the eigenvectors of Uf 0 to those of Uf λ

for λ in some nonvanishing range [26,39,41,52]. Note that the
locality of such a unitary is a subtle business outside of the
very strongly localized region due to proliferating resonances
and Griffiths effects [21,57].

Assuming that a low depth Vλ exists, it relates the new
eigenvectors of Uf λ denoted |α〉λ to the eigenvectors of Uf 0

via

|α〉λ = Vλ|{dr},p〉.
The new quasienergies are similarly denoted as εα

λ . These local
unitaries allow us to define a set of dressed, exponentially
localized operators τr,λ (analogous to the l-bits [11,12,14–16]
in static MBL systems) together with a dressed parity operator

P λ via

τ
β

r,λ = Vλσ
β
r V

†
λ, P λ =

∏
r

τ x
r . (2)

We will often suppress the explicit λ dependence of τα
r,λ for

brevity and β = x,y,z. Defining (local) dressed domain wall
operators as Dλ

r ≡ τ z
r τ z

r+1, we get

Dλ
r |α〉λ = Vλ

(
σ z

r σ z
r+1

)|{dr},p〉 = dr |α〉λ,
P λ|α〉λ = VλP |{dr},p〉 = p|α〉λ. (3)

Thus, the perturbed eigenstates are also eigenstates of the
dressed operators Dλ

r and P λ which means these operators
commute with Uf λ, and we can rewrite |α〉λ more suggestively
as |{τ z

r },p = ±1〉 using the same notation as before. By
definition, τ z

r anticommutes with P λ. Further we show in
Appendix A that it also anticommutes with Uf λ in the
large-system limit[

τ z
r ,Uf λ

]
+ = O(e−cL)

L→∞−−−→ 0, (4)

using only the assumptions of locality and continuity. This
implies that the Floquet eigenvalues are odd in p. Together
with the previous statements about the commutation properties
of P λ and Dλ with Uf λ, it is easy to show that the unitary eigen-
values take the form uλ({dr},p) = pe−if ({d}). Reexpressing the
eigenvalue dependence on conserved quantities in operator
language gives

Uf λ = P λe−if ({Dλ
r }), (5)

where f is a functional of Dλ, or equivalently an even
functional of the τ z

r ’s. One can moreover argue that f can
be chosen to be local, using the fact that the Floquet unitary
itself is low depth [26,43]. Thus, f generically takes the form

f ({Dλ}) =
∑
ij

Jij τ
z
i τ z

j +
∑
ijkl

Jijklτ
z
i τ z

j τ z
k τ z

l + · · · ,

where the couplings Jij ∼ e−|i−j |/ξ decay exponentially with
distance reflecting the locality of the unitary.

Written this way, the Floquet unitary (5) clearly has a Z2

symmetry P λ—although we say it is emergent because P λ, in
general, depends on the details of the underlying Hamiltonian.
Uf λ similarly has an emergent antiunitary symmetry T λ ≡
P λKλ, where Kλ is complex conjugation defined with respect
to the τα . Note that Eq. (5) takes much the same functional
form as the model unitary Eq. (1), and correspondingly its
eigenstates exhibit long-range order in the dressed order
parameter τ z

r (associated with spontaneous breaking of Pλ),
and short-range order in τ

x,y
r . The statements about π spectral

pairing and the temporal dependence of observables [in
particular τ z(nT ) = (−1)nτ z(0)] also follow directly [58].

Finally, we note that Refs. [25,43] also defined a 0SG
phase with the model unitary exp[−i

∑L−1
i=1 Jiσ

z
i σ z

i+1]. Like
the πSG, this is also a phase with long-range SSB Ising order,
but one in which the cat states are degenerate instead of being
separated by π/T . If we generically perturb about this drive,
we must begin with Floquet eigenstates that explicitly break
the Ising symmetry in order for the change of basis unitary
Vλ to be local. Implicitly this requires us to work in the
infinite-volume limit directly. In this case, one can show that τ z
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commutes (rather than anticommutes) with the Floquet unitary,
and one can readily use this to split the degeneracy between the
Floquet eigenstates, rendering this phase unstable to arbitrary
perturbations. By contrast, in the πSG phase, the cat states are
π split and therefore nondegenerate—a fact which is essential
to the stability of the SSB order to arbitrary perturbations.

C. Long-range order and numerics

We now numerically check for the predicted π spectral
pairing in a perturbed model of the form

Uf λ = P exp

[
−i

L−1∑
r=1

Jrσ
z
r σ z

r+1

− iλ

L∑
r=1

hx
r σ

x
r + hy

r σ
y
r + hz

rσ
z
r

]
. (6)

The fields Jr,h
x,y,z
r are drawn randomly and uni-

formly with Jr = 1,δJr = 0.5, hx
r = δhx

r = 0.1, h
y
r = δh

y
r =

0.15, hz
r = δhz

r = 0.45 and the notation x,δx means that x

is drawn from [x − δx,x + δx]. The perturbation breaks all
the unitary and antiunitary symmetries present in the original
Uf 0 model. To check for spectral pairing, we define the
nearest-neighbor gap between the perturbed quasienergies as
�i

0 = ελ
i+1 − ελ

i and the π gap as �i
π = ελ

i+N /2 − ελ
i − π/T ,

where N = 2L is the Hilbert space dimension, and where the
second equation follows from the fact that the quasienergy
bandwidth is π/T and we expect states halfway across the
spectrum to be paired at π/T [see Fig. 2 (inset) for an
illustration of these definitions]. The system shows spectral
pairing at π if there is a range of λ’s for which �π � �0 as
L → ∞. Figure 2 shows the mean �π and �0 log-averaged
over eigenstates and several disorder realizations for different
λ’s and L’s. We see that �π ∼ λL whereas �0 ∼ e−sL where
s ∼ log(2) is a λ-independent entropy density. Thus, we can
get robust pairing in the window | log λ| > s.

Having shown how the robustness of the πSG phase is
associated with spontaneously broken emergent symmetries
and long-range order in the τ z variables, we can now ask
what effect this long-range order has on correlations in
the physical σα degrees of freedom. Generically we expect
the expansion of the physical spins in terms of l-bits to have
some components which are diagonal and odd in τ z, for
example σα

r = cατ z
r + · · · . As a result σα=x,y,z

r are all expected
to have long-range connected correlation functions, as well as
a component exhibiting 2T periodic stroboscopic oscillations.
These predictions agree with our numerical results (Fig. 3 and
Fig. 4, respectively).

On the other hand, when we perturb Uf 0 in a manner that
respects an explicit symmetry such as P or T , the resulting
models reside in a special submanifold of the absolutely
stable phase. The presence of the exact symmetries constrains
the form of the dressed τα operators and leads to concrete
predictions about the order in and temporal dependence of
different operators. For example, it was argued [26] that
when the perturbation λV (t) is such that Uf λ continues to
have Ising symmetry, Vλ can be chosen to commute with P .
As a result, P λ = P , and σy,z are odd under P λ whereas

−2.0 −1.5 −1.0 −0.5 0.0

log10 λ
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−12

−8
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0

lo
g 1

0
Δ

∼ λ6

∼ λ8

∼ λ10

∼ λ12

2π
T Δπ

+

π/T

Δ0

Δπ

Δ0

L = 6
L = 8
L = 10
L = 12

FIG. 2. Disorder and eigenstate averaged spectral gaps for the
generically perturbed model (6) without any P and T symmetries
plotted as a function of the perturbation strength λ and system size
L. The nearest-neighbor quasienergy gap �0 shows no λ dependence
but decreases exponentially with L. On the other hand �π which
measures the spectral pairing of even-odd parity states scales as λL

(fits to this form superimposed). Thus, there is a window of λs for
which �π � �0 and the system exhibits robust spectral pairing in
the L → ∞ limit. Gaps smaller than ∼10−14 are below numerical
precision, thus the initial λ-independent trend in the �π data for
larger L. Inset: Cartoon of the quasienergy spectrum illustrating the
definitions of �0 and �π .

σx is even under P λ. This means an operator expansion of
σx

r in terms of the dressed τα
r operators can only involve

even combinations of τ : σ z
r = α1τ

x
r + β2τ

z
r τ z

r+1 + · · · . Hence
the connected correlation functions of σx

rs should decay
exponentially with |r − s|, and this operator is not expected to
have robust period-2T oscillations. On the other hand σ

y,z
r will

generically exhibit both long-range connected correlations as
well as period-2T oscillations.

Similarly we can pick perturbations for which Uf,λ respects
antiunitary symmetries such as T = PK , i.e., for which
T Uf,λT = U−1

f,λ. As an example, the model studied in Ref. [52]
resembles Eq. (6) with hy = 0, so has the effect of perturbing
Eq. (1) by λV ∼ hz

rσ
z
r + hx

r σ
x
r . With this choice of V it is

straightforward to verify that the corresponding Uf,λ respects
T symmetry:

T Uf,λT −1

= (PK)Uf λ(PK)†

= (PK)P exp

[
−i

L−1∑
r=1

Jrσ
z
r σ z

r+1 + hz
rσ

z
r + hx

r σ
x
r

]
(PK)†

= exp

[
i

L−1∑
r=1

Jrσ
z
r σ z

r+1 + hz
rσ

z
r + hx

r σ
x
r

]
P

= U−1
f,λ. (7)
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σx
1σx

L c T invariantσx
1σx

L c Generic

1 − | σz
1σz

L c| Generic

1 − | σz
1σz

L c| T invariant

FIG. 3. Disorder and eigenstate averaged end-to-end connected
correlation functions for σ x,z in the “generic” model (6) with no
P,T symmetries (blue squares, red circles) and a model [52] with
T symmetry obtained by setting hy = 0 in (6) (black diamonds,
green triangles). As discussed in the text, the generic model shows
long-range order for both operators which is signaled here by
correlations scaling as λ2 independently of system size. On the other
hand, in the model with T symmetry, only σ z shows long-range order
while the σ x correlator scales as λf (L), where f (L) ∼ 0.9L − 1.4
(fits shown) and thus vanishes in the L → ∞ limit. This is to be
expected from symmetry constraints. The σy correlators (not shown
here) also display long-range order in the generic model but not in
the T -symmetric model.

In this case, we can pick the change of basis matrix Vλ

to commute with T (see Appendix B) which implies that
τ x,τ y,τ z are even, even, and odd, respectively, under T . In
turn, the operator expansions of σx,y can only contain terms
with even numbers of τ zs in their expansions. Hence neither
should exhibit protected π/T oscillations, nor should they
have long-range connected correlations as demonstrated in
Fig. 3. This accounts for the absence of π/T oscillations for
σx

r (nT ),σ y
r (nT ) in the data presented in Ref. [52].

III. THE π SPIN GLASS: SPATIOTEMPORAL
LONG-RANGE ORDER

We have already discussed above that at general points in
the absolutely stable πSG phase the emergent order parameter
operators, τ z

i , change sign every period. Prima facie, this
implies the spatiotemporal order sketched in Fig. 1(b): spin
glass order in space and antiferromagnetic order in time.

The aim of this section is to more sharply characterize
this spatiotemporal order. As the πSG is a localized phase,
unlike in the equilibrium context, there is not an obviously
correct set of correlations one should examine to detect said
order. We propose to examine the time-dependent one and two
point correlation functions of local operators in two families
of states. The first are the Floquet eigenstates which are the
basis of the eigenstate order paradigm of phase structure in
Floquet systems. The second are the late-time states reached by

0

20

40 σx
i (nT )

0

5

10 σy
i (nT )

−π/2T 0 π/2T π/T 3π/2T

ω

0

15

30 σz
i (nT )

FIG. 4. Fourier transform over time window �t = 500T of
one-point time-dependent expectation values 〈ψ0|σ {x,y,z}(nT )|ψ0〉 in
the “generically” perturbed model (6). The initial state |ψ0〉 is a
product state with physical spins σα randomly pointing on the Bloch
sphere and uncorrelated from site to site. As discussed in the text, the
response looks “glassy” with several incommensurate Fourier peaks
in addition to the peak at π/T , although we expect these to decay
away in the L → ∞,T → ∞ limit. Data are shown for a single
disorder realization in a system of length L = 10.

time evolving from general initial states; these are particularly
relevant to experiments where the preparation of Floquet
eigenstates is not feasible.

A. Eigenstate correlations and response

We start by considering Floquet eigenstates for the πSG.
All single time operators 〈O(t)〉 in these are strictly periodic
with period T —this is the analog of the time independence of
single time operators in Hamiltonian eigenstates and hence the
temporal component of the order is invisible to such operators.
The invisibility of temporal order in the 〈O(t)〉 is analogous
to the invisibility of Ising symmetry breaking in one-point
expectations of spatially local Ising-odd operators in globally
Ising-symmetric states. From this perspective [49] it follows
that to detect temporal order we must either (a) examine
a two-time function of some operator or (b) explicitly add
an infinitesimal field that selects the desired temporal order
(much as we would examine long-range order in two-point
functions of Ising-odd variables and/or add an infinitesimal
Ising-symmetry-breaking term to detect spontaneously broken
Ising symmetry).

We begin with (a) and examine time-dependent correlators

Cα(nT ; r,s) ≡ 〈α|Or (nT )Os |α〉
=

∑
β

e−inT (εα−εβ )〈α|Or |β〉〈β|Os |α〉 (8)

of operators Or/s localized near sites r,s in the Floquet
eigenstates |α〉 = |{d},±〉λ (see Sec. II for notation). The
operator expansion of Or/s in the τα basis will generically
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contain terms that are odd combinations of τ zs. In the
πSG phase, these have matrix elements between |α〉 and
its parity-flipped partner and thus Cα(nT ) generically has a
frequency-π/T component. In addition, the off-diagonal terms
in the operator expansion involving τ {x,y} will make local
domain wall excitations near sites r/s. Now a crucial point: if
r,s are held a fixed distance apart in the infinite-volume limit,
then Cα(nT ) breaks TTI for any MBL-Floquet system. The
reason is that one can crudely view a Floquet MBL system as a
set of weakly interacting localized modes (the effective domain
wall operators in this case) each with their own local spectra.
As in the simplest case of 2-level systems whose physics is that
of Rabi oscillations, these local subsystems (which are excited
by τ x/y) exhibit response at frequencies incommensurate with
the driving frequency. The presence of these incommensurate
frequencies means Cα(nT ) in all MBL-Floquet systems always
look glassy, although for the πSG there is generically also a
quantized response at π/T .

This short-distance temporal glassiness, however, goes
away when we examine long distances in space by placing
the operators arbitrarily far apart in an infinite system, i.e.,
by taking limL→∞ before examining the limit |r − s| → ∞.
Since the operator expansions of Or/s are exponentially
localized near sites r/s, the off-diagonal terms in the expansion
of Or which create domain wall excitations near site r cannot
be annihilated by the action of Os in the limit |r − s| → ∞
under the assumption of locality.

Thus, the only terms that contribute to Cα(nT ; r,s) in this
limit are diagonal in τ zs. Terms odd in τ z give a response at
π/T while the even terms give a response at frequency 0. Thus
we can write

Cα(nT ; r,s) ∼ c0(r; α)c0(s; α) + c1(r; α)c1(s; α)(−1)n,

where the second piece reflects the spatiotemporal order of the
odd τ z terms, as well as the connected part of the correlation
function. The dependence of the coefficients on r , s, and α has
been made explicit to emphasize the glassy nature of the order
in space. This establishes a connection between the long-range
spatial order in the eigenstates and the period-2T temporal
order.

The above analysis can be complemented by taking the
approach (b) and adding to H (t) a “staggered field” in time
of the form ε

∑
n(−1)nV δ(t − nT ), where V is odd and

diagonal in τ z. Now consider time-dependent expectation
values of generic local operators Or (which have a projection
on odd τ z terms) in the Floquet eigenstates |α〉ε for the
new period-2T unitary which can be reshuffled to the form
Uf,ε(2T ) = e−i2εV U 2

f,0. This problem looks like the classic
Ising-symmetry-breaking problem. At ε = 0, Uf,ε(2T ) =
U 2

f,0 has two degenerate states in the infinite-volume limit. If
V breaks the symmetry between two members of the doublet
then

lim
ε→0

lim
L→∞ ε〈α|Or (nT )|α〉ε = b0(r; α) + b1(r; α)(−1)n,

since the perturbed period-2T eigenstates |α〉ε just look
like product states of τ z in this limit and are thus
superpositions of the opposite-parity eigenstates of Uf λ.
On the other hand, the opposite order of limits gives
limL→∞ limε→0 ε〈α|Or (nT )|α〉ε = b0(r; α). We emphasize

that the measures discussed here are eigenstate measures. If
averaged over all eigenstates the signatures vanish.

B. Quenches from general initial states

We now turn to the question of evolution from more general
initial states rather than eigenstates. This is experimentally
important, and more particularly so because the Floquet
eigenstates for the πSG are macroscopic superpositions and
thus hard to prepare. For concreteness, consider starting from
a short-range correlated state such as a product state of the
physical spins. In the following we will adapt the analysis
of dephasing in quenches in MBL systems [14,19]. We will
assume that the starting state exhibits a nonzero expectation
value for the order parameter, i.e., 〈ψ0|τ z

i |ψ0〉 �= 0; if it
does not the temporal features will be entirely absent. For
simplicity we will only discuss one-point functions as they
are already nontrivial in this setting and the generalization is
straightforward.

In a finite-size system, τ z only anticommutes with the
Floquet unitary up to exponentially small in L corrections (4),
which in turn introduce corrections to the equation of motion:
τ z(nT ) = (−1)nτ z(0) + O(e−L). This leads to exponentially
small shifts in the spectral pairing at π/T which varies
randomly between pairs of eigenstates. Ignoring these shifts
for times 1 � t � O(e+L), one can readily show that for
any finite system the one-point functions will generically
show glassy behavior with incommensurate Fourier peaks
along with an additional peak at π/T ; see Fig. 4 for an
illustration. More precisely, the logarithmic in time dephasing
of correlations in MBL systems [11,14] can be used to show
that the correlators will show aperiodic behavior stemming
from these additional Fourier peaks with a power-law envelope
∼t−b, where b > 0 depends on the localization length [14].
Thus, finite systems at large but not exponentially large times
look like time glasses with an additional quantized response
at ω = π/T . However, if one waits a time t ∼ eL that is
long enough (i) to resolve the exponentially small many-body
level spacings and (ii) to resolve the shifts in the spectral
pairing away from π/T , both the peak at π/T and the extra
incommensurate peaks almost entirely decay away due to usual
dephasing mechanisms leaving behind aperiodic oscillations
with a magnitude of O(e−L). It is worth reminding the reader
that the precise details of the time dependence will reflect the
choice of the starting state and disorder realization.

We can formalize the above in two noncommuting limits:
(a) limt→∞ limL→∞ and (b) limL→∞ limt→∞. While (a)
characterizes the “intrinsic” quench dynamics of this phase,
experiments will only have access to limit (b). In (b) the late-
time aperiodic oscillations with envelope O(e−L) discussed
above also go away, and the one-point functions are constants.
In (a) we never reach times of O(eL) and instead observe
persistent oscillations with period 2T out to t → ∞ with all
additional incommensurate oscillations decaying away as a
power of time.

Thus, the intrinsic dynamical response of this phase is
characterized by a single quantized Fourier peak at ω = π/T

which goes along with formally exact spectral pairing at π/T

and LRO in τ z. In this limit, the late-time state exhibits
a precisely doubled period for every single realization of

085112-6



ABSOLUTE STABILITY AND SPATIOTEMPORAL LONG- . . . PHYSICAL REVIEW B 94, 085112 (2016)

disorder and combined space-time measurements would lead
precisely to the kind of snapshot sketched in Fig. 1(b). More
concretely, state-of-the-art experiments in ultracold atoms
[59–62] have convincingly demonstrated that a fingerprint of
the initial state persists to asymptotically late times in the
MBL phase. In a generalized experimental setup probing the
πSG phase in the MBL Floquet problem [63], the persistence
of the starting fingerprint would measure localization and
spatial spin glass order, while oscillations in time would
measure the temporal response at π/T . We also note that
a recent experiment demonstrated signatures of MBL in
two dimensions [62] and, more generally, we expect our
considerations to apply in all dimensions where MBL exists
[64].

C. Comments

In the above discussion we have considered two settings,
that of Floquet eigenstates and of late-time states stemming
from quenches. It is useful to contrast our findings with
their analogs for general MBL phases (Floquet or undriven),
and for eigenstate thermalization hypothesis (ETH) obeying
phases (focusing on the undriven case, as the Floquet version
has trivial infinite-temperature correlations). We find that
unequal-time correlations in eigenstates generically break TTI
in all MBL phases, which thus generically look glassy. By
contrast similar correlations in ETH systems do not generically
break TTI. In the πSG we find that eigenstate correlations
specifically designed to pick out the order parameter dynamics
are “antiferromagnetic” in the time domain and thus break TTI
while they are “ferromagnetic” for the 0SG and thus do not.
Turning now to the late-time states coming from quenches, in
MBL phases these are initial state dependent while in ETH
phases these are not. Hence if we look for TTI breaking via
these late-time states we do not observe it in all ETH phases as
well as MBL phases except the πSG (and its relatives which
we discuss in the next section). We remind the reader though
that in the πSG we need to quench from states that exhibit
a macroscopic expectation value for the order parameter.
All in all we conclude that the πSG exhibits a distinct and
novel pattern of spatiotemporal order that is new to quantum
systems.

IV. GENERALIZATIONS

Here we list a number of generalizations of the πSG phase.
Reference [26] presented a family of models with an explicit
global symmetry group G which exhibit eigenstate long-range
order, protected spectral pairing, and temporal crystallinity.
First we note that, much like the πSG, many of these models
are absolutely stable to local perturbations, even those that
break the global symmetry G. We then explain why bosonic
SPT Floquet drives [43–45,65] are not stable to the inclusion
of symmetry-breaking perturbations, although in the presence
of the protecting symmetry they exhibit time crystallinity at
their edges.

A. Zn and non-Abelian models

Consider first models with global Zn symmetry [26,66].
There are n possible phases with completely spontaneously

π
2

π
2

0

Jz

hx

hgen.

0SG πSG

0πPM

Triv PM

FIG. 5. Left: Phase diagram for the MBL Ising-symmetric drives
presented in Refs. [25,26] showing the 0SG and πSG phases which
are long-range ordered and spontaneously break Ising symmetry, as
well as the 0πPM and trivial paramagnetic phases which have no
LRO. The 0πPM is an SPT with nontrivial edge modes and can
spontaneously break time translation symmetry on its edges. Right:
On perturbing with generic Ising-symmetry-breaking fields hgen, only
the πSG is absolutely stable and continues into a phase with LRO and
an emergent symmetry. The other three phases can be continuously
connected to the trivial MBL paramagnet in the presence of hgen.

broken symmetry [26], labeled by k = 0,1, . . . ,n − 1. The
eigenvectors of the corresponding unitary are the Zn equiv-
alents of cat states, i.e., macroscopic superpositions of n

spin configurations. In cases with k �= 0, and in the presence
of Zn symmetry, the spectrum consists of multiplets of
n cat states appearing in n/g distinct groups each with
degeneracy g ≡ gcd(n,k). The n/g distinct groups are split by
quasienergy multiples of 2πg/nT . As for the πSG, some of
these statements survive even when Zn symmetry is explicitly
broken. In particular, while the g-fold degeneracy for each
group of cat states can readily be broken, it remains the case
that each eigenstate is paired in a multiplet of n/g related cat
states, separated by quasienergy 2πg/nT . A similar statement
holds for the non-Abelian models in Ref. [26]. These more
general drives have an explicit unitary non-Abelian symmetry
G, and are classified by an element of the center of the group
z ∈ Z(G). Let q denote the order of z. The spectrum consists of
q groups of G/q degenerate cat-like states, and the q groups are
separated by quasienergies which are multiples of 2π/qT . The
|G|/q degeneracy at each quasienergy can once again be lifted
using symmetry-breaking perturbations, but each eigenstate
is still paired with q cat-state partners, split by quasienergy
multiples of 2π/qT .

B. Stability of SPTs and boundary time crystallinity

While the πSG phase is absolutely stable, similar Floquet
generalizations of bosonic SPT phases [26] are not. Before
showing this, let us first note that some Floquet SPTs
spontaneously break TTI at their boundaries. This boundary
TTI breaking is not tied to bulk LRO and the phases are
correspondingly unstable to symmetry-breaking perturbations.
We illustrate this with the simple example of an Ising Floquet
SPT, the so-called 0πPM [25,43]. In fact, the 0πPM and πSG
are neighbors on a common Floquet phase diagram [25,26,43],
Fig. 5 (left), which also contains the 0SG discussed earlier and
a trivial MBL paramagnet. A simple Floquet unitary for 0πPM
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on a system with boundary is [43]

Uf = σ z
1 σ z

N exp

[
−i

N−1∑
r=2

hrσ
x
r

]
, (9)

where the fields hr are randomly distributed. This model
has trivial bulk paramagnetic eigenstate order, but it also
has nontrivial Ising-odd “pumped charges” σ z

1/L, using the
parlance of Ref. [43]. As a consequence, the eigenspectrum
exhibits “spectral quadrupling.” Labeling the simultaneous
eigenvalues of Uf ,P by (u,p = ±1), it can be shown that
states always appear in multiplets of the form (u,1),(u, −
1),(−u,1),(−u, − 1); i.e., there are two groups of degenerate
states split by exactly π/T quasienergy—hence the name
0πPM. The π/T quasienergy splitting in πSG was associated
with the breaking of TTI, so it is natural to also expect
TTI breaking for the 0πPM. Indeed, for the special model
Eq. (9), the σx edge operators have stroboscopic equations of
motion σx

1,N (nT ) = (−1)nσ x
1,N (0), with period 2T . At generic

points in the 0πPM phase obtained by perturbing (9) with
Ising-symmetric perturbations, dressed versions of these edge
Pauli operators (and generic edge operators with nonzero
projections on the dressed Pauli edge operators) will exhibit
period-2T oscillations persistent for exponentially long time
scales in system size (in the same spirit as Ref. [23]). Indeed,
using Ising duality [25], statements about the dynamics of
Ising-even edge operators in the 0πPM paramagnet directly
translates into statements about local bulk operator dynamics
in the (Ising symmetric) πSG in Sec. III. We emphasize,
however, that for 0πPM generic local bulk operators will not
show period doubling in the limit L → ∞.

Despite the nontrivial dynamics in the 0πPM, the spectral
pairing properties of this phase (and the more general bosonic
Floquet SPT phases discussed in Ref. [43]) are unstable to the
inclusion of small, generic symmetry-breaking perturbations at
the boundary. To see how this works in more generality, note
that Floquet MBL unitaries can be reexpressed in a certain
canonical form [43]

Uf 0 = vLvRe−if , (10)

where f is a local MBL Hamiltonian functional of the l-bits
in the bulk, and vL,R are unitaries localized at the left/right
edges of the system, respectively, which commute with the
bulk l-bits. Note that the model Eq. (9) is a special realization
of this more general canonical form. The SPT order of Uf 0

is captured by two pieces of data: (i) the bulk SPT order,
which is determined by the classification of f as an undriven
Hamiltonian, and (ii) the “pumped charge,” characterized by
the commutation relations between the vL,R and the global
symmetry generators [43]. Note that Eq. (10) can readily be
detuned—while maintaining locality and unitarity—to a form
with trivial pumped charge, e−if , through an interpolating
family of unitaries Uf λ = e−iλ log vR e−iλ log vLUf 0 with λ being
tuned from 0 to 1. Note further that if vL,R have nontrivial
commutation relations with the global symmetry, this inter-
polating family of unitaries breaks the global symmetry. It
may still occur that f , an MBL Hamiltonian, has a nontrivial
SPT classification and therefore e−if has spectral pairing and
edge states. However, this SPT order is readily destroyed
by perturbing f nonsymmetrically as one would perturb an

undriven SPT so as to gap out its edge states. This instability
of the boundary-TTI-breaking SPT phases reiterates our
central message that the absolute stability of a TTI-breaking
phase is intrinsically tied to the coexistence of bulk spatial
LRO.

The instability of 0πPM SPT combined with our prior
statements on the instability of pairing in the 0SG leads
to the picture depicted in Fig. 5 (right)—in the presence
of generic Ising-symmetry-breaking perturbations, the four
Ising-symmetric MBL-Floquet phases are reduced to two: the
absolutely stable continuation of the πSG, and a trivial PM.
The 0SG and the 0πPM can be continuously connected to
the trivial PM without going through a phase transition in the
presence of Ising-symmetry-breaking terms.

We end this section by briefly commenting on the stability
of fermionic SPTs. Interacting SPTs protected by fermion
parity are more robust. Let us focus on class D [25,28,43] for
concreteness. While it is true that edge modes are unstable to
fermion-parity-breaking perturbations, fermion parity is never
broken for physical/local Hamiltonians H (t); hence, in the
detuning argument above, Uf λ is not a truly local unitary for
intermediate values of λ when vL,R are fermion-parity odd (we
say the pumped charge is fermion-parity odd [43]). However,
as with all of the examples discussed here, the Floquet edge
modes can be removed by breaking time translation symmetry.

V. CONCLUDING REMARKS

We have shown the existence of a family of phases
of Floquet systems which are absolutely stable—a generic
interior point in such a phase is stable to all weak local
perturbations of its governing unitary. These phases are
characterized by emergent, Hamiltonian-dependent, Abelian
global symmetries and spatiotemporal long-range order based
on these. Submanifolds of these phases exhibit Hamiltonian-
independent symmetries which can be unitary or antiunitary.
At generic points in these phases, late-time states evolved
from randomly picked short-ranged entangled states exhibit
long-range order in space and sharp oscillations of the
emergent order parameter which can be used to identify the
phases.

These Floquet phases join two previously established
paradigms for such absolute stability—those of topological
order and that of MBL for time-independent Hamiltonians—
and a comparison between these three is in order. Topological
order, exemplified by the Z2 order of the toric code and its
weak local perturbations, is characterized by the absence of
symmetry breaking and the presence of emergent gauge fields.
Such phases are in a different language quantum liquids with
long-range (ground state) entanglement [1], which features
account intuitively for their absolute stability.

MBL is characterized by a complete set of emergent,
Hamiltonian-dependent, local integrals of the motion (l-bits)
and in its minimal form involves eigenstates that exhibit
only short-ranged entanglement. Its absolute stability can
be attributed to the localization being unrelated to any
spatial ordering—it is primarily a dynamical phenomenon.
By contrast, broken symmetries are not absolutely stable—
symmetry-induced degeneracies are lifted when symmetries
are broken.
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It is not hard to believe that one can mix topological order
and MBL and still end up with an absolutely stable phase
and this was discussed as an example of eigenstate order
in Ref. [19]. By contrast it is also natural to conclude that
MBL and symmetry breaking do not lead to absolute stability
and this is also trivially the case. What is therefore striking
is that a third ingredient, Floquet periodicity, allows broken
symmetries and MBL to combine to yield absolutely stable
phases. The resulting phases also exhibit long-range entangle-
ment in the form of the cat eigenstates and thus are stabilized
by a relative of the mechanism which operates in the case of
topological order.

Finally we note that the absolute stability of symmetry-
broken phases in this paper can be put on a similar footing
to the well-known absolute stability of topological phases [2].
Recent work [67,68] characterizes pure Abelian gauge theories
as spontaneously breaking 1-form global symmetries in their
deconfined phases. In the presence of matter, the generators for
these higher form symmetries are emergent and thus Hamilto-
nian dependent. For example, in the perturbed 2D toric code,
the 1-form symmetries are generated by dressed line operators
[4]. More generally, a large class of well-known and undriven
absolutely stable topologically ordered phases are character-
ized by spontaneously broken emergent 1-form global symme-
tries, while the Floquet drives in this work are characterized by
emergent global (0-form) symmetries. In a related note, one
can consider Floquet unitaries constructed from topologically
ordered Hamiltonians, such as the toric code, which toggle
states between different topological sectors. Such drives ex-
hibit spatial topological order, do not break any global symme-
tries, but do break TTI because the Floquet unitary described
does not commute with operators which measure the topologi-
cal sector. Just as the cat states are split by π/T quasienergy in
the πSG, different topological sectors are split by π/T in this
topological example. It is somewhat a matter of taste whether
these should be identified as Floquet time crystals.
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APPENDIX A: τ z
r,λ EITHER COMMUTES OR

ANTICOMMUTES WITH U f λ

To prove this assertion, we will use only the locality of the
Vλ,Uf λ. First note that we can express a product of any two
τ z
λ operators as a product of l-bits τ z

r,λτ
z
s,λ = ∏s−1

r Dλ
r . This

compound operator commutes with with Uf,λ because the Dλ
r

do, i.e.,

Uf,λτ
z
r,λτ

z
s,λU

†
f,λ = τ z

r,λτ
z
s,λ. (A1)

However note that the unitaries defined as

θr ≡ τ z
r,λUf,λτ

z
r,λU

†
f,λ, (A2)

θs ≡ τ z
s,λUf,λτ

z
s,λU

†
f,λ (A3)

are local to r,s, respectively. This follows from two obser-
vations. First τ z

r,λ is local to r because Vλ is assumed low

depth. Second, Uf,λτ
z
r,λU

†
f,λ is local to r because τ z

r,λ is, and
Uf,λ is low depth (being the finite-time ordered exponent of a
bounded local Hamiltonian). Plugging Eq. (A2) and Eq. (A3)
into Eq. (A1) gives

Uf,λτ
z
r,λτ

z
s,λU

†
f,λ = τ z

r,λθrθ
−1
s τ z

s,λ = τ z
r,λτ

z
s,λ, (A4)

implying that

θrλ = θsλ, (A5)

despite the fact that θrλ,θsλ are exponentially localized to
potentially distant sites r,s; in particular we could, say, choose
|r − s| = L/2 to be of order the system size. The implication is
then that, up to exponentially small corrections in system size,
θr,sλ are pure phases. The corrections take the form Ce−L/ξ ,
where C,ξ do not depend on the system size, and only depend
on the details ofVλ,Uf,λ (such as their depth, which is assumed
to be finite). The fact (τ z

r,λ)2 = 1 and θrλ approximately a pure
phase implies θ2

rλ = 1 + ε, where ε is a correction of the form
ce−L/ξ and c = O(1). This shows that

θrλ = ±1, (A6)

to the same degree of a approximation. Supposing we know
that θr0 = −1 exactly, as is the case for the fixed-point πSG
model Eq. (1), if Vλ,Uf λ is a continuous family of unitaries, it
follows by continuity that θrλ = −1 in the large-system limit,
for all applicable λ.

APPENDIX B: SYMMETRIES AND THE Vλ UNITARIES

Here we argue that diagonalizing unitaries Vλ for families
of unitaries Uf λ respecting a fixed symmetry (e.g., Ising parity
or time reversal) and exhibiting absolutely stable long-ranged
order can themselves be chosen to commute with the fixed
symmetry. For concreteness, focus on a system with an antiu-
nitary symmetry T with T 2 = 1; the unitary symmetry case
goes through similarly. Thus we consider a family of unitaries
Uf λ obeying T Uf λT Uf λ = 1, with Uf 0 given by Eq. (1). Note
first that the spectrum of Uf 0 generically has no degeneracies.
Assuming the same is true of Uf λ for now, consider the
action of T on eigenstates. As T Uf λT Uf λ = 1, it follows
that Uf λT | {d},p〉λ = ud,p,λT | {d},p〉λ. Hence T preserves
eigenstates of Uf λ. As the eigenstates are nondegenerate it
follows that

T |{d},p〉λ = eiθd,p |{d},p〉λ (B1)

for some state-dependent phase eiθd,p . Equation (B1) immedi-
ately implies dλ,r = T dλ,rT and P λ = T P λT which we can
rewrite as

VλdrV−1
λ = Vλ,T drV−1

λ,T ,

VλPV−1
λ = Vλ,T PV−1

λ,T ,
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where Vλ,T ≡ T VλT −1, and dr,P are the undressed do-
main wall and parity operators. The upshot is that the
unitary

Qλ ≡ V−1
λ Vλ,T (B2)

commutes with the commuting set of operators {dr},P .
As these operators uniquely label a complete basis, Qλ is
completely diagonal in {dr},P . In other words it can be
expressed as

Qλ = e−iqλ(dr ,P ) (B3)

for some real functional qλ of the labels. In fact, using locality
arguments similar to those in Appendix A (and in the Appendix

to Ref. [43]), we find

Qλ = P ae−isλ({d}) (B4)

up to exponentially small corrections in system size, where
a = 0,1, and s is a local functional of domain walls. We can use
continuity of Vλ again to argue moreover that a = 0. Therefore
we have shown that Vλ,T = VλQλ. We now use this result to
construct a new change of basis matrix which is invariant under
time reversal. We define a new change of basis unitary Wλ ≡
Vλe

−isλ({d})/2. Wλ indeed achieves the desired local change
of basis, but is also time-reversal invariant. We henceforth
redefine | {d},p〉λ ≡ Wλ | {d},p〉. The operators dλ,r ,P

λ are
unaffected by this change in convention.
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