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On achieving pure electromagnetic left-handedness through magnetodielectric field compression
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The relationship between electromagnetic phase and power flow in metamaterials composed of periodic
magnetodielectric inclusions is investigated. The distribution of Poynting vectors in k space across multiple
Brillouin zones suggests that backward phase is a result of field compression within the inclusions, and that left-
handedness can be achieved without negative electric or magnetic susceptibility (i.e., without out-of-phase dipole
moments). This hypothesis is verified by showing that a one-dimensional periodic array of magnetodielectric
slabs can be designed to mimic the properties of an ideal (homogeneous) left-handed medium. Furthermore, using
exact fields and without any field averaging, it is shown that the structure can be designed such that practically all
power is carried in the fundamental left-handed spectral component. In the limit where the fundamental contains
all the power, this periodic structure has the same spectral power signature as that of a homogeneous left-handed
medium. It is shown that this congruence does not manifest when the inclusions are purely dielectric, nor does it
manifest for magnetodielectric inclusions in two or three dimensions.
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I. INTRODUCTION

The handedness of an electromagnetic plane wave defines
the relative orientations of its electric field E, magnetic
field H, and wave vector k. A medium has a left-handed
response if it supports plane waves in which (E,H,k) form
a left-handed triplet. These waves propagate with opposing
phase and group velocities (backward waves) and can give
rise to counterintuitive effects such as negative refraction at an
interface [1–3].

A homogeneous medium is left-handed if and only if it has
simultaneous negative permittivity and negative permeability.
This condition, however, has never been observed in naturally
occurring materials. Although handedness cannot be rigor-
ously defined for waves propagation through a heterogeneous
medium (since these waves are not plane waves and cannot be
represented by a single wave vector), the combination of metals
and dielectrics in periodic structures called metamaterials has
been shown to elicit macroscopic wave phenomena that mimic
some characteristics of left-handed plane waves [4–12].

When the metamaterial features are highly subwavelength,
the resemblance to a left-handed medium is often described by
using field averaging techniques to map the electromagnetic
fields to an equivalent plane wave, and then conferring the
properties of the plane wave to the metamaterial. With so-
phisticated averaging, this process can be used to approximate
the heterogeneous material properties of the structure with
those of a homogeneous effective medium, a process known
as homogenization [13–16].

Metamaterials with left-handed homogenized parameters
have achieved negative effective permittivity and negative
effective permeability through two mechanisms: the intrinsic
properties of constituent materials and the macroscopic dipole
moments arising from the unit cell geometry. For example,
metals at microwave frequencies have an intrinsic negative per-
mittivity at the atomic level [17], while split-ring resonators in-
troduce macroscopic magnetic dipole moments at the unit cell
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level [18,19]. In the latter case, these magnetic moments act
collectively to produce negative effective permeability without
constituent magnetic materials, a phenomenon that has been
reported across a range of metamaterial geometries [4,20–24].
In order to distinguish between the different physical mech-
anisms that lead to negative effective parameters, it is useful
to move beyond homogenization techniques towards methods
that analyze the complete fields. Homogenization is a powerful
tool to understand the macroscopic wave response of a
metamaterial, however it is ultimately an approximation that
discards the detailed spatial variation of the fields across each
unit cell.

In this paper a metamaterial composed of periodic mag-
netodielectric (MD) inclusions (i.e., inclusions with both an
electric εr > 1 and magnetic μr > 1 response) is investigated
by expanding the electromagnetic fields of a propagating
mode into a complete set of spatial frequency components
and analyzing power flow in the corresponding k-space
domain [25]. It is shown that opposing phase and power
flow can be achieved in a one-dimensional (1D) (layered)
magnetodielectric structure, without relying on intrinsic nega-
tive susceptibilities or macroscopic dipole moments. Instead,
high-index MD inclusions compress the field oscillations in the
direction of propagation (shrink the wavelength), with phase
wrapping over each unit cell producing an effective backwards
phase over the inclusion lattice.

Furthermore, it is shown that the spatial power spectrum
of the metamaterial approaches that of an ideal homogeneous
left-handed medium as the periodicity of the structure goes
to zero and the left-handed fundamental spatial component
dominates the spectrum. This congruence between the power
spectrum of the metamaterial and that of a homogeneous
left-handed medium is very unusual and does not typically
appear in other metamaterials that are known to exhibit
left-handed behavior. Interestingly, this result does not extend
to two-dimensional (2D) (cylindrical) or three-dimensional
(3D) (spherical) inclusions; in these structures the power
remains primarily in high-order right-handed spatial frequency
components as the periodicity decreases. Finally, it is shown
that in nonmagnetic media, individual spectral components
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are always right-handed and the complete power spectrum
can never approach that of an ideal homogeneous left-handed
medium. In these structures, power is always distributed across
multiple plane-wave components and handedness is not always
clearly defined.

The metamaterial under investigation is not to be confused
with a photonic crystal [9,26]. Although there are topological
similarities, the dielectric inclusions in the metamaterial
are strongly magnetic and the lattice spacing is orders of
magnitude smaller. As a consequence, the electromagnetic
behavior is distinct from that of a photonic crystal and
more consistent with other well-studied metamaterial struc-
tures [4,8] where power is distributed over multiple spatial
frequency components in Brillouin zones adjacent to the
fundamental. The significance of lattice spacing is made clear
when the periodicity is increased to the order of a wavelength
(well outside the metamaterial regime)—the electromagnetic
behavior smoothly changes to resemble that of a photonic
crystal with a single dominant high-order right-handed spatial
frequency component.

The paper is organized into four main sections: Sections II
and III introduce magnetodielectric field compression through
a study of 1D periodic layered structures based first on magne-
todielectric and then on nonmagnetic dielectric layers, Sec. IV
studies 2D periodic structures with cylindrical magnetodielec-
tric inclusions, and Sec. V studies 3D periodic structures with
spherical magnetodielectric inclusions. Numerical results for
1D layered geometries are calculated using analytic equations,
while 2D and 3D geometries are simulated using the full-wave
finite-element solver provided in COMSOL Multiphysics [27].

II. MAGNETODIELECTRIC LAYERED STRUCTURE

It is well known from Floquet theory that a time harmonic
wave propagating through a periodic structure of periodicity
a with time dependence ejωt can be written in the form
f (x) = e−jkFxu(x), where u(x) is periodic over a and e−jkFx

is the Floquet wave [28]. The Floquet wave vector kF is
the smallest wave vector that satisfies the periodicity of the
structure. For a given wave it is equal to the minimum absolute
phase difference across a unit cell divided by the periodicity
a. When the periodicity of the structure is much smaller than
the wavelength, the phase of the Floquet wave is the same as
the phase of the wave propagating through the homogenized
effective medium.

Typically, metamaterials achieve backward Floquet phase
by introducing electric and magnetic dipole moments that are
out of phase with the electric and magnetic fields, respec-
tively. For example, free electrons in metals [17], capacitive
loops [18], and plasmonic interfaces [23] can all contribute
to out-of-phase dipole moments. When these moments are
averaged over space, they produce homogenized D and B
fields that are out of phase with the homogenized E and H
fields, leading to opposing directions of total power flow and
Floquet phase propagation. In this paper, however, backward
Floquet phase is achieved using a method that does not rely on
out-of-phase dipole moments.

Consider a wave with a Floquet wave vector kF propagating
through a periodic medium of periodicity a � λ. This wave
would typically be interpreted as having a small phase delay
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FIG. 1. A diagram of the magnetodielectric layered structure. An
electromagnetic wave propagates through the layers with Floquet
phase propagating in the positive x direction and power flowing in
the negative x direction.

across each unit cell of φdelay = kFa. Due to the periodicity
of time harmonic signals, however, this phase delay could
alternatively be viewed as a large phase advance across each
unit cell of φadvance = 2π − kFa. Although both φdelay and
φadvance correspond to the same Floquet wave vector due
to phase wrapping, the former implies slow spatial phase
variation in the direction of kF while the latter implies fast
spatial phase variation in the opposite direction. It is therefore
possible to obtain a backwards Floquet phase delay by
inserting a sufficiently high-index layer of magnetodielectric
material into each unit cell. These layers would serve to
compress the fields along the axis of propagation and produce
the high spatial phase advance equivalent to the Floquet phase
delay.

To investigate this phenomenon in detail, consider a
periodic structure consisting of alternating air and magnetodi-
electric layers as illustrated in Fig. 1. The MD layers have a
refractive index of n and thickness d, and are spaced along
x with periodicity a. Consider a wave propagating parallel
to the x axis (normal to the layers) with a Floquet wave
propagating in the positive x direction and power flow in the
negative x direction. If the MD layers are matched to free
space (εr = μr = n), there will be no reflections at any of the
interfaces, and the wave will be a pure traveling wave with a
uniform amplitude throughout the structure.

In order for power to flow in the negative x direction, the
waves within each layer must also propagate in the negative
x direction. If the fields are polarized in the y direction and
k = ω/c is the wave vector in free space, the complete electric
and magnetic fields are given by the following expressions:

Ey(x) =
⎧⎨
⎩

E0e
jkξ−jkFqa, 0 � ξ < a − d,

E0e
jknξ−jkFqa, − d � ξ < 0,

(1)

Hz(x) = 1

η0
Ey(x), (2)

where q = (x div a) and ξ = (x mod a) are the quotient and
remainder of x/a such that x = qa + ξ . The fields within the
MD layers vary with a phase term ejknx and the fields between
the MD layers vary with a phase term ejkx . In order to ensure
that the Floquet wave propagates in the positive x direction
with phase e−jkFx , the total per-unit-cell phase delay φ must
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satisfy

φ = kFa = −k(a − d) − knd + 2πp, (3)

where p is any integer. Since kF is positive, the phase delay will
fall within the range 0 < φ < π , where φ = π corresponds to
the edge of the first Brillouin zone.

If the complete fields are considered without approximation
or homogenization, the question of this structure’s handedness
is an intriguing one. Both constituent materials are intrinsically
right-handed, yet opposing power and Floquet phase would
suggest a left-handed effective homogeneous medium. In the
Introduction, handedness was rigorously defined for a single
plane wave where the direction of phase propagation was
uniquely determined by the wave vector. A mode propagating
through an inhomogeneous medium, however, cannot be
expressed as a single plane wave and therefore cannot be
assigned a single wave vector. This makes the direction of
phase propagation ambiguous and implies that a single binary
parameter like handedness is not appropriate to characterize
the complete inhomogeneous vectorial relationship between
phase and power flow.

Although homogenization techniques provide a powerful
tool for modeling the macroscopic behavior of periodic
structures and metamaterials, they provide a limited view of
phase and power flow within a propagating wave. Sampling the
field at lattice intervals or averaging the fields across unit cells
discards information about the local field distributions within
unit cells that is critical to understand how power is distributed
across multiple Brillouin zones in k space. Conventional wave
vector diagrams use phase matching across equifrequency
contours to calculate directions of refraction and reflection. In
periodic structures, the folding of higher order Brillouin zones
into the first Brillouin zone enables the accurate prediction
of anomalous refraction and reflection due to higher-order
components [12]. Since these contours are determined only
from the periodicity of propagating waves, however, high-
order plane-wave components are indistinguishable from the
fundamental Floquet wave, and the relationship between phase
and power becomes ambiguous.

By contrast, expanding the detailed electromagnetic fields
into a complete set of plane-wave components can provide a
rigorous analysis of phase and power flow across all Brillouin
zones [29–31]. Directions of phase propagation and power
flow are associated with each plane-wave component, and
handedness can be assigned on a component by component
basis. A similar method was previously applied to photonic
crystals in which modes were shown to have a single Fourier
component from which overall right-handedness could be
ascertained [29].

Let the complete expansion technique now be applied to
map power density in the layered MD structure to the spatial
frequency domain. This will enable a rigorous comparison
to the power spectrum of an ideal homogeneous left-handed
medium.

A general electromagnetic field can be mapped to the
k-space domain by taking the multidimensional Fourier
transform of each component [25]. When the field represents a
wave propagating through a periodic structure, it expands into
a Fourier series with a fundamental mode propagating with the
Floquet wave vector kF. The electric and magnetic fields can

be written as

E(r) = e−jkF·r ∑
m

em e−jgm·r, (4)

H(r) = e−jkF·r ∑
m

hm e−jgm·r, (5)

where the series summation is multidimensional over the
indices m ≡ (mx,my,mz) and gm = 2π (mx

ax
x̂ + my

ay
ŷ + mz

az
ẑ) is

the mth reciprocal lattice vector corresponding to the unit cell
dimensions ax, ay, and az.

The Fourier coefficients em and hm decompose the fields
E(r) and H(r) over the points in k space described by the
corresponding wave vectors km = kF + gm. Since each wave
vector is located within a different Brillouin zone, each pair
of coefficients also corresponds to the contribution from a
different Brillouin zone. The fundamental component k0 is
equal to the Floquet wave vector kF and is located within
the first Brillouin zone where gm = 0. All other components
are higher order components and are located outside the first
Brillouin zone.

The time-averaged power density associated with each
Fourier component in k space can be calculated using the
Poynting vector

sm = 1
2 Re{em × hm

∗}, (6)

with the total time and space averaged power density equal
to the vector sum of all component Poynting vectors 〈S(r)〉 =∑

m sm. Each vector sm corresponds to a unique wave vector
km, enabling the power flow to be mapped across k space.
Plotting this power map provides a visual representation of
the multidimensional distribution of power and phase of the
complete electromagnetic field. Although handedness is not
defined for the total field (since the structure is inhomogeneous
in the direction of propagation), each individual component is
a plane wave and can be described as right- or left-handed
depending on the angle between sm and km.

Note that a traditional wave vector diagram plots the loci
of all possible km points at a given frequency (equifrequency
contours) and is periodic in k space. The gradient of these
contours determines the direction of total averaged power
flow 〈S(r)〉, but no more information regarding power flow
is provided. In contrast, by calculating the Fourier coefficients
using (4) and (5) and plotting sm vectors on top of the equifre-
quency contours, the k-space diagram becomes aperiodic and
the contribution of power flow from each Brillouin zone can
be clearly identified. This provides additional information
regarding both phase and power flow of a wave propagating
through a periodic structure.

To determine the k-space mapping of the layered MD
structure, the electromagnetic fields in (1) and (2) can be
expanded into Fourier series using (4) and (5). Since the
structure in Fig. 1 is uniform along y and z, the Fourier series
in (4) and (5) reduce to 1D summations along x over a single
index m. The wave vectors take the form km = (kF + 2πm/a)x̂
and the Fourier coefficients take the form em = emŷ and
hm = hmẑ. The power flow at each point in k space can then
be written as sm = 1

2 Re {emh∗
m}x̂.

The Poynting vector associated with the fundamental
Fourier component s0 can be normalized with respect to the
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total power 〈S(x)〉 = ∑
m sm and simplified to the following

expression:

s0

|〈S(x)〉| = − sinc2

(
(kF + k)(a − d)

2

)

×
(

2πp − (kF + k)a

2πp − (kF + k)(a − d)

)2(
a − d

a

)2

x̂.

(7)

The square terms in (7) indicate that s0 always points
in the negative x̂ direction. Since k0 = kFx̂ points opposite
to s0, the fundamental component of the wave propagating
through the MD layered structure is always left-handed. To
design the structure to mimic a homogeneous left-handed
medium of index neff = −1, the parameter kF can be set equal
to k, with p = 1 to ensure the smallest possible index of
refraction. Following from (3), the magnetodielectric index
of refraction is then given by

n = 1 + λ − 2a

d
. (8)

Figure 2 plots the x component of the computed power
distribution s0/〈S(x)〉 in k space for three MD layer configu-
rations. The structure properties vary only in the x direction
so the Poynting vectors in k space all lie along the kx axis.
Because the MD layers are perfectly impedance matched and
there are no reflections, the electric and magnetic fields are

in-phase and power only flows in the negative x direction.
All components with kx > 0 (including the fundamental) are
therefore left-handed while all the components with kx < 0 are
right-handed. As the unit cell size is made smaller and the MD
layers are made thinner, the distribution of power moves from
residing primarily within right-handed Fourier components
outside the first Brillouin zone to residing primarily within the
fundamental left-handed component inside the first Brillouin
zone.

The first multilayer configuration (shown in blue in the
upper row of Fig. 2) has a unit cell size of a = 0.2λ, MD layer
thickness of d = 0.75a, and refractive index of n = 5. The
second configuration (shown in green in the middle row of
the figure) has a = 0.2λ, d = 0.35a, and n = 23.9. The third
configuration (shown in red in the lower row of the figure)
has a = 0.05λ, d = 0.1a, and n = 181. As the unit cell size
decreases, higher index layers are required to compress the
field oscillations (reduce the guided wavelength) sufficiently
within each unit cell to achieve phase wrapping. As both the
unit cell size a and MD layer filling factor d/a decreases, the
power in the higher order leftward-propagating (right-handed)
component diminishes and the power in the fundamental
rightward-propagating (left-handed) component increases. In
the upper layer configuration, most of the fields are located
within the MD medium, and the phase variation is consistent
with that of a plane wave outside the first Brillouin zone.
In the lower configuration, however, the unit cells are small,
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FIG. 2. The 1D normalized power spectrum sx,m/|〈Sx(x)〉| is plotted alongside a snapshot of the electric field for three matched εr = μr = n

layer configurations. The m = −1 component (kxa/2π ≈ −1) dominates the spectrum at large unit cell sizes and large filling factors (upper
configuration), while the m = 0 component (kxa/2π ≈ 0) dominates the spectrum when both are small (lower configuration). The first Brillouin
zone is indicated in the power density plots by the vertical dotted lines. Dots are placed in the field plots at lattice intervals to highlight the
Floquet phase (which corresponds to the fundamental Fourier component). Over the time evolution of the fields, the dots forming the Floquet
wave propagate to the right, while the fields in each narrow region propagate to the left.
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most of the fields are located in air, and the phase variation
is consistent with a fundamental left-handed plane wave. To
put this into context, the normalized power density spectrum
of an ideal left-handed homogeneous medium would contain
a single nonzero point that would be located inside the first
Brillouin zone with a value of −1.

It is clear from Fig. 2 that a wave propagating through a
layered MD medium matched to free space will have a power
spectrum that is dominated by the m = 0 or m = −1 Fourier
components. The contribution of each of these components to
the total power can be calculated directly using the following
two expressions:

s0

|〈S(x)〉| = − sin2[k(a − d)](π − ka)2

k2a2[π − k(a − d)]2
x̂, (9)

s−1

|〈S(x)〉| = − sin2[k(a − d) + πda−1]a2

(a − d)2(π − ka)2
x̂, (10)

where (9) is simplified from (7) by setting kF = k (neff = −1)
and p = 1, and (10) was derived independently. Both these
functions are monotonic with respect to a and d/a. When
both a and d/a are small, most of the power is contained
within the m = 0 mode. When either one is large, the power
is primarily in the m = −1 mode.

Using (9) and (10), the 50% to 90% power contours for the
m = 0 and m = −1 Fourier components are plotted together
in Fig. 3 over a range of unit cell sizes a and MD-layer filling
factors d/a. Since only one component can carry more than
50% of the total power for any given geometry, these contours
do not overlap and each set of contours appears over a region
that is independent from the other. The m = 0 contours appear
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FIG. 3. The fractional power in the m = 0 (bottom left of the
figure, indicated by the red arrow) and m = −1 (top and right of
the figure, indicated by the blue arrow) components are plotted
as a function of periodicity a and fill factor d/a. Contours are
plotted at 10% intervals for each component from 50% to 90%.
The corresponding index of refraction given by n = 1 + (λ − 2a)/d
increases towards the bottom left of the figure. The three solid black
lines indicate the index contours for n = 2, n = 10, and n = 100.

at the bottom left corner of the figure (indicated by the red
arrow) while the m = −1 contours cover most of the upper
right three quadrants (indicated by the blue arrow). The white
region between the two sets of contours indicates the region
where no single Fourier component dominates the spectrum.
An index of refraction value is also associated with each layer
geometry. Three index contours are plotted in the figure (for
n = 2, n = 10, and n = 100), showing index values that get
larger towards the bottom left corner of the figure. This is
consistent with (8), which states that as d becomes very small,
larger and larger values of n are required to maintain the field
compression necessary for neff = −1.

As a → 0 and d/a → 0, the fraction of power carried by the
m = 0 Fourier component increases towards unity. The elec-
tromagnetic fields from this Fourier component were shown
earlier to be left-handed, and are equivalent to those of the wave
that propagates through a matched n = −1 homogeneous
medium. In the limit where a → 0, the fractional power within
the m = 0 component has the form |s0/〈S(x)〉| → (1 − d/a)2.
In the limit where d/a also goes to zero, all the power carried
in the complete electromagnetic field is contained within
the fundamental Fourier component, and the spatial power
spectrum is identical to that of a wave propagating through
an ideal homogeneous left-handed medium. To the best of
our knowledge, this congruence between power spectra has
never been observed in other metamaterials. Left-handedness
has only been reported with respect to the homogeneous
effective medium representations of other structures, i.e., after
field averaging has been performed [32]. Although a set of
homogenized parameters may suggest that neff = −1, this does
not mean that the spatial power spectrum of the complete field
is congruent with that of an ideal homogeneous left-handed
medium. In fact, this is typically not the case. The power
spectrum of the MD layered structure, however, does approach
that of the homogeneous left-handed medium in the limit
where the unit cell size and filling factor goes to zero. Fur-
thermore, it must be stressed that this structure achieves a left-
handed power spectrum without using negative susceptibility
materials (such as metals) nor by introducing out-of-phase
dipole moments. Left-handedness arises through longitudinal
compression of the electromagnetic wave (from the high-index
MD layers) which results in phase wrapping over each unit
cell. A similar effect was observed in negative-refractive-index
transmission lines where high-reactive loading was used to
achieve arbitrarily pure backward waves [33].

III. NONMAGNETIC INCLUSIONS

The previous section demonstrated how field compression
within periodic inclusions can lead to left-handed wave propa-
gation when the unit cell size and filling factor are very small.
Magnetodielectric layers that were matched to free space were
considered in that study. This raises an important question: if
nonmagnetic inclusions were used instead (with εr = n2 and
μr = 1), would the same left-handed spectrum be achieved?
The electromagnetic fields would still be compressed in the
direction of propagation, however mismatch at every interface
would introduce reflected waves that could lead to a very
different spatial power spectrum.
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When the structure is purely dielectric (nonmagnetic),
the handedness of each Fourier component can actually be
determined a priori. Substituting (4) and (5) into Faraday’s
law and taking the inner product with respect ejkm·r reveals the
following relationship between em and hm:

km × em = ωμ0hm. (11)

The handedness of the mth component can be determined by
evaluating the sign of km · sm. A positive sign would indicate
right-handedness while a negative sign would indicate left-
handedness. Using (6) and (11), the dot product simplifies to

km · sm = 1
2ωμ0|hm|2 � 0, (12)

which is always greater than or equal to zero. This means
that assessed individually, each k-space component of a wave
propagating through a nonmagnetic structure will always be
right-handed, no matter the polarization, the geometry, or
the constituent nonmagnetic materials. As a consequence, a
nonmagnetic structure can never support a wave with a power
spectrum that approaches that of a homogeneous left-handed
medium. A wave with one dominant Fourier component will
always be right-handed while left-handed wave characteristics
must arise from a combination of multiple higher-order
plane-wave components. Given this conclusion, what does the

spectral power distribution look like when the unit cell size
and filling factor of the layered dielectric medium go to zero?

The dominance of the left-handed fundamental power spec-
tral component in the MD layered medium relies on impedance
matching between the MD layers and the air gaps. When the
layers are mismatched, such as in the nonmagnetic case where
μr/εr = 1/n2, the power spectrum changes dramatically from
the one plotted in Fig. 2. As the unit cells are made smaller,
the index of refraction within the inclusions increases and the
wave impedance decreases. This causes the mismatch between
the dielectric and air layers to increase, resulting in larger
reflections at each interface. Evidence of these reflections can
be seen through the appearance of standing waves in the fields
as well as through the trend towards odd symmetry in the
corresponding power spectrum.

Figure 4 plots the power spectrum for three nonmagnetic
layered configurations with an effective index neff = −1. The
upper panel plots the case where the unit cell has a lattice
spacing a = 0.20λ and filling factor d = 0.75a. Here the
corresponding index is n = 4.57 and most of the power is
contained within the m = −1 component outside the first
Brillouin zone. In the middle panel, a = 0.10λ and d = 0.35a.
The index is now n = 16.6 and power is distributed primarily
between the m = −1 and m = 1 components (both of which
are still outside the first Brillouin zone). In the lower panel,
a = 0.05λ and d = 0.1a. The index rises to n = 104 and the
fundamental component still carries minimal power.
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FIG. 4. The 1D normalized power spectrum sx,m/|〈Sx〉| is plotted alongside a snapshot of the electric field for three nonmagnetic (μr = 1)
layered configurations. The m = −1 component (kxa/2π ≈ −1) dominates the spectrum at large unit cell sizes and large filling factors (upper
configuration in blue), while a resonant mode builds up with strong contributions from the m = −1 and m = +1 components (kxa/2π ≈ ±1)
when both are small (lower configuration in red). The first Brillouin zone is indicated in the power density plots by the vertical dotted lines.
Dots are placed in the field plots at lattice intervals to highlight the Floquet phase. Unlike the matched MD layer structure, very little power is
ever carried in the fundamental (right-handed) component. Standing wave patterns appear as the index of refraction increases, formed by the
superposition of paired m = ±1 components, with the envelope propagating in phase with the Floquet wave vector.
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When the unit cell size a and filling factor d/a are
large, the power appears mostly within the m = −1 Fourier
component. This indicates that the wave closely resembles a
single high-order plane wave propagating in the same direction
as power flow (i.e., with a clear right-handed character).
When a and d/a are small, the power is mostly distributed
between the m = ±1 components and handedness is not
clearly defined. Together, these individually right-handed
components resemble a standing wave with a propagating
Floquet wave envelope. Unlike the equivalent matched MD
layer configuration, the power contained within the m = 0
component is virtually nonexistent. This component represents
the power carries by the electric and magnetic fields averaged
over the unit cell (after compensating for the Floquet phase).
When it is zero, it demonstrates that the fields have little
resemblance to the plane wave supported by the homogeneous
effective medium representation. Instead, the fields are com-
posed primarily of standing waves formed from high-order
plane-wave components.

Similarly to the MD configurations, thinner dielectric layers
require higher indices of refraction to maintain phase wrapping
across each unit cell. The higher index, however, leads to
greater mismatch at each interface. The mismatch leads to
more pronounced standing waves which are visible in the field
plots as the rapid oscillations in the field. The wave envelope
propagates in the positive x direction with spatial frequency
kF while the overall net power is carried in the negative x

direction. Sampling the fields at every unit cell boundary
(indicated by the dots in the field plots in Fig. 4) reveals the
Floquet phase within each component wave vector km = kF +
2πm/a. Care should be made, however, not to confuse the
presence of this dotted sinusoid with the fundamental Fourier
component (which carries negligible power). Instead, it should
be recognized that sampling the sum of a strong right-handed
m = 1 mode Ae−j (kF+2π/a)x and a strong right-handed m = −1
mode Be−j (kF−2π/a)x at the unit cell boundaries xq = qa

produces a discrete wave (A + B)e−jkFxq with wave vector
kF and does not imply power in the fundamental.

In summary, an electromagnetic wave propagating through
a 1D periodic structure composed of purely dielectric layers
will never have a power spectrum that approaches that of a
left-handed homogeneous medium. Strong field compression
leads to interface mismatch and large standing waves.
Although it is possible to achieve power flow in the direction
opposite to the Floquet phase, this phenomenon will always
arise due to the contribution of high-order right-handed spatial
frequency components.

IV. CYLINDRICAL MAGNETODIELECTRIC INCLUSIONS

In the 1D matched magnetodielectric layered structure, the
power in the fundamental component could be made very high
by decreasing the unit cell size a and fill factor d/a. Since
the thin MD layers had infinite transverse extent, any wave
propagating through the structure would be forced to pass
through the MD material and experience field compression.
Field compression led to phase wrapping over each unit cell,
conferring a backward wave across the air gaps between MD
layers. When the lattice spacing and fill factors were small,
the backward wave dominated the spectral mapping and the

compressed fields within the MD layers had little impact on
spectral power flow.

When the MD inclusions are extended to 2D (cylinders) or
3D (spheres), a given matched index n (with εr = μr = n) and
filling ratio d/a will no longer always support a mode with
opposing total power and Floquet phase. The finite transverse
extent of the inclusions provides a path for the electromagnetic
wave to flow around the inclusions and potentially avoid field
compression altogether. Consider the 2D geometry where
the cross section of each unit cell is a square of side length
a, and each unit cell contains a magnetodielectric cylinder
of diameter d and matched refractive index n. A mode will
always exist in which the direction of local power flow inside
the MD cylinder is opposite to the direction of the Floquet
wave vector, but when n is high and d/a is low, the overall
power flow is dominated by the fields outside the cylinders
and net power is still in the forward direction.

In Fig. 5 the time evolution of the fields is plotted through
a series of six snapshots of the transverse field (Ey for the TE
mode). The left column plots the fields from one unit cell of a
lattice of cylinders with n = 20 and d = 0.2a while the right
column plots the fields from a lattice with n = 20 and d =
0.9a. As time increases from top to bottom, the fields inside
the cylinders can be observed to propagate in the negative
x direction (from right to left), while the fields outside the
cylinders propagate in the positive x direction (from left to

ωt = 150◦

ωt = 120◦

ωt = 90◦

ωt = 60◦

ωt = 30◦

ωt = 0◦

FIG. 5. Snapshots of the transverse field from two MD cylinder
configurations are plotted over six time steps to illustrate the time
evolution of the transverse field. The snapshots on the left correspond
to n = 20 and d = 0.2a while the snapshots on the right correspond
to n = 20 and d = 0.9a.
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FIG. 6. The total x-directed power 〈Sx(x)〉 is plotted in solid gray
for MD cylinder inclusions with three different refractive indices
(n = 5, n = 20, and n = 100). The power is plotted as a function of
lattice spacing a. The red dash-dot curve plots the power contribution
of the fundamental (0,0) component, while the blue dashed curve
plots the contribution of the (−1,0) component. The locations of the
two configurations whose six time snapshots are plotted in Fig. 5 are
indicated by the vertical dotted lines on the n = 20 plot. Note that the
filling ratio d/a increases as a decreases in order to provide sufficient
field compression through the high-index inclusions to ensure phase
wrapping over each unit cell.

right). When the inclusions are small, such as when d = 0.2a,
the fields outside the cylinders dominate the mode and the
total power flows in the direction of Floquet phase (to the
right). When the inclusions are large, however, such as when
d = 0.9a, the fields inside the cylinders dominate the mode
and total power flows opposite to the Floquet phase (to the
left).

The distribution of power flow in the spatial frequency
domain can be analyzed quantitatively by taking the 2D Fourier
transform of the electric and magnetic fields and mapping the
component Poynting vectors over the kxky plane. Figure 6 plots
the total power flow 〈Sx(x)〉 = ∑

mx

∑
my

Sx,mx,my as a function

of a for n = 5, n = 20, and n = 100. The contributions from
the two most prominent components (mx,my) = (−1,0) and
(0,0) are plotted alongside. When the MD index is small,
such as for n = 5, the backward flowing waves within the
cylinders couple strongly to the outside fields, resulting in
negative total power flow over the entire range of a values. This
occurs even for small filling ratios d/a, however backwards
power is due to the contribution of the high-order right-handed
(−1,0) Fourier component. Higher MD indices, however, such
as n = 20 and n = 100, have weaker coupling between the
fields inside and outside the cylinders when d/a is small.
The total power flow in these cases is positive since most
of the power is carried in the host medium (i.e., outside
the MD inclusions, see left snapshots in Fig. 5). When the
inclusions are large, however, the backward flowing fields
inside the MD cylinders dominate the mode, producing
negative total power flow (opposing power and Floquet phase,
see right snapshots in Fig. 5), but again this is due to the
contribution of the high-order right-handed (−1,0) component
rather than a left-handed fundamental component. For a given
MD index, there is a threshold above which power flow is
negative; for n = 20 it is d > 0.53a, and for n = 100 it is
d > 0.55a.

The fundamental component carrying positive power domi-
nates the spectrum when the inclusions are small (d/a is small
and a is large) and the fields in the host medium dominate
the mode. As the inclusions become large (d/a become large
and a becomes small), however, the fields within the cylinders
dominate the mode and the contribution of the fundamental
component to the total power becomes negligible. The fields
within the inclusions are compressed from the high index
MD material and most of the power is contained within the
first high-order mode at (−1,0) carrying negative power. The
two vertical dotted lines in the n = 20 figure represent the
configurations corresponding to the time snapshots from Fig. 5.
When d = 0.2a, the negative power flow inside the inclusions
is not sufficient to overcome the positive power flow outside.
When d = 0.9a, the field compression within the inclusions
causes the first order Fourier component to have the greatest
contribution to the total power.

The layered structure analyzed in Sec. II was able to
demonstrate a power spectrum congruent with that of a
homogeneous left-handed medium. That congruence is not
visible here in the case of a 2D lattice of MD inclusions.
The layered structure relied on field compression within MD
inclusions and phase wrapping over each unit cell to achieve
backward phase propagation. Two features were critical to
ensure that the left-handed fundamental component dominated
the spectrum: (i) the MD inclusions needed to be thin so
that the spectrum depicted the fields between the layers,
not inside them; and (ii) the coupling between the fields
inside and outside the MD inclusions had to be strong so the
backward phase from within the inclusions would be conferred
to the fields between the inclusions. In the case of cylindrical
inclusions (or spherical inclusions in 3D) these two conditions
cannot be achieved simultaneously. Large inclusions are
necessary to achieve negative power flow, but prevent the
fundamental Fourier component from contributing strongly
to the total power. Likewise, small inclusions correspond to
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dominant fundamental components, but most of the power is
carried by the host medium in the same direction as the Floquet
wave. Because these conditions are mutually exclusive in 2D
(or 3D), the medium formed from an array of cylinders (or
spheres) will never exhibit a power signature that approaches
that of a pure left-handed medium. Backwards power will
always arise from power flow contributions originating outside
the first Brillouin zone. This conclusion can be extended to
other topologically similar structures with finite inclusions
separated in all directions by air gaps. To achieve a power
spectrum with a dominant left-handed fundamental mode, the
inclusions would need to extend infinitely in the transverse
directions and be separated by air gaps in the direction of
propagation.
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FIG. 7. The k-space maps of phase and power flow for matched
MD cylindrical inclusions with d = 0.9a are plotted for six different
refractive indices from n = 2 to n = 100. The thick gray arrows
represent the total power, while the short black arrows indicate the
Floquet wave vector. The first Brillouin zone is indicated by the
dashed square. As the index increases, the lattice spacing decreases,
reaching a = 0.38λ at n = 2, a = 0.22λ at n = 5, a = 0.12λ at n =
10, a = 0.064λ at n = 20, a = 0.013λ at n = 100, and a = 0.0014λ

at n = 1000. Although additional wave components appear as the
index increases from n = 2, the (−1,0) component always dominates
the power spectrum and the (0,0) contributes minimally to the total
power.

The lack of congruence with a pure left-handed spectrum
can be observed in Fig. 7 where the index of refraction n =
εr = μr is increased for a given cylinder diameter of d = 0.9a,
producing smaller and smaller unit cells, but no convergence
to a spectrum containing a single left-handed fundamental
component. The fields are mapped to k space for six different
refractive indices, showing how the spatial frequency distri-
bution of power and phase changes with unit cell size. When
the index is low, the host medium fields are tightly coupled
to the MD medium fields, and the mode is characterized by a
power spectrum dominated by the (−1,0) component. As the
index of the cylinders increases, off-axis components begin
to appear in the k-space power spectrum, including multiple
components with mx = 0. These components are secondary
contributors to the total power, however, with the (0, − 1)
component consistently carrying most of the spectral power.

Figure 8 plots the transverse fields over a large number of
unit cells to illustrate the presence of the (0, − 1) component
in two geometric configurations. The transverse electric
field Ey is plotted over the xz plane for the TE modes
corresponding to n = 2 and n = 20. When n = 2, the fields
resemble that of a single right-handed plane wave propagating
in the direction opposite to the Floquet wave. The apparent
backwards Floquet phase is a product of aliasing due to an
undersampling of the fields at the unit cell boundaries (band
folding) and does not signify left-handedness. When n = 20,
the high-order right-handed wave is still clearly visible, but
now the long wavelength Floquet wave can also be seen in
the background (see the black scale bar for the wavelength).

In this section, periodic structures with cylindrical magne-
todielectric inclusions were studied and found to have spectra
dominated by a high-order right-handed component consistent
with magnetodielectric field compression. The conditions
necessary for spectral congruence with a homogeneous left-
handed medium were found to be incompatible with inclusions
that were not infinite in transverse extent.

FIG. 8. The transverse field is plotted over an array of 20 × 6 unit
cells to contrast the micro and macroscopic nature of the propagating
mode. The black scale bars represent one Floquet wavelength. When
n = 2, the fields resemble a pure higher order wave, while when n =
20 the Floquet wave can be seen in the background of the dominant
higher order mode.
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FIG. 9. The mapping of phase and power flow to k space for
a lattice of spheres with diameter d = 0.9a, permittivity εr = 13.8,
and permeability μr = 11. Blue arrows indicate Poynting vectors of
right-handed Fourier components, while red arrows indicate those of
left-handed components. The thick gray arrow represents the total
power, while the short black arrow indicates the Floquet wave vector.
The first Brillouin zone is indicated by the dashed square.

V. SPHERICAL MAGNETODIELECTRIC INCLUSIONS

The magnetodielectric sphere medium is the 3D analog to
the 1D layered medium and the 2D cylinder medium. It was
introduced in 2003 by Holloway et al. and was shown to exhibit
a negative effective index of refraction that was quasi-isotropic
in three dimensions [34]. In subsequent numerical studies,
this medium was used to perform many electromagnetic wave
manipulation functions associated with left-handed media
such as negative refraction and concave lens focusing [32].
With the commercial availability of doped ferrite powders that
can provide a magnetodielectric response [35], this medium
is a promising candidate for realizing practical bulk negative
index metamaterials.

The application of homogenization techniques to the
MD sphere medium produces negative effective permit-
tivity and permeability that suggest the medium is left-
handed [15,36,37]. Mapping phase and power flow in k space,
however, reveals a more complicated relationship in which
power is distributed across multiple components surrounding
the m = −1 component. This spectral power distribution
closely resembles that of the array of cylinders from Sec. IV
and reflects the similarities between corresponding field
distributions. In both cases, the fields within the inclusions
propagate in the negative x direction while the fields in
air propagate in the positive x direction. As with the 2D
periodic layers, the power spectrum of the 3D spheres does not
approach that of an ideal homogeneous left-handed medium.
The finite transverse extent of the spheres enables the wave
to flow around the inclusions when the inclusions are small,
preventing the fundamental mode from dominating the power
spectrum. Figure 9 plots the power flow in k space for the

magnetodielectric-sphere structure composed of spheres of
diameter d = 0.9a, permittivity εr = 13.8, and permeability
μr = 11. Here the matched condition of the spheres was
relaxed slightly so that the electromagnetic properties of real
doped ferrite powders could be studied. When the spheres
are immersed in air with a lattice constant a = 0.119λ, the
electromagnetic wave propagates with a Floquet wave vector
that is equal in magnitude but opposite in sign to that of free
space [32].

Although the fundamental Fourier component of the propa-
gating mode is left-handed (indicated by a red arrow), it carries
very little of the total power. The largest power contribution
comes from the (mx,my,mz) = (−1,0,0) mode outside the first
Brillouin zone. This mode is right-handed (indicated by a
blue arrow) and arises from the compressed wave propagating
backwards through the MD spheres. Other right-handed
components are present, distributed symmetrically about the
x axis, and providing a very small net contribution to the total
power.

The mechanism of field compression can provide opposing
power flow and Floquet phase propagation in 3D MD sphere
metamaterials, however, most of the power is carried in
high-order components and the power spectrum will never
be congruent with that of a pure left-handed medium.

VI. CONCLUSION

The relationship between phase and power flow in a
medium of magnetodielectric layers has been investigated.
As the layer periodicity and the MD fill factor decreases,
the spectral power response was shown to approach that of
an ideal homogeneous left-handed medium. The fraction of
power contained within the fundamental Fourier component,
which is of great interest since it has the same propagation
constant as the homogeneous effective medium representation,
can be made arbitrarily close to unity. This produces a complete
spectral congruence with an ideal homogeneous medium—a
result that, to the best of our knowledge, has never been
observed in other metamaterials. Furthermore, left-handedness
within this metamaterial occurs without negative electric or
magnetic susceptibility, relying instead on field compression
within the MD layers.

It was shown that a nonmagnetic structure will never exhibit
pure left-handedness due to the right-handedness of all Fourier
components. Cylindrical and spherical inclusions also do not
produce pure left-handedness. Backward Floquet waves are
supported when the fill ratio of the inclusions is large (typically
larger than a/2), however, under this condition the dominant
Fourier component in k space is located outside the first
Brillouin zone and is right-handed.

The complete mapping of phase and power to k space
has been shown to provide new insights into the nature
of wave propagation within periodic structures and meta-
materials. The multidimensional representation of power
flow in the spatial frequency domain contributes to the
generalization of handedness to heterogeneous structures and
provides a complete description of the electromagnetic fields
without discarding any information through sampling or
averaging. In this paper, metamaterials composed of periodic
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magnetodielectric inclusions were studied, providing clues
towards the origin of left-handedness and backward waves.
Further research on electromagnetic wave propagation through
other negative-refractive-index metamaterial structures is
forthcoming.
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