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We obtain a complete and numerically exact in the weak-coupling limit (U — 0) ground-state phase diagram
of the repulsive fermionic Hubbard model on the square lattice for filling factors 0 < n < 2 and next-nearest-
neighbor hopping amplitudes 0 < ¢’ < 0.5. Phases are distinguished by the symmetry and the number of nodes
of the superfluid order parameter. The phase diagram is richer than may be expected and typically features states
with a high—higher than that of the fundamental mode of the corresponding irreducible representation—number
of nodes. The effective coupling strength in the Cooper channel A, which determines the critical temperature T,
of the superfluid transition, is calculated in the whole parameter space and regions with high values of X are
identified. It is shown that besides the expected increase of A near the Van Hove singularity line, joining the
ferromagnetic and antiferromagnetic points, another region with high values of A can be found at quarter filling
and ¢’ = 0.5 due to the presence of a line of nesting at ¢’ > 0.5. The results can serve as benchmarks for controlled
nonperturbative methods and guide the ongoing search for high-7, superconductivity in the Hubbard model.
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I. INTRODUCTION
The repulsive Hubbard model [1,2]
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where ¢; . creates a fermion with spin o = {1, ]} on the lattice

site 7, ;, = éjnéio’ (...) and {...)) denote summation over
nearest and next nearest neighbors, respectively, ¢ and ¢’ are the
hopping amplitudes, U the on-site repulsion, and p the chem-
ical potential, is widely regarded as paradigmatic for strongly
correlated electrons [3—7]. It is expected to capture a variety of
intriguing macroscopic quantum phenomena, including, e.g.,
Mott-insulator physics, antiferromagnetism, striped phases,
itinerant ferromagnetism, and high-temperature superconduc-
tivity. Due to recent remarkable progress in experimental
technique, the Hubbard model can now be reliably emulated
by ultracold atoms in optical lattices [8—14] and probed
with unprecedented control, which in principle allows us to
determine its phase diagram experimentally.

On the theoretical side, the model can be solved exactly
in one dimension [15,16]. Already in 2D, more relevant
in the context of condensed matter systems, obtaining the
phase diagram for generic filling factors n and values of the
interaction U remains a prohibitively complex problem. Since
the seminal work by Kohn and Luttinger [17], who showed
that the Cooper instability can develop even with repulsive
interactions between fermions, a number of important results,
exact in the weak-coupling limit (U — 0), have been obtained
by perturbative approaches. Baranov and Kagan [18-20]
studied the Hubbard model in the dilute limit (n — 0) by
second-order perturbation theory. This work has been extended
to the third order by Chubukov and Lu [21,22] and later
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by Fukazawa et al. [23], which allowed us, in particular, to
obtain the boundary between different superfluid phases in the
limit n — 0, U — 0. The first week-coupling phase diagram
in the n — ¢’ plane for the range of parameters 0 < ¢ < 0.5
and 0.25 < n < 0.75 was obtained by Hlubina [24], and the
effective coupling strengths for lines of #’ = 0 and ¢’ = 0.3 and
0 < n < 2 were analyzed by Raghu et al. [25] (although, as
we discuss below, with algebraic mistakes that are critical for
final conclusions). Of special interest is the interplay of various
ordered phases when the Fermi surface is tuned to the Van
Hove singularity, or in the vicinity thereof. This competition of
instabilities has been inspected mainly by different renormal-
ization group techniques [26-33] at weak coupling [6,34-44]
as well as in the strong-coupling regime [45-53].

Very recently, the phase diagram of the Hubbard model in
a wide range of parameters was studied within the random
phase approximation [54], which in principle is controlled in
the U — 0 limit. The approach however assumed the effective
coupling in the Cooper channel X to be fixed while the value
of U was adjusted accordingly, so that the resulting phase
diagram cannot be directly related to results in the U — 0
limit. A number of previous works applied the weak-coupling
approach to the Hubbard model but evaluated the observables
at strong interactions [55-59]. Although meant to provide
insight into the physics of strong correlations, such results
are a priori uncontrolled and typically deviate significantly,
even qualitatively, from the (numerically) exact solution in
the correlated regime whenever the latter is available [60].
Accurate studies of the Hubbard model in the correlated
regime have been possible by means of various Monte
Carlo methods at half filling [61-63], where the notorious
fermionic sign problem is absent, and, more recently, with
the development of advanced numerical technique, at nonzero
doping values [60,64—68]. Nonetheless, achieving full control
over systematic errors in numerical studies of the doped
Hubbard model in the correlated regime is still a very difficult
problem [67], and a reliable phase diagram at nonzero values
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of U is currently available only in a very limited region of the
parameter space [60]. In the context of ongoing development
and testing of new numeric techniques for the Hubbard model
at strong correlations, accurate results in limiting cases are
indispensable.

However, even in the weak-coupling limit U — 0 a
complete phase diagram in the full range of filling factors
0 < n < 2 and most relevant next-nearest-neighbor hopping
amplitudes 0 < ¢ < 0.5 is still missing. Moreover, recent
results in this parameter range [24,25] are in conflict with
each other. A detailed analysis of the nodal structure of the
Cooper-pairing order parameter for each symmetry sector in
the phase diagram has not yet been carried out. Furthermore,
in the context of high-temperature superconductivity, it would
be of significant importance to identify regions of the phase
diagram where the effective coupling strength is highest. Our
paper is aimed at addressing all these issues.

We report the numerically exact in the limit U — 0
ground-state phase diagram of the Hubbard model on the
square lattice in the range of 0 < #' < 0.5 and 0 <n < 2.
Our method consists of semianalytical treatment of the weak
Cooper instability developing in the Landau Fermi liquid (FL)
at temperatures much (exponentially) smaller than the Fermi
energy Ep. We identify twelve different superconducting
phases, differentiated by the number of nodes of the superfluid
order parameter, with every allowed symmetry of the order
parameter represented and study how the shape of the order
parameter transforms across the boundaries between the
phases in the parameter space. We perform an analysis of
the effective coupling strength and identify regions of the
parameter space where high-T, superconductivity might be
expected at higher values of the coupling U. Our results fix
errors in and reconcile previous studies as well as provide more
detail on the structure of the order parameter in a wider range of
parameters, thereby serving as solid grounds for benchmarking
of new nonperturbative methods. Since obtaining controlled
numeric results at essentially nonzero values of U is extremely
computationally expensive, our work provides a valuable guide
for such studies in the search for high-7, superconductivity in
the Hubbard model.

The paper is organized as follows: In Sec. II A we review the
method for obtaining the phase diagram by tracing the devel-
opment of instability in each particular channel. Section 11 B
presents a brief overview of the symmetry adapted basis
states on the square lattice. Section II C addresses competition
between magnetic and superconducting instabilities along the
line in the (¢',n) plane where the Van Hove singularity is at
the Fermi surface. We present the obtained phase diagram in
Sec. IIT A and discuss the behavior of the effective coupling
strength in the Cooper channel, which controls the superfluid
T., in Sec. IIIB. In Sec. IIIC we compare our results
to previous work, while Sec. IV gives general concluding
remarks.

II. METHOD

A. Perturbative treatment of the Fermi liquid

Our derivations follow the standard perturbative approach,
adopted, e.g., in Refs. [24,25]. The dispersion relation on the
square lattice reads (k. and k,, are the momentum components
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of k)
e(k) = —2t(cosk, + cosk,) + 4t" cos k, cos ky. 2)

The Green’s function G(k,&) can be obtained from the Dyson’s
equation

1
lén - G(k) + I E(k’én)’

where p is the chemical potential, &, = (2n + 1)7/8 are the
Matsubara frequencies, and X(k,&,) is the self-energy (in the
following we adopt the units of the hopping amplitude ¢).

In the weak-coupling limit at sufficiently low temperatures
T < Ep the systemis a Fermi liquid with a well-defined Fermi
surface. The quasiparticle Green’s function in the vicinity of
the Fermi surface |§| < Ef and [k — kp(k)| < kr(k) takes on
the form:

G(k.§,) =

3

z(k)
it —vp(k) x [k —kp(h)]

Gk§) = “
Here the Fermi surface is parametrized in terms of the
Fermi momentum kp(k) in the direction & of the vector k.
Comparing Eqgs. (3) and (4) we obtain the Fermi velocity
vr(k) = z(l%)VkF(e(kp) + Xr(kr,&,)) and the quasiparticle
residue z(k) = (1 — limg, o %)*1.

As the temperature is lowered further, the development
of the Cooper instability is marked by divergence of the
pairing susceptibility at the critical temperature 7,, which is
exponentially smaller than Ef.

The instability is due to weak attraction between fermions,
which in our case is an emergent low-energy many-body
property. Mathematically, the effective interaction is described
by the irreducible in the particle-particle channel four-point
vertex I'PP, which in general is a sum of all possible four-point
diagrams that cannot be split into disconnected pieces by
cutting two particle lines. The Cooper pairing susceptibility
is proportional to the full effective vertex FPP, which diverges
at T, and is related to I'P? via the Bethe-Salpeter equation
shown diagrammatically in Fig. 1. From the Bethe-Salpeter
equation we see that the smallness of the attractive part of I'PP
is a natural condition preventing FPP from dramatic growth at
T < Ep. Indeed, in the FL regime, the leading contribution
to the integral over k3 in the second term on the r.h.s. of Fig. 1
comes from the close vicinity to the Fermi surface,

cE ds Z2(i€\)
/ 4k Y GpG-py > In L [ S22
&

&)

where ds is the Fermi surface element. Only the finite
temperature (i.e., discreteness of Matsubara frequency &;)
prevents the integral in the r.h.s. from logarithmic divergence.

P1 P2 P1 P2 p1 b3 p2

EPP = irP + PP [P

—P1 —p2 —P1 —p2 —pP1 —pP3 —P2

FIG. 1. The Bethe-Salpeter equation for I'" with p; = (& ,k;).
Summation over &; and integration over K; is assumed.
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With logarithmic accuracy at T < E g, we have

PP PP cEy PP PP g%
Foa~Tos +1In - /FIEI,123 Qk3F123,122 d ks, (6)
where F; ; and 'y ¢ are FPPand PP at vanishing frequencies
projected to the Fermi surface:

F: = FP(k =kp(k).& — 0:ko = kp(k2).&2 — 0) (7)

and Q; is the product of z2(k) and the density of states at the
k point on the Fermi surface.

_ kp(k)z2(k)

Q= ) ®)

Switching to matrix notations Flgpplg — FPP, I"Ep . — [P,
1,K2 1,K2
O, — O we find

. Er\ag Al "
JALES [1—111 <TF)FPPQ} e, ©9)

implying that PP, and thus the static response function in the
Cooper channel, diverges at the critical temperature

T.=cEpe /" (10)

where A is the largest positive eigenvalue of ™. Solving
the problem with logarithmic accuracy (which is guaranteed
in the U — 0 limit due to A — 0 and the corresponding
exponential smallness of 7,) amounts to finding the eigen-
values/eigenvectors of a real symmetric matrix

1 1
TIEIJQZ ‘(//122 = )\' w/%] 4 T/G[,lzg = Qf;1 F/2|,/22 ]2229 (1 ])

where the eigenvector y; is the wave function of the Cooper
pair in the momentum representation.

The effective vertex I'PP can be computed as a diagrammatic
expansion in the bare coupling U. In this expansion the
first order diagram is a negative constant —U, which by
itself can never lead to a diverging denominator in Eq. (9).
The first nonvanishing contribution to Cooper pairing comes
from the second order in the U diagram, shown in Fig. 2,
which features nontrivial momentum dependence giving rise
to positive eigenvalues of the matrix Ty, ; ¥, . All the diagrams
beyond second order are vanishing in the limit U — 0 and can
be neglected. With the same accuracy, the propagator lines
in the diagram in Fig. 2 are given by the bare noninteracting
Green’s function Gy, i.e., the self-energy contribution in Eq. (3)
can be neglected giving

1
Gokt§)) = ———"—. 12
o) = TR (12)
P11 P3 D2
—P1—P3— P2

FIG. 2. The second-order diagram contributing to I'®. The wavy
lines are the interaction vertices U, the straight lines with arrows are
the noninteracting propagators G,. Integration over internal momenta
is assumed.
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Correspondingly, in Eq. (4), the quasiparticle residue z(k) = 1.
Thus, the diagram Fig. 2 is given by

B d?q v(ek + q)) — v(e(k))
Qr) etk +q)—ek)

where v(e) = [1 +exp((e — n)/T)]"! is the Fermi-Dirac
distribution function. In two dimensions it iS convenient
to parametrize k with the polar angle 6 and to write the
eigenvalue/eigenvector problem explicitly as

Dok ® Xk = . (13)

1 1
e Ty 0, = Q4 V06,04, (14)
Note that this parametrization only works for connected Fermi
surfaces, which is the case for all of parameter space in our
model for values ¢’ < 0.5.

We employ the following protocol to obtain the ground-
state phase diagram:

(1) For a given set of parameters (¢',n), the Fermi surface
is found as the pole of Gy, Eq. (12), in the limit 7 — 0, which
gives vF(kA) and kF(IE).

(2) The matrix I'y, 4, is computed using Eq. (13) by Monte
Carlo numerical integration.

(3) The eigenvalue problem, Eq. (14), is solved in the basis
given by the point symmetry group (as explained below).

(4) The largest eigenvalue A and the corresponding eigen-
vector determines the superfluid ground state realized at the
given set of parameters.

2 d@g
——To,.0,%0, = & Vo,
0

B. Classification of basis states on the square lattice

The symmetry operations on the square lattice form the
point group D4 (the two-dimensional point group correspond-
ing to Dy;). The operations are the identity (E), two rotations
by £7 /2 (C4) and one rotation by 7 (C;) in the main symmetry
axis (perpendicular to the plane) as well as two rotations by
7 around the horizontal/vertical in-plane axes (C5) and two 7
rotations around the diagonal in-plane axes (C5).

The D4 symmetry dictates that the matrix I'g g, splits
into four independent singlet blocks, known as s, g, dxy,
and d,>_,2, which correspond to one-dimensional irreducible
representations A;, A, By, B, and the doubly degenerate
triplet block p, which corresponds to the two-dimensional
irreducible representation E. The E; sector further splits into
px and p, eigenvalues/eigenfunctions, which are related to
each other by a £ /2 rotation. For each of the six sectors, the
symmetry properties of the corresponding eigenvectors W(9)
are readily seen from their Fourier expansions (with integer
values of m):

Ay Wy(0) = ) A, cos(4m 0) (15)
m=0
Ay We(0) =) By sin((4m + 4)0) (16)
m=0
By: Wy, =Y Cycos ((4m +2)6) (17)
m=0
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FIG. 3. The form of basis functions in the Brillouin zone (red,
blue, and white colors correspond to positive values, negative values,
and nodes respectively) categorized by irreducible representation and
the order of harmonic m. [See Egs. (15)—(19)].

By: Wy, ,(0)= Z D,, sin ((4m + 2)0) (18)

m=0

. {%(67) =Y o Em cos (2m + 1))
1-

W, (0) = Y00 Esin((2m +1)6) (19

The eigenfunctions W are invariant under all symmetry
operations of the point group. The eigenfunctions W, are
invariant under E, C4, and C; but change sign under C% and C5.
Both ¥, and \I'[dxz,‘,z change signs under Cy4, while only ¥,
changes sign under C »andonly W, , , changes signunder C5.
Finally ¥, and W, transform into each other under C, and
into a linear combination thereof under all the other symmetry
operations. We refer to the m = 0 contribution to each eigen-
function in Egs. (15)—(19) as the corresponding fundamental
mode and all the eigenfunctions with m > 0 as higher harmon-
ics. We assign a number in the superscript to each eigenfunc-
tion, which signifies the amount of zeros of the function. An
example of the fundamental mode and the first two higher har-
monics projected onto the Brillouin zone of the square lattice
is given in Fig. 3. It must be noted that identifying the largest
coefficient in the expansion in Egs. (15)—(19) for each eigen-
function is not always sufficient to classify the eigenfunction in
terms of the number of nodes it features since the subleading
components can have a significant net contribution that can
change the nodal structure. We therefore classify each state in
the phase diagram by explicitly counting the number of zeros
in the eigenfunction that corresponds to the largest eigenvalue.

C. Instabilities along the Van Hove singularity line

In the weak-coupling limit, the superfluid phase is realized
in the ground state in the whole parameter range with the
exception of two points. Both of them lie on the line in the (¢',n)
plane where the density of states at the Fermi surface diverges
due to the Van Hove singularity. This line (referred to as Van
Hove line) is defined by the condition u = 4¢'. Att' = 0 and
n = 1, due to nesting of the Fermi surface with the momentum
Qarym = (r,m), the spin ordering instability dominates, and
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the ground state is an antiferromagnet. At # = 0.5, n = 0 the
ferromagnetic instability with the nesting vector Qg = (0,0)
is leading. Generally, along the line, the particle-hole suscep-
tibility x P diverges double logarithmically [69] at momentum
transfer Q = (;r,7r) and logarithmically at q = (0,0) as:

vy~ () (L
o (o) pmmn(n) @
xPQ) ~ (#) In(1++v1—4t*1n (%) (1)

where A is the infrared energy cutoff. The particle-particle
susceptibility also diverges at q and Q:

1 1 1
PP ~ 12 =
@ <47T2) 1 — 417 " (A) ¢

| tanfl ( 2t
xPP(Q) ~ (m)

o A In (i) (23)
V1— 417 A

Since both particle-particle and particle-hole channels are
divergent along the Van Hove line, the magnetic and superfluid
instabilities fuel each other and a simple Bethe-Salpeter
analysis is insufficient. The behavior in this regime has been
extensively studied by means of RG [39] and parquet approx-
imation [70]. In particular, it was shown that the dg)_yz state
is dominant along the Van Hove line at small U. Larger values
of U were also addressed in these studies, but the methods are
not controlled there and exact results are still due. At hopping
values ¢ > 0.5 another line of special interest exists, which is
defined by the Van Hove singularity crossing the Fermi surface
nested with the momentum g = (k,k), k = + cos’l(ﬁ) [54].
The line starts from the ferromagnetic point and is given by the
equation p = —tl,. It appears that the physics in the vicinity
of ' = 0.5, even for ¢’ < 0.5, is largely influenced by this line
(see below). Above this line there is a finite region where the
Fermi surface has a Fermi pocket around (k,,k,) = (0,0). All
the aforementioned lines as well as the corresponding Fermi
surfaces for all regions within parameter space of 0 < n < 2
and 0 < ¢’ < 0.7 are shown in Fig. 4.

III. RESULTS
A. Phase diagram

Our main result, the ground-state phase diagram in the
U — 0 limit for the range of density 0 < n < 2 and the next-
nearest-neighbor hopping amplitude 0 < ¢’ < 0.5, is presented
in Fig. 5. The diagram turns out to be very rich with twelve
different states, which we characterize by the number of
nodes of the superfluid order parameter, realized with the
corresponding symmetries of each of the five irreducible
representations. Controlled results at essentially nonzero U
for ¢ = 0 [60] suggest that phases with a high number of
nodes, i.e., higher than that in the fundamental mode of the
corresponding irreducible representation, tend to disappear as
U is increased. In particular, the authors demonstrate that the
p© phase, which occupies a significant region in the U — 0
limit (seen in Fig. 5 at ¢/ = 0, n ~ 0.6) vanishes already at
U = 0.08. Therefore, it is possible that this diversity of phases
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FIG. 4. The change of Fermi surface topology in the range of
parameters 0 < n < 2and 0 < ¢ < 0.7. The Van Hove line (dashed),
second line of nesting (dot-dashed), and line beneath which a Fermi
pocket exists (dotted) are plotted; see text for definitions of the lines.
Characteristic Fermi surfaces in the first Brillouin zone (k,,k, €
[—m,m)) are shown for specific points in the parameter space:
(a) the antiferromagnetic point {n = 1, ' = 0}, (b) the ferromagnetic
point {n =0, ' = 0.5}, (c) an arbitrary point along the Van Hove
line {n = 0.78, t' = 0.25}, (d) above the Van Hove line {n = 1.60,
t' = 0.4}, (e) below the Van Hove line {n = 0.58,¢" = 0.1}, (f) below
the second line of nesting {n = 0.27,¢" = 0.65}, (g) above the second
line of nesting {n = 0.76, t' = 0.65}, in the region where a Fermi
pocket exists around (k,,k,) = (0,0), (h) on the second line of nesting
{n =0.61,¢ =0.6}.

and especially the presence of higher-harmonic states may be a
weak-coupling limit artifact. We only study positive values of
t', since for ¢’ < 0 the phase diagram is obtained by reflection
symmetry about the point (#' = 0,n = 1), which is due to the
mapping of the Hamiltonian onto itself upon replacing all the
particles with holes.

To obtain the phase diagram in Fig. 5, we introduce a
grid in the (¢#',n) plane and find the leading instability by
the approach described in Secs. Il A-IIB at each point of
the grid. The horizontal grid step is Ay = 0.025 in regions
with multiple phase boundaries in close proximity and A, =
0.05 everywhere else. The vertical grid step is A, = 0.05
everywhere, except in the vicinity of the Van Hove line, where
results for densities nyy + 0.001 were obtained. This high
resolution, which required a substantial computational effort,
was necessary to obtain a reliable phase diagram that can be
used as a benchmark for further investigations.

Clearly, the region beneath half filling (n = 1) is far richer
than the region above. This can be related to the presence of
the Van Hove line in that part of the diagram. Indeed, most
higher-order harmonics are to be found in the vicinity of this
line. All irreducible representations have at least one higher-
order wave realized over a finite region of the phase diagram.
These are, with the exception of E, only small regions, mostly
at the borders between two or more phases belonging to
different irreducible representations. White regions are due
to very small values of A (<107°) at which it is difficult to
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FIG. 5. top: Phase diagram for the parameter range of 0 <
n <2 and 0 < ¢ < 0.5. bottom: same parameter range by leading
irreducible representation. The presence of a Van Hove singularity is
portrayed by the black dashed line.

reliably claim which phase is realized. These regions, however,
are not immediately relevant for future studies of high-T7,
superconductivity.

In the following, we discuss the phases classified by
their symmetries corresponding to each of the irreducible
representations:

Aq: The contribution of the fundamental mode s to the
vertex ['PP is negative [71-73], and therefore there is no
Cooper instability in the lowest-order s-wave channel. Higher
harmonics, on the other hand, have positive eigenvalues and
the corresponding phases are realized over some regions of
the parameter space. In particular, it may appear surprising
that the s"'® harmonic is dominant in a finite region around
t' = 0.5 and n = 0.7 over the lower-order s®® harmonic. This
may be due to the presence of a second nested line at ¢’ > 0.5.

A;: The ¢g® harmonic dominates at low fillings (n < 0.5)
and intermediate values of hopping (0.1 < ¢’ < 0.4). A small
region of the g'® harmonic was found around ¢ = 0.25 and
n = 0.45. This is a region on the border between the g® and
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n = 0.05 n =0.10 n =0.15 n = 0.20 n =0.25 n = 0.30 n = 0.35
& 0 = % 0N /1\ /'\ /‘\ *'4\“
LA TATATAT e
-
- 0 bd
kx
p(2) p(6) p(ﬁ) (6) p(lo) p(lﬂ) (9(8)) p(14)

FIG. 6. The transition between the first four waves of the E; irreducible representation are seen along the line of 0.05 < n < 0.35 at
t' = 0.375. The type of wave is identified below each figure. It has to be noted that at the point at n = 0.30 the leading wave is g®, however
we have decided to include the point for completeness reasons. Individual Fermi surfaces are drawn in black.

p© phases and might also be influenced by the d)(é)_vz region
at higher doping values. It is thus most likely realized as a
frustrated intermediate state on the crossover between those
phases.

By: A similar scenario happens at the crossover between
df;) » and d)(c‘;) regions at n = 1.45: The crossover between

the two is via a strip of the d{}” phase. It is interesting to note

that the boundary between df;)_ - andd\}) appears atessentially
the same doping independent of the value of #'. This happens
mainly because the shape of the Fermi surface at high values
of doping is only weakly dependent on the hopping amplitude.
Except for the region of high doping n > 1.45, another region
of ) exists at small values of ' < 0.15 and fillings n < 0.55,
which is essentially a continuation of the first region reflected at
the symmetry point of the phase diagram. Finally a tiny region
of d{!? was found at ¢’ = 0.475 and n = 0.25 inside of aregion
dominated by the E; irreducible representation. It seems to be
a consequence of frustration between p©, p(19 and p¥ as it
sits exactly at the boundary between those phases. It is possible
that there are multiple such tiny regions spread over the phase
diagram that are below our resolution.

B,: The dg)_yz state dominates in a wide region around

half filling. A relatively small region of the dgzjyz state was
found on the boundary between dglyz and 519, Similarly to

the case of (19, we attribute the existence of this d;lzz_)yz phase

to the proximity to the line of Fermi surface nesting at ¢’ > 0.5
discussed above.

E;: This irreducible representation displays the richest
variety of phases as all first five p-type waves are realized
in the phase diagram. However, apart from a few exceptions,
the geometry of the order parameter is not highly symmetric,
compared to examples of p waves in Fig. 3, and some of the
nodes are separated by only small intervals. This often happens
to a degree where it is difficult to identify the exact number
of nodes and the crossovers between the corresponding states.
The dominant wave in most regions is either p® or p{!9, and
not the fundamental p® harmonic, which can be found only
in the low density regions. It seems that the E; phase has the
tendency to go towards the p® harmonic as n — 0. Whether
this is true for all values of ¢ within the E region is unclear
as in practice we have only computed the leading instability
down to n = 0.05 which is the minimal value of density within
our resolution.

We see that at low values of ¢’ the p(® state dominates with
the exception of a small region of p‘'® on the boundary of g®
and d¥. Another region of the p® phase is at relatively low
fillings 0.1 < n < 0.25 and ¢’ > 0.2. It transitions smoothly
into p19, then turns into p{'¥ at values of around n ~ 0.3. As
a typical example, we show the transformation of the p-wave
order parameter at a fixed #' = 0.375 as the density is increased
from 0.05 to 0.35 in Fig. 6.

As one approaches the Van Hove line at yet higher values
of doping and ¢’ the phase diagram becomes patched with
both p® and pU? regions present. Interestingly, just below
the Van Hove line the p® phase becomes clearly dominant
again. Above the line there are multiple E; regions, with p(1?
up to about ¢’ > 0.38, followed by a region of p!'¥), a small
region of p('®, and, finally, again p® as the line approaches
the FM point at ¢’ > 0.47. Also, at values of ' > 0.4 and
around quarter filling we obtain regions of the high harmonic
p"¥, similarly to other high-order phases realized in the region
(s1® and d)(clzz_)vz). We suspect that the high order of the leading
harmonic is influenced by the aforementioned line of nesting
att’ > 0.5.

Along the Van Hove line it is possible to identify a
separation between regions influenced by the FM and AFM
points. Close to the AFM point the singlet d;i)_y2 phase
dominates as it corresponds to the symmetry of the AFM-type
spin configuration. In the vicinity of the FM point the triplet
p© phase dominates corresponding to the symmetry of the FM
configuration. The respective boundary between B, and E|
has been analytically calculated to be at ¢’ = 2/e ~ 0.184 in
Ref. [25]. We identified the leading phase to be p® for values
t' > 0.285. For smaller values of ¢’ the region of densities
where p® dominates must be too small to be captured within
our resolution. It is also worth noting that even close to the FM
point p® is the leading state instead of p®.

B. Effective coupling strength

The value of the highest effective coupling strength across
the parameter space, irrespective of the irreducible represen-
tation it belongs to, is plotted in Fig. 7. There are two maxima
around the FM and AFM points. The peak at the FM point is
sharper than at the AFM point. This is due to the fact that both
the particle-hole susceptibility xP' [Eq. (13)] and the density
of states diverge at the same vector g = (0,0). However, this
does not immediately imply that the critical temperature is also
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Anax/U 2

0.10

FIG. 7. Plot of highest effective coupling constant A, irrespec-
tive of type of wave. Inset shows a 3D version of the same plot. Clear
maxima can be seen at the FM and AFM point as well as an increase
in coupling strength in the vicinity of the Van Hove line.
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high in this regime—at low fillings 7, actually becomes low
due to the lattice system approaching the continuum limit with
a small value of Ef.

Interestingly, at t" = 0.5 the effective coupling constant is
relatively large close to quarter filling n = 0.5. This is due
to the presence of the line of Van Hove singularity passing
through this point at higher next-nearest-neighbor hopping
parameters (' > 0.5), as mentioned earlier. As an illustration,
we computed the effective coupling strength at two points
outside of our range of parameters close to this line at ¢’ = 0.55
and n = {0.55,0.60} obtaining A = {0.062,0.0218}, respec-
tively, which demonstrates the rapid growth of the effective
coupling on approach to the nested point ' = 0.5,n = 0.5.
To show that at ¢ = 0.5 the magnitude of X is comparable to
that in the region around the AFM point we have calculated
two points at ¢’ = {0.55,0.60} with A/ U? = {0.0620,0.0218},
respectively. We found that the effective coupling around ¢’ =
0.5, n = 0.5 is comparable to the values near the AFM point
(to be compared with A/U? = 0.0481 at t' = 0.01, n = 1.0).
A substantial increase in the leading A is seen in the vicinity
of the whole Van Hove line. This effect is strongest close to
points with nesting, but can be observed even at intermediate
values of t'.
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FIG. 8. The leading eigenvalue for each of the irreducible representations is given as a function of n at t' = {0,0.1,0.2,0.3}. Dashed lines
correspond to Van Hove densities at nyy = {1,0.918,0.830,0.726}, respectively. The closest measurements to the Van Hove points were

performed at nyy £ 0.001.
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FIG. 9. The leading effective coupling constant A for each of the irreducible representations. From left to right: A;, A,, By, B,, E;. One
can see that the AFM point does not affect the effective coupling of A, and B; representations, while the FM point seems to affect all waves
alike. A clear increase in A for E; can only be seen along the Van Hove line, while for dSlvz the coupling strength dies out along the Van Hove

line away from the AFM point.

In Fig. 8 we plot the leading eigenvalues by irreducible
representation for ' = {0,0.1,0.2,0.3} as a function of density
n. The maximal values for A correspond to the Van Hove den-
sities, located at ny y = {1,0.918,0.830,0.726}, respectively.

In Fig. 9, we show contour maps of the leading eigenvalue
for each of the irreducible representations in the whole range
of parameters. Near the AFM point only B, harmonics see
a drastic increase in the effective coupling strength, whilst
there is also a slight increase observed for A,. In contrast, the
coupling strength for A; and B; exhibits a drop near the AFM
point. The E; harmonics have a relatively high eigenvalue
along the whole Van Hove line. A clear increase in coupling
strength for all representations near the FM point is observed,
which spreads for all the representations except B; up to
quarter filling (n = 0.5) at +' = 0.5.

C. Comparison to previous work

Reference [24] has presented a weak-coupling phase
diagram in a somewhat smaller range of parameters, where
the phases are distinguished by their symmetry in terms of
the irreducible representations without details of the nodal
structure of the order parameter. Our results in Fig. 5 (bottom)
are mostly consistent with Ref. [24]. The main difference
is the B) phase (d\}” harmonic) which we find inside the
E| dominated region at ¢’ = 0.475 and n = 0.25, and which
is absent in Ref. [24]. Also, there are two small regions
mentioned in Ref. [24]—for which the exact positions and
extent were not provided—which we were not able to confirm
within our resolution. These are a Bj-type phase close to the
s19/E, boundary and an E;-type phase close to the d}/g® .
It is possible that multiple other tiny phases of this type might
exist throughout the phase diagram, yet they would prove
extremely difficult to capture.

At the level of differentiating between particular harmonics
within each irreducible representation the phase diagram
becomes far richer. We stress the importance of including
high-order harmonics in the analysis because phases of a
particular symmetry can be seen to be dominant only at a high
expansion order in Egs. (15)—(19). In particular, the previously
overlooked B;-type phase, which is found between multiple
higher harmonics of the E|-type phase, is realized as d{}?.

Similarly, the p® phase at ' = 0 was overlooked in Ref. [25]

due to a low number of harmonics allowed in the analysis, but
was found in this work as well as in Ref. [24] and is consistent
with recently obtained controlled results at essentially finite
U [60].

The only other analysis of the effective coupling strength
was presented is Ref. [25]. In particular, the paper shows a
plot of V.g—which corresponds to A divided by the density of
states (p)—as a function of density n at ' = 0 and ' = 0.3.
Figures in Ref. [25] obtain qualitatively similar results to Fig. 8,
however it appears that the values for Vg in Ref. [25] are
missing a factor of density of states, which essentially changes
the result. In fact, we were able to exactly reproduce Fig. 4
of Ref. [25] by deliberately dividing A from our calculation
by the density of states twice. This mistake overestimated the
effective coupling strength in Ref. [25] by a factor of ~40 close
to half filling (and by a factor ~20 compared to the maximum
X that we found at the Van Hove filling). Moreover, the g® and
p® states are missing altogether in Figs. 2 and 4 of Ref. [25]
despite being the leading instabilities at particular densities 7.

IV. CONCLUSIONS

We have performed a perturbative analysis of the repul-
sive single-band Hubbard model with next-nearest-neighbor
hopping ¢, addressing the Cooper-pairing instability in the
Fermi liquid regime in a wide range of ¢’ and density n. Our
results are asymptotically exact within the given resolution in
the limit U — 0. We have obtained the ground-state phase
diagram and classified phases by their symmetry in terms
of the corresponding irreducible representation as well as
the nodal structure of the gap function, which resulted in a
far richer phase diagram compared to previous works. We
have also performed an analysis of the effective coupling
strength in the Cooper channel, which controls the superfluid
critical temperature. We have observed that the divergence
of the density of states at the Fermi surface due to the Van
Hove singularity has an influence on both the type of realized
superfluid order as well as the effective interaction strength.
Besides the widely discussed region near the AFM point, we
have identified another region with high effective coupling
around quarter filling n = 0.5 and ¢’ = 0.5, which most likely
extends to higher values of ¢'. This suggests that a detailed
study of the model at higher values of next-nearest-neighbor
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hoppings is of substantial interest in the context of high-7, su-
perconductivity. In general the phase diagram enables further
work to start from intuition about the location and extent of
regions with high effective coupling. Potentially, the Fermi-
Hubbard model with next-nearest-neighbor hopping could
be realized experimentally in optical lattices—as has been
done with multiple other extended Hubbard models [74]—and
provide actual transition temperatures values. Importantly, our
results enable us to identify and correct some of the mistakes
of previous works. Our work can serve as a solid foundation
for application of accurate advanced methods to the model at
essentially finite values of coupling U. The provided results
can be used as a starting point for the construction of a phase
diagram in the (n,#’,U) parameter space. Instead of calculating
a computationally expensive grid of points it is possible to
follow individual phase transition lines to higher values of
coupling U, as has been done at " = 0 by Deng et al. [60]. It
has to be noted that the landscape of the diagram might change

PHYSICAL REVIEW B 94, 085106 (2016)

dramatically for nonvanishing values of U, and especially
higher harmonics, which exist on the boundary between phases
belonging to different irreducible representations, are likely to
disappear as it happened for the p® harmonic at ' = 0, which
vanished at U = 0.08.
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