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Cluster dynamical mean field theory study of antiferromagnetic transition in the square-lattice
Hubbard model: Optical conductivity and electronic structure
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We numerically study optical conductivity σ (ω) near the “antiferromagnetic” phase transition in the square-
lattice Hubbard model at half filling. We use a cluster dynamical mean field theory and calculate conductivity
including vertex corrections and, to this end, we have reformulated the vertex corrections in the antiferromagnetic
phase. We find that the vertex corrections change various important details in temperature and ω dependencies
of conductivity in the square lattice, and this contrasts sharply the case of the Mott transition in the frustrated
triangular lattice. Generally, the vertex corrections enhance variations in the ω dependence, and sharpen the Drude
peak and a high-ω incoherent peak in the paramagnetic phase. They also enhance the dip in σ (ω) at ω = 0 in the
antiferromagnetic phase. Therefore, the dc conductivity is enhanced in the paramagnetic phase and suppressed
in the antiferromagnetic phase, but this change occurs slightly below the transition temperature. We also find a
temperature region above the transition temperature in which the dc conductivity shows an insulating behavior
but σ (ω) retains the Drude peak, and this region is stabilized by the vertex corrections. We also investigate which
fluctuations are important in the vertex corrections and analyze momentum dependence of the vertex function in
detail.
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I. INTRODUCTION

Dynamical mean field theory (DMFT) [1] has advanced
the investigation of many aspects in strongly correlated
electronic systems described by the Hubbard models. This
powerful approach is exact on the Bethe lattice with an
infinite coordination number and has been very successful
in demonstrating the Mott metal-insulator transition induced
by electron correlations [1], as well as magnetically ordered
states by capturing short-range correlations. Cluster extensions
of the DMFT, i.e., dynamical cluster approximation (DCA)
[2] and cluster DMFT (CDMFT) [3], which include both
on-site and short-range correlations inside the cluster, has
made steady progress in our understanding of the Mott
transition [4–14]. Examples include the phase diagram in
the parameter space of temperature and Coulomb repulsion
strength [9,11,12] and thermodynamic criticality of the Mott
transition [15–17]. A typical realization of the square-lattice
Hubbard model is cuprate superconductors and related mate-
rials. Pseudogap state and superconductivity in those systems
have been studied actively by using both the DCA [18–20] and
CDMFT approaches [21–28]. Another typical realization of
the two-dimensional Hubbard model is the organic materials κ-
(BEDT-TTF)2X, and this has a triangular lattice structure. The
CDMFT calculation has demonstrated a reentrant behavior of
the Mott transition in an anisotropic triangular lattice [11],
which is consistent with experimental results in some members
of this material.

Among studies for advancing our understanding of phys-
ical properties in the strongly correlated electronic systems,
transport properties are an active topic of research and several
experimental results have been reported. As a typical example,
optical conductivity provides useful information on charge
dynamics, in particular, effective mass and transport scattering
process, as well as electric structure. In the previous theoretical
works of the DMFT [29–35] and the CDMFT [36–38], optical

conductivity of the Hubbard model has been calculated simply
by convoluting single-electron Green’s functions. These cal-
culations have captured a clear difference in charge dynamics
between the metallic and the insulating states. However,
to take into account correlation effects further, we need a
numerical approach that incorporates nonlocal correlations
in conductivity beyond the standard formulation. This has
been put forward by including vertex corrections inside the
cluster based on the developed cluster extensions by the DCA
[38,39]. They were employed only for the paramagnetic phase
in a square-lattice system, and the results suggested that the
vertex corrections make a significant contribution, in particular
at and near half filling. Our previous study also reported
the achievement of the vertex correction implementation in
the CDMFT for optical conductivity [17], and it focused
on the paramagnetic phase in a triangular-lattice system. In
this case, the effects of the vertex corrections are not drastic,
and this may be attributed to the weak momentum dependence
of spin correlations due to frustration in the triangular lattice.

These developments in the two methods are crucial to inves-
tigate correlation effects on electronic transport, particularly
concerning the Mott transition. However, it is highly desirable
to examine the effects of magnetic fluctuation on electronic
transport for the case when their divergence drives a phase
transition. This is the main issue of this paper and we are
going to study optical conductivity near the antiferromagnetic
phase transition in a square-lattice Hubbard model at half
filling. For this purpose, we develop a numerical method
for optical conductivity including vertex corrections in the
CDMFT, which includes effects of magnetic fluctuations. We
then use this method and investigate the effect of vertex
corrections near the antiferromagnetic transition temperature
in the square-lattice Hubbard model at half filling. Note that
precisely speaking the antiferromagnetic transition does not
occur at any finite temperature in an isolated layer of two
dimensions, but one should understand that our calculations
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mimic a corresponding study on a quasi-two-dimensional
system.

This paper is organized as follows. We start in Sec. II
describing our model, and then explain a new formulation of
vertex corrections in optical conductivity developed for the an-
tiferromagnetic phase. Before showing results of conductivity,
we briefly discuss in Sec. III magnetic ordering and change in
electronic structure with the ordering. In Sec. IV, we show the
results of optical conductivity including the vertex corrections,
and then discuss the effects of the vertex corrections on dc
conductivity. The effects on ω dependence are discussed in
detail in Sec. V, and we also analyze which type of fluctuations
are important. In Sec. VI, we analyze momentum dependence
of the vertex function and investigate how the dependence
changes with temperature. Section VII concludes this paper
with an extended summary.

II. MODEL AND METHOD

The model we consider in this paper is a single-band
Hubbard Hamiltonian on a square lattice at half filling,

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑

i

ni↑ni↓ − μ
∑

i,σ

c
†
iσ ciσ . (1)

Here, t is the nearest-neighbor hopping amplitude, and U is the
on-site Coulomb repulsion. The chemical potential μ is set to
U/2 to tune the electron density at half filling 〈ni↑ + ni↓〉 = 1.
ciσ is the electron annihilation operator at site i with spin σ =
↑,↓, and niσ ≡ c

†
iσ ciσ . The kinetic energy of the electron with

the momentum k is εk = −2t(cos kx + cos ky). Throughout
this paper, the energy unit is t = 1 and U and T are measured
in this unit, and all the data are calculated for U = 6.5.

To take into account both strong short-range electronic
correlations and magnetic fluctuations, we use the cluster
dynamical mean field theory (CDMFT) [3] employing a four-
site square cluster. We compute the single- and two-electron
Green’s functions inside this cluster by using the continuous-
time quantum Monte Carlo (CTQMC) method based on the
strong coupling expansion [40] for a given effective medium.
The effective medium Ĝσ (τ ) and the cluster signle-electron
Green’s function Ĝσ (τ ) are both a 4 × 4 matrix in the cluster,
and quantities with ˆ symbol denote 4 × 4 matrices in the
following. Its element is defined for imaginary time τ as
G

ij
σ (τ ) = −Tτ 〈ciσ (τ )c†jσ (0)〉, where i and j are the sites in

the cluster and the imaginary-time operator is defined as [41]
ciσ (τ ) ≡ eτH ciσ e−τH . Tτ is the time-ordering operator and
〈· · · 〉 denotes the thermal average. After the effective medium
Ĝσ (iωn) is self-consistently determined in the Matsubara-
frequency space, we determine the cluster self-energy via the
Dyson equation �̂σ (iωn) = Ĝ−1

σ (iωn) − Ĝ−1
σ (iωn).

In this paper, we show the results solely for U = 6.5. This
choice is close to the value at the critical end point of the
line of the first-order Mott metal-insulator transition in the
U -T phase diagram determined by CDMFT approaches under
the condition that no magnetic transitions occur [9]. Since the
square lattice is bipartite, the ground state at half filling electron
density has an antiferromagnetic order for any U > 0. The
calculation by Kent et al. showed that the antiferromagnetic
transition temperature is highest at U/(12t) ∼ 10/12 = 0.83

in the three-dimensional cubic lattice [42], where 12t is the
bandwidth. In the square lattice, the bandwidth is 8t and this
ratio corresponds to U/t ∼ 0.83 × 8 ∼ 6.7. As this is close
to our choice, we may expect a high transition temperature,
and this is an advantage in numerical computation. However,
we should note that this finite-temperature transition is an
artifact of the use of the CDMFT, as Mermin-Wagner theorem
[43] proves its absence in two dimensional lattices. Thus
our results for the square lattice should be understood as
for a corresponding quasi-two-dimensional model, in which
the magnetic order is stabilized by interlayer couplings but
other physical properties are essentially determined in each
layer. Despite this limitation, the CDMFT approach can
take into account important short-range quantum and thermal
fluctuations in our investigation of conductivity near a real
antiferromagnetic transition.

In our CDMFT calculations, we calculate the single-particle
spectrum Akσ (ω) for electron with the wave vector k and spin
σ . The dependence on the real frequency ω is obtained by the
maximum entropy method (MEM) [44] from the Monte Carlo
data for imaginary time.

In the antiferromagnetic phase, we choose the spin axis
such that local magnetizations point to ±z direction. The
order parameter is the staggered magnetization defined by
m(a)

z = 1
N

∑
i∈a

∑
σ σ 〈niσ 〉, where the spin is counted as σ =

1(−1) for ↑ (↓), and a = A,B being the sublattice index. N

is the total number of sites. The relation m(B)
z = −m(A)

z holds
exactly in the square lattice, since the combination of spin
inversion and lattice translation by (1,0) remains a symmetry
operation. Because the two sublattices are not equivalent, the
Brillouin zone halves as shown in Fig. 1(c). Correspondingly,
for labeling electron, one needs an additional sublattice index
as well as the momentum (a,p) in the reduced half Brillouin
zone:

cAp = cp + cp+Q√
2

, cBp = cp − cp+Q√
2

, (2)

where Q = (π,π ) and the spin index is omitted. Each
electron propagates from one sublattice to the other, and
therefore the single-electron Green’s function G is now a
2 × 2 matrix in the sublattice space. Its element is defined
as Gab

pσ (τ ) = −Tτ 〈capσ (τ )c†bpσ (0)〉, where capσ (τ ) is defined
for the imaginary time τ as before. While the momentum p is
trivially conserved, spin projection σ conserves because of the
remaining spin rotation symmetry about the direction of the
staggered magnetization.

In two dimensions, optical conductivity σαα′ (ω) is a 2 × 2
matrix, and the linear response theory [45] shows that it is
defined by the current correlation function χαα′ (q,ω) in the
limit of the wave vector q → 0. Its real part is given in the unit
of quantum conductance (e2/�) as

σαα′ (ω) = Re
χαα′ (0,ω) − χαα′ (0,0)

iω
, (3)

where Re denotes the real part and α,α′ ∈ {x,y} are the
directions of current and electric field, respectively. Note also
that χαα′ (0,ω) is obtained from the correlation function of
uniform particle currents {Jα} [see Eq. (7)] in imaginary time,
χαα′ (0,τ ) = −Tτ 〈Jα(τ )Jα′ (0)〉, where Jα(τ ) is also defined
as before for the imaginary time τ . Its Fourier transform is
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FIG. 1. Feynman diagrams in the antiferromagnetic phase for (a) current correlation function χ (iνn) in Eqs. (4)–(6) and (b) full vertex
function �

b4b1b2b3
pσp′σ ′ (iνn) in Eq. (8). Results for the paramagnetic phase are obtained by omitting the sublattice indices and changing the momentum

sums to over the original Brillouin zone. (c) Brillouin zone of the square lattice. Gray zone is the reduced Brillouin zone in the antiferromagnetic
phase.

a function of bosonic Matsubara frequency iνn = 2niπT ,
and the real-frequency correlation function is obtained by
the analytic continuation, χαα′ (0,ω) = χαα′ (0,iνn)|iνn→ω+i0. In
numerical calculation, we perform the analytic continuation
by using the MEM [44]. In our case, the conductivity has
only an isotropic part, since the antiferromagnetic order keeps
the lattice rotation symmetry about each site, and therefore
σαα′ (ω) = σ (ω)δαα′ and χαα′(0,ω) = χ (0,ω)δαα′ not only in
the paramagnetic phase but also in the antiferromagnetic phase.

To take into account correlation effects, we have included
vertex corrections in CDMFT in the calculation of σ (ω) and
reported the results in the paramagnetic phase of the frustrated
Hubbard model [17]. However, in the antiferromagnetic phase,
the Brillouin zone halves and this requires the reformulation
of the vertex corrections, which has not been achieved yet.
In this paper, we derive this reformulation and investigate the
effects of magnetic instability on transport properties.

Modifying our previous formulation of the vertex cor-
rections, we have derived for the antiferromagnetic phase a
formula with taking account of the new sublattice degrees of
freedom. The current correlation function is now obtained in
Matsubara space as [46]

χ (iνn) = χ0(iνn) + χvc(iνn), (4)

χ0(iνn) =
∑ (

vx
p

)2
Kāaa′ā′

pσ (iνn; iωm), (5)

χvc(iνn) =
∑ ∑′

vx
pvx

p′ K
āab4b1
pσ (iνn; iω′

l)

×�
b4b1b2b3
pσp′σ ′ (iνn) K

b2b3a
′ā′

p′σ ′ (iνn; iωm), (6)

and the vertex correction χvc is represented with the vertex
function �. Here, vx

p = ∂
∂px

εp = 2 sin px is the x compo-

nent of current, and
∑

and
∑′ are T

N

∑
pσ

∑
ωm

∑
a,a′

and T
N

∑
p′σ ′

∑
ω′

l

∑
{b}, respectively. K is a product of two

single-electron Green’s functions shown by double lines,
Kbaa′b′

pσ (iνn; iωm) = Ga′a
pσ (iωm)Gbb′

pσ (iνn + iωm). It is impor-
tant to note that the bare current vertices shown by black circles
in Fig. 1(a) have a special symmetry in the sublattice space.
Two sublattice indices at each bare vertex should be opposite
(a and ā, etc.) and this is because electrons hop only between
different sublattices in the model (1). We can also show this

directly by representing current with the new operators,

Jα =
full BZ∑

k

∑

σ

vα
k c

†
kσ ckσ =

1/2 BZ∑

p

∑

aσ

vα
p c†apσ cāpσ , (7)

where the relation vα
p+Q = −vα

p is used. As depicted in
Fig. 1(a), χ0 corresponds to the bubble diagram [the first part
on the right hand side (RHS)], and calculated from K . Note
that these single-electron Green’s functions include the self
energy calculated in the CDMFT. We directly calculate the
single- and two-electron Green’s functions within the cluster
as a function of imaginary time τ by the CTQMC solver.

For calculating the lattice Green’s function, we employ the
cumulant periodization method [22] in this CDMFT study.
It is known that this method works well in a wide range
of weak to strong Coulomb repulsion [22]. In this method,
we first introduce the cluster cumulant, M̂σ (iωn) = [(iωn +
μ)1̂ − �̂σ (iωn)]−1, where �̂σ (iωn) is the cluster self-energy
and quantities with ˆ symbol are 4 × 4 matrices in the cluster.
In the paramagnetic case, the cumulant does not depend
on spin, M̂σ = M̂ , and we proceed to calculate the lattice
cumulant for the momentum k in the original Brillouin zone
as Mk(iωn) = 1

4

∑
i,j Mij (iωn)e−ik·(ri−rj ), where the sum

∑
i,j

is taken over all the site pairs inside the cluster. From this
periodization, we calculate the lattice Green’s function as
Gkσ (iωn) = [Mk(iωn)−1 − εk]−1.

In the antiferromagnetic case, the cluster Green’s function
is still a 4 × 4 matrix with respect to site indices and diagonal
in spin space, but this now depends on spin leading to
M̂↑ �= M̂↓. The lattice Green’s function is diagonal in spin
space but a 2 × 2 matrix in the sublattice space, Gpσ = {Gab

pσ },
where p is limited to inside the reduced Brillouin zone. In
what follows, quantities with the symbol denote 2 × 2
matrices in the sublattice space. The lattice cumulant also
has the same symmetry, and its element is calculated as
[Mpσ (iωn)]ab = 1

2

∑
i∈a

∑
j∈b M

ij
σ (iωn)e−ip·(ri−rj ), where the

sums
∑

i and
∑

j are taken over the sites belonging to
each sublattice inside the cluster. Finally, the lattice Green’s
function is obtained as Gpσ (iωn) = [Mpσ (iωn)−1 − εp]−1,
where ε is the Fourier-transformed hopping matrix, [εp]ab =
(1 − δab)εp. Within our knowledge, this is an achievement of
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the cumulant periodization for the lattice Green’s function in
the antiferromagnetic case.

Our formulation shown in Eq. (6) and Fig. 1(a) uses
the approximation for the vertex function � such that its
dependence on internal frequencies ωl and ω′

m is averaged
over. Some previous studies investigated the vertex correction
to the spin susceptibility in the single-site DMFT approach and
compared the full vertex correction and the approximated re-
sult averaged over two internal frequencies. They have reported
that this approximation well reproduces the spin susceptibility
calculated with the full vertex function qualitatively [47,48].
Calculation of the full vertex function in the cluster DMFT is
impractical even with the present computer resources. We use
this approximation in this study, but this is an important future
problem to be checked.

Calculation of the vertex function � takes a few steps.
By using the CTQMC method, we first calculate directly
two-electron Green’s functions inside the cluster [41]
Kσσ ′

ij i ′j ′(τ ) ≡ 〈c†iσ (τ )cjσ (τ )c†i ′σ ′(0)cj ′σ ′(0)〉, where the four
sites i–j ′ are all in the cluster. We then evaluate the
irreducible vertex function in the cluster I σσ ′

ij i ′j ′(iνn) by solving

the Bethe-Salpeter equation Kσσ ′
ij i ′j ′ (iνn) = Kσσ ′

ij i ′j ′(iνn) +∑
nm,n′m′

∑
σ ′′σ ′′′ Kσσ ′′

ijnm(iνn) I σ ′′σ ′′′
nmn′m′(iνn) Kσ ′′′σ ′

n′m′i ′j ′ (iνn), where
K denotes the contribution of a product of two
single-electron Green’s functions. The lattice irreducible
vertex is then obtained as its Fourier component
I

b4b1b2b3
pσp′σ ′ (iνn) = ∑

ij,i ′j ′ I σσ ′
ij,i ′j ′(iνn) eip·(ri−rj )+ip′ ·(ri′ −rj ′ ),

where the sum is taken over all the combinations under the
condition that the sites i,j,i ′,j ′ are in the sublattice b4,b1,b2,
and b3, respectively. Once I is obtained, the lattice reducible
vertex � is calculated by solving the Bethe-Salpeter equation
that is diagrammatically shown in Fig. 1(b),

�
b4b1b2b3
pσp′σ ′ (iνn) = I

b4b1b2b3
pσp′σ ′ (iνn) +

∑
�

b4b1b
′
4b

′
1

pσp′′σ ′′ (iνn)

×K
b′

4b
′
1b

′
2b

′
3

p′′σ ′′ (iνn; iω′
l
′) I

b′
2b

′
3b2b3

p′′σ ′′p′σ ′ (iνn). (8)

Here,
∑

is a shorthand for T
N

∑
p′′σ ′′

∑
ω′

l
′
∑

{b′}. The current
correlation in Matsubara space χ (iνn) is obtained from Eq. (6)
with this �. Finally, we calculate the real part of conductivity
σ (ω) by analytic continuation iνn → ω + i0 by using the
MEM [44]. We note that this new algorithm reproduces our
previous formula derived for the paramagnetic case [17] by
omitting the sublattice indices and taking wave vector p in the
original Brillouin zone as shown in Fig. 1(c).

Here we make a note for our formulation regarding spin
order. The result of current correlation function, Eqs. (4)–(6),
is formulated for the Néel-type antiferromagnetic order, and
in this case the current correlation is isotropic in space,
χαα′ = χδαα′ . This isotropy originates from the lattice rotation
symmetry and it is not limited to the Néel order. For example,
any spin order with a two-site magnetic unit cell has the
π/2-rotation symmetry. Therefore, the current correlation
remains isotropic, but we need to generalize Eqs. (5) and
(6) if spin order is noncollinear. The single-electron Green’s
function is no longer diagonal in spin space and has finite
off-diagonal elements G↑↓ and G↓↑. Correspondingly, K and
� need four spin indices, and one needs their full contraction

in Eq. (6), but the spin index should be diagonal at the bare
current vertices shown by dots in Fig. 1.

Calculation of two-electron Green’s functions is a big chal-
lenge in numerical computations due to their huge complexity.
Kσσ ′

ij i ′j ′ (τ ) has 44 × 22 = 1024 combinations of four site indices
plus two spin indices, and we directly sample all of them in
our CTQMC calculations. Therefore, even after very long MC
runs, only a limited number of MC samples are collected for
each element. Therefore, it is important to reduce statistical
errors in K , and we use two techniques for this purpose.
First, using the point group symmetry augmented with the spin
inversion operation, we average over equivalent elements of
Kσσ ′

ij i ′j ′ to enforce the correct symmetry. Secondly, we eliminate
noise in the τ dependence using a high-cut filter. We know the
large-νn asymptotic form of the Fourier components K(iνn)
owing to its spectral representation, and we fit our data to its
form. With these two techniques, we improve accuracy of the
two-electron Green’s functions and proceed with thus obtained
reliable data to the next steps of calculation. For example, for
T = 0.30, we typically carry out about 109 MC sweeps in
each sample and average over 1024 samples. The error of the
current correlation is, for example, �χ/χ ∼ 0.03 at τ = 0.

We also make a comment that this new algorithm for the
vertex correction in conductivity can be easily generalized
for other response functions like Raman spectrum [49–51],
χR(τ ) = −Tτ 〈ρ̃(τ )ρ̃(0)〉. The only difference is that one
replaces the particle current Jα by a corresponding operator
for Raman spectrum, and that is

ρ̃ =
∑

kσ

γkc
†
kσ ckσ , γk = (eI · ∇k)(eS · ∇k)εk, (9)

where and eI and eS are polarization vectors of incident
and scattered light, respectively. For the kinetic energy εk =
−2(cos kx + cos ky) in our model, the bare vertex also has
the symmetry γp = −γp+Q, and thus in the antiferromagnetic
phase ρ̃ = ∑1/2BZ

p

∑
σa γpc

†
akσ cākσ . As for the bare vertex, for

example, the B1g Raman mode corresponds to eI = (1,1)/
√

2
and eS = (1, − 1)/

√
2, and therefore γk = cos kx − cos ky =

−γk+Q. For the B2g mode, eI = (1,0) and eS = (0,1) lead to
γk = 0 and therefore the B2g mode is Raman inactive.

III. MAGNETIC ORDER AND ELECTRONIC PROPERTIES

Before discussing conductivity, let us examine in this
section magnetic order and the variation of electronic state
with temperature. Figure 2 shows the T dependence of the
staggered magnetization mz(T ). At low temperatures below
TN ∼ 0.34, antiferromagnetic order appears and the temper-
ature dependence of mz is well described by the mean-field
critical exponent of the order parameter β = 1/2. This is
consistent with the fact that the CDMFT approach is a variant
of the mean field approximation.

Figure 3(a) shows the local spectrum of single particle
excitations in the A sublattice [52]. In the paramagnetic phase,
it coincides with the result in the B sublattice, and it is
given by averaging the k-dependent single-particle spectrum in
the whole Brillouin zone, A(A)

σ (ω) = (1/N )
∑

k Akσ (ω), with
Akσ (ω) = − 1

π
Im Gkσ (ω + i0).
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0
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0.2 0.3 0.4

m
z

T

FIG. 2. Temperature dependence on staggered magnetization at
U = 6.5.

In the antiferromagnetic phase, the Green’s functions
contain a spin-dependent component and the symmetry of
simultaneous spin inversion and sublattice exchange leads to
the following property:

GAA
pσ (iωm) = GBB

pσ̄ (iωm) = gp(iωm) + σ�p(iωm),

Gaā
pσ (iωm) = Gaā

pσ̄ (iωm) = g̃p(iωm). (10)

� is the spin-dependent component that appears only in the
antiferromagnetic phase. Note that different spin components
do not mix, even in the antiferromagnetic phase and these
Green’s functions are diagonal in the spin space, Gab

p↑↓ =
Gab

p↓↑ = 0, since the numbers of up-spin electrons and down-
spin electrons are separately conserved in the Néel order. Due
to the sublattice dependencies in Eq. (10), the local spectrum
differs between the two sublattices, and the value in the
a-sublattice is given by A(a)

σ (ω) = − 1
πN

Im
∑

p Gaa
pσ (ω + i0).

The Green’s function Gk is now replaced by Gaa
p and the

momentum sum is limited to the reduced Brillouin zone. In
order to minimize numerical error in Aσ (ω), we first took p
summation of the imaginary-time Green’s function and then
carried out a transformation to real frequency.

Variation with T in the local excitation spectrum repro-
duces a known behavior for antiferromagnetic transition in
the Hubbard model. The spectrum is symmetric in energy,
Aσ (−ω) = Aσ (ω), in the paramagnetic phase, and this comes
from the particle-hole symmetry due to the bipartite lattice
structure and the half filling electron density. The spectrum
shows three peaks, and this is common in the metallic phase of
the Hubbard model with large U . The central peak corresponds
to quasiparticle excitations, while broad peaks on both sides
are the upper and lower Hubbard bands [53]. The central peak
sharpens with decreasing temperature above TN , implying
that quasiparticle motion becomes more coherent and the
system is metallic. We find that there is no indication of
pseudogap formation and the peak evolution is monotonic
down to TN . In the antiferromagnetic phase below TN , the
excitation spectrum splits for different spins, but preserves
a generalized particle-hole symmetry, A(a)

σ (ω) = A
(a)
σ̄ (−ω) =

A(ā)
σ (−ω). This is because the antiferromagnetic ordered state

remains invariant with respect to the combination of time-
reversal operation and exchange of the two sublattices. Below
TN , the spectrum has a dip at ω = 0, and this deepens with
lowering T . This manifests that the antiferromagnetic phase is
insulating.
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FIG. 3. (a) Local excitations spectrum in the A sublattice AA
σ (ω)

at four different T ’s. Note that the spectra for different spins are
degenerate at T = 0.42 and 0.36. (b) k-resolved single-particle
spectral function AA

k↑(ω) for three different T ’s along the path
for metallic state and insulating state, �-X-M-� and �-X-M ′-�,
respectively in Fig. 1(c). The maximum of each spectral function is
normalized to be one.

We discuss the change in electronic structure in more
detail by examining the momentum resolved single-particle
spectrum. Figure 3(b) presents Akσ (ω) at three values of
T . Figure 1(c) shows color mapping of the spectrum in the
paramagnetic and antiferromagnetic phases along the path
�-X-M-� and �-X-M ′-� in the Brillouin zone, respec-
tively. We only present Ak↑(ω) because of Ak↑(ω) = Ak↓(ω)
in the paramagnetic state and Ak↑(ω) = Ak↓(−ω) in the
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antiferromagnetic state. At higher temperature T = 0.42, in
addition to broad peaks corresponding to the upper and lower
Hubbard bands, there exists near ω = 0 a quasiparticle peak.
With decreasing T , the energy dispersion of quasiparticle is
strongly renormalized to a very flat band, implying the strong
correlation effects. At lower temperature T = 0.32, this is in
the antiferromagnetic phase and the low-energy part of the
quasiparticle band disappears, and an excitation gap opens.
This is due to scatterings by static staggered moment. In
addition, Akσ (ω) now exhibits a characteristic peak structure
near the Fermi energy, which exists near M ′ point in the
Brillouin zone.

IV. OPTICAL/DC CONDUCTIVITY AND EFFECT OF
VERTEX CORRECTION

Now, we start with investigating optical conductivity σ (ω)
and its dc value. A main issue is its variation with temperature
and the effect of vertex corrections. In this section, we are
going to investigate characteristics in the T and ω dependence
of optical conductivity, while examining the vertex corrections
in the next section.

Figure 4(a) shows optical conductivity before including
vertex corrections, σ0(ω). They are calculated from χ0 in
Eq. (5) at various temperatures both above and below TN . The
data including the vertex corrections are plotted in Fig. 4(b).
First of all, the vertex corrections are noticeable and they are
large particularly at low temperatures. In our previous result for
the frustrated Hubbard model on a triangular lattice [17], the
difference between σ (ω) and σ0(ω) is quite small. Therefore,
it is remarkable that the vertex corrections are much larger in
this unfrustrated system, and the corrections are large already
in the paramagnetic phase.

One of the most important characteristics is the dc con-
ductivity, σdc = σ (ω = 0), and this is plotted in Fig. 4(c) as
a function of temperature. Values with and without the vertex
corrections are denoted as σdc and σ0,dc, respectively. Before
investigating ω dependence, we discuss the dc conductivity
and the effects of the vertex corrections on it. When the vertex
corrections are not included, σ0,dc increases with lowering
T in the paramagnetic phase, while it decreases in the
antiferromagnetic phase. We find that the dc conductivity
shows that the metallic state is smoothly connected to the
insulating state with varying T . σ0,dc is maximum around
T ∼ 0.38, which is higher than TN . The data in Fig. 4(c) show
that the vertex corrections provide opposite contributions to
σdc depending on T . At high temperatures T � 0.33, which
is only slightly below TN ∼ 0.34, the correction enlarges the
dc conductivity. However, the sharp crossover around TN is
enhanced to a steeper slope and σdc is suppressed by the vertex
corrections in the low-temperature region. It is noticeable that
the σdc maximum shifts to a higher temperature T ∼ 0.40.

We now examine the ω dependence of σ (ω). A very
common feature in all the curves in Figs. 4(a) and 4(b) is
a broad peak located around ω ∼ U , and this comes from
excitations to the upper and lower Hubbard bands [53]. At
higher temperatures T > 0.34, σ (ω) shows a Drude peak
around ω = 0. The system is metallic in this temperature
region, and the Drude peak comes from motion of quasi-
particles. The peak is not very sharp but its width gradually
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FIG. 4. Optical conductivity (a) without vertex corrections σ0(ω)
and (b) with vertex corrections σ (ω) for various T ’s. (c) Temperature
dependence of dc conductivity with and without vertex corrections.

narrows with decreasing T , while its amplitude increases,
which implies enhancement of coherence in quasiparticle
motion. The behavior changes below TN .

With approaching TN , the Drude peak reduces and this is
attributed to enhanced magnetic fluctuations. At T = 0.34,
the peak that was located around ω = 0 now shifts to a finite
energy ω ∼ 1, and there appears a dip at ω = 0, which is a
characteristic of the insulating phase. This comes from the
gap opening in the electron spectrum discussed for the data
in Fig. 3. With further decreasing temperature down to T =
0.32, the peak shifts towards higher ω and its intensity grows.
Correspondingly, the dip at ω = 0 deepens. As discussed in
the previous section, quasiparticle bands open a gap in the
antiferromagnetic phase. The low-energy peak around ω ∼ 1
comes from these quasiparticles in the gapped bands.

V. DETAILED ANALYSIS OF VERTEX CORRECTION

The vertex corrections in the dc conductivity were studied
in the previous section, and we now proceed to examine their
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FIG. 5. Effects of vertex corrections on optical conductivity σ (ω)
in the paramagnetic phase (T = 0.42, 0.36) and the antiferromagnetic
phase (T = 0.32). σ = σ0 + σvc.

effects on the ω dependence of the optical conductivity, by
analyzing the data in Fig. 4. Detailed comparison is presented
in Fig. 5 for three T values, where σ (ω) and σ0(ω) are the result
with and without the vertex corrections, respectively. σvc(ω)
is the vertex correction calculated from χvc. General features
in their dependence on ω and T are similar to each other, but
the vertex corrections provide quite pronounced differences
in the detailed ω dependence. Like in the case of σdc(T ), it
is interesting that the vertex corrections behave differently in
between the paramagnetic and antiferromagnetic phases.

We have found that the vertex corrections generally enlarge
variations in the ω dependence of optical conductivity. It is also
general that the ω-integrated value of the correction is positive,
and this is consistent with our expectation. This is because
forward scattering processes in quasiparticle damping are not
effective for current dissipation, and the vertex corrections
compensate their contributions. This also means that the
energy gain due to the electron kinetic term is enhanced.

Most importantly, the vertex corrections enhance the Drude
peak and its peak shape becomes noticeably sharper. This
effect also takes place about the high-energy peak around ω ∼
U , and the broad incoherent peak also becomes noticeably
sharper. More precisely speaking, the part including the vertex
corrections provides a positive contribution around ω = 0
and ∼U , while a negative contribution around ω ∼ 2. These
contributions sharpen the double peak structure in the ω

dependence of conductivity. The positive contribution around
ω = 0 is gradually suppressed with approaching TN .

We have found the enhancement of ω-dependent structures
also in the antiferromagnetic phase. Most notably this time,

the vertex corrections strongly suppress conductivity around
ω = 0, and deepen the dip there. The low-energy peak around
ω ∼ 1 is sharply enhanced instead. [See also the data in
Fig. 7(c) at the lower temperature T = 0.30.] The peak
intensity is enhanced and its width is reduced considerably.
This peak comes from motion of low-energy quasiparticles in
the gapped bands, and this behavior indicates that the vertex
corrections strongly affect their dynamics. The effects in the
region of ω > 2 are similar to those in the paramagnetic phase.
The corrections sharpen the high-ω peak and deepen the valley.

Thus the most striking feature of the vertex corrections
is their opposite effect in the low-ω region depending on
temperature. The correction to σ value is positive at high
temperatures and negative at low temperatures, and this sign
change occurs near TN . This behavior was already found in
σdc(T ) in the previous section, but the ω dependence exhibits
this change more clearly.

An interesting behavior appears in the paramagnetic phase
near TN . With lowering T , as discussed in the previous section,
σdc(T ) including the vertex corrections starts decreasing at
T ∼ 0.40, quite higher than TN . This is due to antiferromag-
netic fluctuations strongly enhanced near the transition point.
However, in this temperature region, σ (ω) retains a Drude
peak and the system remains metallic in this sense. This
continues down to T ∼ 0.36, which is close to the temperature
of σ0,dc maximum. It is interesting that the temperature and ω

dependences of conductivity thus behave differently due to the
vertex corrections in this temperature region.

Next, we shall examine the effects of antiferromagnetic
fluctuations in more detail. To this end, we separate the
vertex correction term in the current correlation function
into two parts, χvc = χ

para
vc + χ

mag
vc . The RHS of Eq. (6) is

a sum of products of four G’s, and each G is represented by
nonmagnetic g, g̃, and magnetic � depending on sublattice
index as shown in Eq. (10). The paramagnetic part χ

para
vc is the

sum of the products that do not contain �, while the magnetic
part χ

mag
vc is the sum of all the others. Namely, χ

mag
vc is the part

including at least one spin-dependent single-electron Green’s
function among four double lines in the second diagram in
Fig. 1(a).

Figure 6 shows the paramagnetic and magnetic parts of the
vertex corrections in current correlation function at various
T ’s. The data are plotted as a function of Matsubara frequency.
The magnetic part χ

mag
vc is finite only in the antiferromagnetic

phase by its definition, whereas the paramagnetic part χ
para
vc

is sizable in the paramagnetic phase. It is remarkable that the
two parts behave opposite to each other in the temperature
dependence. The magnetic part grows very rapidly with
lowering temperature. In contrast, the paramagnetic part
decreases slowly but steadily. Another difference is about their
dependence on Matsubara frequency. The maximum of the
Reχpara

vc stays at νn = 0 at all T ’s. The magnetic part χ
mag
vc has

a maximum at a finite Matsubara frequency and its position
slowly increases with lowering T . It is plausible to expect
that this peak is related to deepening of the conductivity dip
at ω = 0, and we check this by analytic continuation to real
frequency ω.

In Fig. 7, σ0 + σ
para
vc is the optical conductivity calculated

from the partial sum χ0 + χ
para
vc , and it is compared with the

full conductivity and also the value with no vertex corrections.
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the vertex corrections to current correlation function. Shown is the
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There are two important points. The first point is that the
magnetic part dominates in the vertex corrections at low
temperature T = 0.32, although the two parts have a similar
size at this temperature in Fig. 6. The second point is that
the magnetic part changes σ (ω) over a much wider range
of ω, compared with the paramagnetic part. The change due
to the paramagnetic part is limited to around ω ∼ U and
ω ∼ 0, and the change around ω ∼ 0 becomes small at lower
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three classes shown. Partial sum is taken in Eq. (6) for each category.
Upper and lower panels show the paramagnetic and magnetic parts
of the vertex corrections. Temperature is (a) T = 0.33 and (b) 0.32.

temperatures. In addition to these two regions, the magnetic
part also enhances the peak around ω ∼ 1 and deepens the
valley between the two peaks.

We now analyze the vertex corrections from a different
viewpoint. For the full vertex function �, a pair of particle
and hole comes in from external lines and they are scattered
to another particle-hole pair. In the antiferromagnetic phase,
particles and holes have also sublattice degrees of freedom,
and it is interesting to examine which combination dominates
vertex corrections. Corresponding to the four vertices b4b1b2b3

of � in Fig. 1(b), there are 16 combinations and we group
them into three categories. Their contributions in χ

para
vc and

χ
mag
vc are shown in Fig. 8. The first category is the ones in

which a particle and a hole are on the same sublattice on both
incoming and outgoing sides (b4 = b1, b2 = b3, plotted with
red color). The second category is the ones in which they are on
the opposite sublattices on either side (b4 = b̄1, b2 = b̄3, blue),
and the third category is the remaining ones (green). Each plot
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shows the sum of the contributions from the corresponding
combinations. The most important point is that the contribution
of the second category overwhelms the other two in both χ

para
vc

and χ
mag
vc , and therefore charge and density polarizations made

of particles and holes on the opposite sublattices play a central
role in the vertex corrections. It is also interesting that the third
category has a contribution with negative sign. However, its
amplitude is much smaller than the second category, although
the amplitude grows at lower temperatures.

VI. MOMENTUM DEPENDENCE OF VERTEX FUNCTION

The analysis in the previous section reveals that the most
important vertex corrections are about the scattering processes
in which a particle and a hole are on the different sublattices
to each other both in the initial and final states. In this section,
we will analyze how this process depends on the momentum
of particle and hole. To this end, we fix the momentum of
incoming particle and hole at some characteristic k points and
examine how they are scattered in the Brillouin zone.

The square lattice Hubbard model has a Fermi surface
with rotated square shape at half filling, and this is shown
in Fig. 1(c). It has been well known that the coherence of
quasiparticles on the Fermi surface strongly depends on their
position on the surface. The functional renormalization-group
study [54,55] or the CDMFT study [21–23] showed that
quasiparticles near (π,0) or (0,π ) in the Brillouin zone are
very incoherent, because they are scattered not only by
antiferromagnetic spin fluctuations but also by Umklapp pro-
cesses and their renormalized interactions grow rapidly with
lowering temperature. Quasiparticles near (π/2, ± π/2) or
(−π/2, ± π/2) are much less incoherent. The most incoherent
two k points are called hot spots, while the least incoherent
four are called cold spots. In this section, we also use the terms
hot and cold for quasiparticles, if they are at either the hot or
cold spots.

Thus hot spots and cold spots are opposite limits on the
Fermi surface, and we set the incoming momentum at either
of the two. As for frequency, we examine the mode with
Matsubara frequency νn = 0 as the most characteristic one.

Figure 9 shows the k dependence of the full vertex function
�

s,c
kk′(iνn = 0) at T = 0.38 and 0.36 in the paramagnetic phase.

The incoming particle is set at the cold spot k′ = (π/2,π/2)
in (a), while at the hot spot (π ,0) in (b). The incoming hole is
at −k′. �c and �s are the charge and spin vertex defined by

�c
kk′ ≡

∑

σ,σ ′
�kσk′σ ′ , �s

kk′ ≡
∑

σ,σ ′
σσ ′�kσk′σ ′ , (11)

where all the Matsubara frequencies are iνn = 0. Note that
the vertex function � does not have sublattice indices in the
paramagnetic phase and the details of � were explained in
our previous work [17]. The data in Fig. 9 provide important
information on residual effective interactions between quasi-
particles. Note that optical conductivity is the response of
charge current and therefore only the charge vertex contributes
to χvc.

First, we examine the difference in the k dependence
between the spin and charge vertices; more specifically,
dependence on the momentum difference �k ≡ k − k′. The
most prominent difference is that forward scatterings are

FIG. 9. Momentum dependence of the spin and charge parts of
the full vertex function, �s,c

kk′ (iνn = 0), in Eq. (11). The case of (a) cold
quasiparticles k′ = (π/2,π/2) and (b) hot quasiparticles k′ = (π,0).
Dotted line is a guide for the path examined in Sec. VI.

dominant and have a positive amplitude in the spin vertex,
while they are very weak in the charge vertex. Here, forward
scatterings refer to the cases of small |�k|. In the charge
vertex, � is maximum for �k ∼ (π,0) or (0,π ). (This depends
slightly on temperature, and this will be discussed later.) These
features are common for both incoming quasiparticles on the
cold spot and those on the hot spot. It is also interesting that
the forward scatterings have a small negative amplitude in the
hot spot case. However, the k dependence becomes quite weak
at lower temperature T = 0.36 in the charge vertex.

Secondly, let us compare the behaviors between the cold and
hot quasiparticles. As expected, � is considerably larger for
the hot quasiparticle. An interesting point is that the difference
is evident only in the charge vertex, while the difference in the
spin vertex is small. One difference in the spin vertex is that
� is minimum and negative for �k ∼ (π,π ) at the cold spot,
while the minimum position is �k ∼ (π,0) for the hot spot.
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Otherwise, the difference in the k dependence is rather weak
in the spin vertex.

The difference between cold and hot quasiparticles also
appears in the evolution with temperature in the charge vertex.
�c decreases at low temperature for the cold quasiparticle and
strongly increases for the hot quasiparticle, which is again
consistent with the momentum dependence of quasiparticle
lifetime.

Another interesting point about the charge vertex is that
the k points with large �c for the hot quasiparticle distribute
very widely in the Brillouin zone at T = 0.36 [see the
bottom-right panel in Fig. 9(b)]. These points are around the
lines (q,π ) and (0,q) with (−π � q � π ), and the maximum
is at k = (0, ± π ). The corresponding momentum difference
�k spans the parts (π,q) and (q,π ). They are the momentum
region where the charge correlation is found enhanced at
low temperatures in the variational MC study [56]. The
equal-time charge correlation function has an extended peak
along the line between (π,π ) and (π,0) = (0,π ) points in
the Brillouin zone, and the momentum dependence along
the line is suppressed for strong repulsion U . We find the
same trend also for the cold quasiparticle [�c in Fig. 9(a)].
With lowering temperature, the variation in �c along the line
k = (π/2, − π/2)-(−π/2, − π/2)-(−π/2,π/2) (dotted line
inside the data) becomes suppressed at T = 0.36, and this
is common to the behavior of the hot quasiparticle in Fig. 9(b).
Despite having found the relation of this behavior with the
charge correlation, the behavior of �c

k,k′ is not well understood
yet, and a further study should investigate this point in future.

The full vertex function �
s,c
pp′ in the antiferromagnetic phase

is shown in Fig. 10. The data are calculated at T = 0.33,
which is close to TN . We define the charge and spin vertices
in the same way as before, but one should note that in the
antiferromagnetic phase the spin vertex also contributes to
χvc in the current correlation function. This is because the
single-electron Green’s functions contain a spin-dependent
component �, and products of �s and some �’s contribute
to χvc. Now, � has the sublattice indices and specifically we
examine the part that a particle and a hole are on the different
sublattices both on the incoming and outgoing sides, since
the analysis in the previous section showed that this has the
dominant contribution. In the figure, the case that a particle on
one sublattice is scattered to a particle on the same sublattice
(PP channel) and the case that it is scattered to a hole on the
same sublattice (PH channel) are shown separately. Recall that
the Brillouin zone is reduced to a half in the antiferromagnetic
phase.

First of all, the p dependence in the PP and PH channels are
very similar to each other, but the amplitude is different. The
sign is the same for the case of p′ = (π,0), but opposite for
p′ = (π/2,π/2). Generally, the spin vertex has much larger
amplitudes in the PH channel, while the charge vertex has
larger amplitudes in the PP channel but the difference is smaller
than the case of the spin vertex. It is also general that the spin
and charge vertices have opposite sign for the global phase
of �.

It is very important that the dependence on �p ≡ p − p′
is very different between the two p′ cases, and this is true for
both spin and charge vertices. This feature is distinct from that
in the paramagnetic phase.

FIG. 10. Spin vertex
∑

σσ ′ σσ ′�bb̄b′ b̄′
pσp′σ ′ (iνn = 0) (left column) and

charge vertex
∑

σσ ′ �bb̄b′ b̄′
pσp′σ ′ (iνn = 0) (right column) at T = 0.33. The

case of (a) p′ = (π/2,π/2) and (b) p′ = (π,0). In each case, the
particle-particle (PP) channel (bb̄b′b̄′) = (ABAB) and (BABA) is
shown in the first row, and the particle-hole (PH) channel (bb̄b′b̄′) =
(ABBA) and (BAAB) is shown in the second row.

We examine the momentum dependence of � in more detail.
For p′ = (π/2,π/2), the momentum dependence is mainly
dominated by �px + �py with much smaller dependence
on �px − �py . This is similar to the dependence of �c for
the cold quasiparticle in the paramagnetic phase. However,
the dependence is much more one dimensional now and the
direction perpendicular to the initial wave vector p′ provides
only small correction.

The dependence is quite different for p′ = (π,0). In
the reduced Brillouin zone, the sign of � is de-
termined by ± cos[ 1

2 (�px + �py)] cos[ 1
2 (�px − �py)] ∝

±(cos �px + cos �py), where the sign depends on the spin
or charge part of the vertex. This momentum dependence is
the one of nearest-neighbor interactions in real space, and
this result indicates that nearest-neighbor correlations are
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dominant for the vertex corrections of those quasiparticles
near (π,0).

VII. DISCUSSIONS AND SUMMARY

In this paper, we have studied optical conductivity near
the antiferromagnetic transition in a square-lattice Hubbard
model at half filling. To calculate optical conductivity, we have
used a cluster dynamical mean-field approach for obtaining
single- and two-electron Green’s functions. For taking account
of electron correlation effects, we have derived a new formula
of the vertex corrections in the antiferromagnetic phase based
on our previous one for the paramagnetic phase. The derived
formula of the vertex corrections is easily generalized for other
response functions including Raman spectrum. We have found
that the vertex corrections change various important details in
temperature and frequency dependence of conductivity near
the antiferromagnetic transition. This point differs from our
previous study on optical conductivity near the Mott transition
in a frustrated triangular lattice.

An important effect of the vertex corrections is that they
enhance variations in frequency dependence of conductivity:
the Drude peak in the paramagnetic phase is enhanced and
the broad incoherent peak related to the Hubbard band is
sharpened. The valley in the frequency dependence between
these two peaks is deepened. Optical conductivity shows a
dip at ω = 0 in the antiferromagnetic phase, and the vertex
corrections also enhance this dip.

Another important finding is about a temperature region
just above the antiferromagnetic transition temperature. In this
region, dc conductivity decreases with lowering temperature,
which is similar to a pseudogap phase [57], but no indication
of pseudogap is found in the single-electron spectrum and the
optical conductivity. One needs care about the presence of
pseudogap. A recent quantum Monte Carlo study reported
a pseudogap behavior for weak to intermediate Coulomb
repulsion in the square-lattice Hubbard model at half filling
[58]. However, since its observed characteristic temperature
is lower than the antiferromagnetic transition temperature in
the present work, therefore this is not a controversy. It is
noticeable that this temperature region is expanded in the result
with the vertex correction included, and this unusual metal
behavior is strengthened by the vertex correction. There has
been only few experimental studies on electric conductivity
in quasi-two-dimensional antiferromagnets with an integer
electron density, and in most of the materials the temperature
dependence is insulating in the whole temperature range. One
interesting exception is the layered organic compound, β ′-type
Pd(dmit)2 compound [59,60]. The electric conductivity in
β ′-type Pd(dmit)2Me4P is metallic at high temperature, but
turns to insulating at around 200 K at ambient pressure, while
the antiferromagnetic transition temperature is TN ∼ 40 K.

Unfortunately, this material is not an ideal realization of the
square-lattice Hubbard model due to moderate frustration, but
the antiferromagnetic transition takes place. It is interesting
to examine if there exists an evidence of pseudogap or not
above TN .

For better understanding of the vertex corrections, we have
analyzed which types of fluctuations are important in the
formula. The formula shows that the vertex corrections are
determined by the vertex function and four single-electron
Green’s functions. Concerning the part of the Green’s func-
tions, their spin dependent components provide a dominant
contribution in the antiferromagnetic phase. Some of them
couple with the spin part of the vertex function, while some
of the others couple with the charge part, and both contribute
to conductivity. Concerning the part of the vertex function, a
predominant contribution is given by the scattering processes
of polarization made of a particle on one sublattice and a hole
on the other sublattice.

We have also studied the momentum dependence of
the vertex function. We have found that the momentum
dependence differs significantly in the paramagnetic phase
between the charge vertex and the spin vertex. An important
point is that for quasiparticles near (π ,0) or (0,π ) in the
Brillouin zone the vertex functions are strongly enhanced near
the antiferromagnetic instability and the dependence on the
scattered momentum indicates the importance of Umklapp
scatterings. In the antiferromagnetic phase, the charge vertex
and spin vertex functions have a similar momentum depen-
dence but the sign is opposite. The antiferromagnetic phase
also has very different momentum dependence of the vertex
function between quasiparticles at different positions in the
Brillouin zone. For those at (π ,0) or (0,π ), the momentum
dependence is dominated by nearest-neighbor correlations.
For those at (π/2, ± π/2), the momentum dependence is quite
one dimensional. At this moment, it is not clear yet how these
exotic correlations affect conductivity, but we believe that these
detailed data in the vertex function and the vertex corrections
obtained in the present work will provide useful information
in future for constructing theories for better understanding of
conductivity in the Hubbard model.
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