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Correlated non-Gaussian phase fluctuations in LaAlO;/SrTiO; heterointerfaces
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We probe the existence of large correlated non-Gaussian phase fluctuations in the vicinity of the supercon-
ducting phase transition in the conducting layer residing at the interface of LaAlO;/SrTiO; heterostructures.
The non-Gaussian fluctuations appear between the Berezinskii-Kosterlitz-Thouless transition temperature 7pg 7
and the mean-field transition temperature 7¢. Subsequent theoretical analysis reveals that non-Gaussianity
arises predominantly due to the percolative transition of a Josephson coupled network of superconductors.
Our results confirm that the superconductivity in this system is confined to two dimensions. Our study of
the non-Gaussian resistance fluctuation spectrum provides a novel means to explore the BKT transition in

two-dimensional inhomogeneous superconductors.
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I. INTRODUCTION

In a two-dimensional superfluid, the vortices induced by
thermal fluctuations appear as bound pairs below a characteris-
tic temperature: the Berezinskii-Kosterlitz-Thouless transition
temperature (Tpx7) [1,2]. The thermally activated unbinding
of these vortex pairs at temperatures above Tpgr induces
phase slippage leading to the onset of resistance and the
eventual destruction of superconductivity in these materials
[3,4]. Unfortunately, conventional techniques that probe for
signatures of BKT transition such as the measurement of
discontinuity in the superfluid density near the transition tem-
perature [5,6] cannot be applied in the case of low-dimensional
heterostructures where the charge carriers are buried at an
interface. A case in point is the two-dimensional electron gas
residing at the interface of LaAlO3;/SrTiO3 heterostructures
[7,8]. While transport studies reported in this system seem
to indicate that the superconductivity is two dimensional
in nature with a gate-voltage-dependent Tgxr [7,9-12],
the temperature variation of the pairing gap shows a BCS
behavior with2A/ kg T,,, = 3.4 [13]. Thus, there is an urgent
need to develop alternate techniques that can unambiguously
determine the dimensionality of the superconducting phase in
such novel systems.

Resistance fluctuations in three-dimensional superconduc-
tors at temperatures higher than the transition temperature T¢
are strictly Gaussian in nature [14,15]. In a previous related
work we have shown that in ultrathin film superconductors un-
dergoing BKT transition, the resistance fluctuations measured
near the critical temperature contain strong non-Gaussian
components (NGCs) [16] due to the presence of long-range
correlations among the fluctuating vortices. The central limit
theorem guarantees that for uncorrelated random processes
(in this case resistance fluctuations), the fluctuation statistics
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are Gaussian. As the correlation length in the system begins
to diverge—for example near a critical phase transition—
the resultant time-dependent fluctuation statistics develops a
strong non-Gaussian component [16—18]. Such NGC, typi-
cally detected in a material through the measurement of higher-
order statistics of its resistance fluctuations, were found to be
completely absent in three-dimensional superconductors [16].

In this paper, we present detailed experimental and simu-
lation studies of the resistance fluctuations in LaAlO3/SrTiO3
heterostructures [8,12,19] around the superconducting transi-
tion regime to look into the possibility of interacting vortices
in two dimensions. To probe the existence of the NGC in the
resistance fluctuations in this system, we study the higher-order
spectra of resistance fluctuations, which we quantify through
their second spectrum (described later in the text in detail)
[20,21]. We find evidence of correlated fluctuations near Tgg
and show that the NGC in the resistance fluctuations appear
most likely because of the percolative nature of the supercon-
ducting transition. Our results confirm that the superconduct-
ing phase in this system is indeed confined to two dimensions.

II. RESULTS

A. Sample preparation

Our measurements were performed on samples with 10 unit
cells of LaAlO3 grown by pulsed laser deposition on TiO,
terminated (001) SrTiO; single crystal substrates. The fluence
was 0.50 J cm~2 and the target-substrate distance was 4.8 cm.
In order to achieve uniform TiO, termination the SrTiO;
substrates were pretreated with standard buffer HF solution
[22]. This was followed by treating the substrates for an hour
at 830°C in an oxygen partial pressure of 7.4 x 1072 mbar
to remove any moisture and organic contaminants from the
surface and also to reconstruct the surface so that pure TiO,
termination was realized. This was followed by the deposition
of 10 unit cells of LaAlOs at 800°C at an oxygen partial
pressure of 1 x 10~* mbar. Growth with the precision of single
unit cell was monitored by the oscillations count using an
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FIG. 1. A schematic diagram of the device. The red shaded area
represents the two-dimensional electron gas (2DEG) located at the
interface of LaAlO; and SrTiO;. The device is biased by a constant
current between the contacts marked 1 and 2. The voltage difference
between the contacts 3 and 4 is amplified by a low noise preamplifier
(SR 552) and fed to a lock-in amplifier (SR 830) in differential
mode. The carrier density is modulated by the back gate voltage
V, applied to the contact at the bottom of the LaAlO; layer. The
contact configuration for the measurement of resistance and resistance
fluctuations were identical.

in situ RHEED gun. HRXRD measurements confirmed the
epitaxial nature of the growth. The thickness of one unit cell
from these measurements was obtained to be 3.75 A [23,24].

Electrical contacts were created on the heterostructures in
van der Pauw geometry [25-27] by electron beam lithography
followed by thermal evaporation of 5 nm Cr/100 nm Au contact
pads. The contact pads were connected to the chip carrier by
ultrasonic wire bonding, which is known to break down the
10 u.c. of LaAlO3 and give Ohmic contacts to the underlying
electron gas [9,10,28,29]. A typical device structure is shown
schematically in Fig. 1 along with the electrical connections.
The charge carrier density level in the devices was controlled
by a back gate voltage V, and was used to tune the system
from a superconducting state to an insulating state. Sheet
resistance, magnetoresistance (MR), and resistance fluctuation
(noise) measurements were performed over a wide range of V,
and over a temperature range of 20 mK to 400 mK in magnetic
fields up to 16 T in a cryogen-free dilution refrigerator.

B. Extracting Tp g7 from electrical measurements

There are two main signatures of BKT transition from
electrical measurements [30,31]. The first comes from mea-
surements of nonlinear current-voltage (IV) characteristics for
T < Tgkr. According to the Ginzburg-Landau Coulomb gas
description of a 2D superconductor [32], at temperatures below
Tgkr the application of a finite electrical current should lead
to the proliferation of free vortices inside the superconductor.
The flux-flow resistance generated by the flow of these free
vortices is formally equivalent to a nonlinear current-voltage
relation: V ~ [7. The exponent y is temperature dependent
and is described by the scaling relation [4,33]

1 (Te-1)

y(T)—1~ T

(H
Here T¢ is the Ginzburg-Landau (GL) mean-field critical
temperature. The term €(7T) is related to the polarization
arising due to bound vortex pairs and can be approximated

PHYSICAL REVIEW B 94, 085104 (2016)

1071 (a)

. V,=0VB=0T
1074

=

FIG. 2. (a) Plot of the current vs voltage characteristics of the
sample at different values of temperatures ranging from 20 mK
to 250 mK (from bottom: in steps of 20 mK from 20 mK to
100 mK then 110 mK, 115 mK, 118 mK, 120 mK, 125 mK and
subsequently in steps of 10 mK from 130 mK to 250 mK). The
exponent y is extracted by linear fit of the data for the current range
indicated between the two grey dashed lines. (b) Plot of the scaled
exponent (y — 1)7. The blue solid line is a fit to the data in the
intermediate temperature range where the quantity (y — 1)T is linear
in temperature. The intercept with the temperature axis determines
the mean field transition temperature 7¢. The red dotted line is the
plot of 2T as a function of 7 whose intercept with the measured data
points determines Tpk7.

to 1 at sufficiently low temperatures [4]. At the BKT
transition temperature the nonlinearity exponent y (Tgxr) = 3
[4,7,9,33]. Note that this kind of power-law dependence of the
IV characteristics is distinct from the exponential dependence
of voltage on the current arising from vortices motion due
to flux depinning seen in three-dimensional superconductors.
In Fig. 2(a) we plot the IV curves measured over the
temperature range 20-250 mK at V, = 0V, the plots show
strong nonlinearity below 150 mK. In Fig. 2(b) is plotted
the function (y — 1)T as a function of temperature. As
expected from Eq. (1) for a two-dimensional superconductor,
the plot is approximately linear down to about 60 mK. The
deviation of the plot from linearity at very low temperatures
has been observed previously in other systems [33] and has
been attributed to possible flux pinning effects [34]. The
dotted line is a plot of 27 against T. From the definition
y(Tgkr) = 3 it follows that the crossing of this line with the
measured (y — 1)T data determines the BKT temperature.
Using this procedure we identify Tgxr ~ 118 mK. An
additional parameter extracted from such a fit is the mean
field temperature T, which is determined by the intercept of
the scaling plot on the temperature axis. For our device at
V, = 0V the T¢ estimated by this method is ~ 142 mK.

The second signature of BKT transition comes from the
temperature dependence of the resistance. Close to T, the
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FIG. 3. (a) Sheet resistance as a function of temperature at two
different values of V,: olive open circles, V, =0 V; red solid
line, V, = —70 V. The inset shows a plot of (dInR/dT)™*? vs
temperature at V, = 0 V; the red line is the BKT fit extrapolated
to (dInR/dT)™*3 =0 to show explicitly the BKT temperature of
0.117 K. (b) Plot of sheet resistance (normalized by the normal
state resistance) as a function of the parameter X = TETKT %
obtained from measurements of resistance vs temperature at six
different values of V,. The scaling of the data attests to the two-
dimensional nature of the superconducting state. The data were taken
while passing a 100 nA ac current through the device.

resistance of a two-dimensional superconductor depends on
the temperature as:
br
), @)

Rgpeet = Ro exp ( T T = T2

where by is a measure of the vortex-antivortex interaction
strength [4,30,35]. This form is valid over a narrow range of
temperature above Ty where superconductivity is destroyed
by phase fluctuations induced by thermal unbinding of vortex-
antivortex pairs. Figure 3(a) shows the sheet resistance of
the device as a function of temperature at two characteristic
gate voltages. To estimate T we have fitted the data using
Eq. (2) as shown in the inset of Fig. 3(a). The BKT transition
temperature obtained from an extrapolation of this fit was
Tgxr ~ 117 mK for this particular device at V, =0V, in
agreement with the value obtained from analysis of nonlinear
IV characteristics. Although this procedure is an useful method
of extracting the Tk, it is at best an approximation and is as
such not compelling enough to establish the two-dimensional
nature of superconductivity. The biggest drawbacks of this
method are (i) it ignores finite-size effects wherein the
correlation length in the system is not allowed to grow beyond
the sample size [11,36,37], and (ii) it is strictly valid over
a very narrow temperature window around Tpxr/T < 1 <
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Tc/T. To conclusively establish the two-dimensional nature
of superconducting state one needs to look at the scaling of the
resistance with an appropriately normalized temperature scale
[38]. In the absence of a magnetic field, the resistance of a two-
dimensional superconductor should be a universal function
of its characteristic energy scales [38]. A particularly useful
way of testing this prediction is by plotting the normalized
resistance Rgpeet/ Ré}]m[ as a function of the scaling variable
X = T(TC — TBKT)/[TBKT(TC — T)] l.lSiI]g the values of TC
and Tggr extracted from nonlinear IV characteristics. The
resulting plot should be independent of any additional sample
parameters [4]. In Fig. 3(b) we show the validity of this scaling
relation by plotting the data obtained on our device over arange
of values of V,. The data from all the measurements collapse
onto a single curve establishing that the superconductivity in
this system is consistent with the GL Coulomb gas model for
a two-dimensional superconductor.

C. Resistance fluctuation measurements and analysis

To probe the statistics of fluctuations near the supercon-
ducting transition in this system we have studied in detail
the low-frequency resistance fluctuations at different gate
voltages and magnetic field ranges using a digital signal
processing (DSP) based ac technique. This technique allows
simultaneous measurement of the background noise as well as
the bias-dependent noise from the sample [39,40]. A low-noise
preamplifier (SR-552) was used to couple the sample to a
lock-in-amplifier (LIA). The bias frequency of the LIA was
chosen to lie in the eye of the noise figure (NF) of the
preamplifier to minimize the contribution of the amplifier
noise to the measured background noise. The output of the
LIA was digitized by a high-speed 16-bit analog-to-digital
conversion card and stored in the computer. Typical time traces
of resistance fluctuations as a function of time are shown
in Fig. 4(a). The complete data set for each run, typically
consisting of 3 x 10° points, was decimated and digitally
filtered to eliminate the 50 Hz line frequency component. The
filtered time series of voltage fluctuations thus accumulated
was used to calculate the power spectral density (PSD) of
voltage fluctuations Sy ( f) over a specific frequency range. The
lower-frequency limit of this spectral range (1 mHz) was set by
the stability of the temperature control, which was better than
40.1 mK. The upper cutoff frequency of the spectral range
(~4 Hz) was determined by the flatness of the response of the
output low-pass filter of the lock-in amplifier, which had been
set at 10 msec with a roll off of 24 dB/octave. The apparatus
was calibrated using thermal noise measurements on standard
resistors to measure spectral power densities down to Sy ~
10720 V2Hz~!. The measured background noise was found to
be bias independent, had a frequency-independent spectrum
and matched the value 4kpT Rgheer €xpected for Johnson-
Nyquist noise. The PSD of voltage fluctuations was converted
to PSD of resistance fluctuations Sg(f) using the relation
Sr(f) = Sy(f)/I? where I is the root mean square value of
the constant current used to bias the device. At all temperatures
measured, the dependence of Sg(f) on the frequency f was
found to be of the form Sg(f) o 1/f%; some representative
plots are shown in Fig. 4(b). The value of the noise coefficient
o [= —48In(Sg)/8In(f)] steadily increased from one at high
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FIG. 4. (a) Time series of resistance fluctuations at a few
representative temperatures. The vertical scale bar in each case
represents 10 m<2. (b) Normalized power spectral density of resis-
tance fluctuations Sg(f)/(Rsneet)> plotted as a function of frequency
calculated from the time series shown in (a). Note that the data have
been multiplied by f to accentuate any deviation from 1/f nature of
the spectrum.

temperatures to about three as Tpxr was approached from
above. The high value of « very close to Tgx7 is indicative
of the presence of percolative transport in this temperature
regime [41], we address this point in detail later in this paper.

The PSD of resistance fluctuations was subsequently
integrated over the bandwidth of measurement to obtain the
relative variance (§ Rgheet) /{Raheet)? Of resistance fluctuations
[39,40]:

<8R2heet> 1 /
sheet/ _ Sg(f)df. (3)
<Rsheet>2 (Rsheet)2 . f f
1000
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FIG. 5. Plots of (8thw) (left axis, olive filled circles) and Rgpee

(right axis, red line) as a function of temperature.
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FIG. 6. (a) Relative variance of resistance fluctuations as a
function of temperature measured at V, =0V (olive filled circles)
and V, = =70V (red open circles). Note the sharp increase in noise
over the temperature range T¢c > T > Tgpgr (shown by the gray
shaded area) for V, = 0. The error in the data is smaller than the
size of the symbols used. (b) Excess second spectrum AS;&) as a
function of temperature at different values of V, at zero magnetic
field: V, = 0V (olive filled circles), V, = —70V (red open circles).
Error bars were calculated as standard deviations from measurements
of ASS over 50 time windows.

Plots of (§R2..,) as well as that of the sheet resistance are
shown in Fig. 5. Figure 6(a) shows a plot of the relative
variance of resistance fluctuations (§ theet) /{Rgneer)> measured
as a function of temperature at V, = 0V and zero magnetic
field. The magnitude of (& Rszhw) /{Raheet)? increases by almost
three orders of magnitude as the temperature approaches T 7.
This large increase in noise near Tpgr can be understood
by considering the dynamics of the superconducting order
parameter in the vicinity of the critical temperature. As the
critical temperature is approached from above, fluctuations
in the superconducting order parameter lead effectively to
the formation of a dynamic network of superconducting and
resistive regions in the sample. A major component of the
divergent noise in this regime of phase space is understood
to arise due to the fluctuations in the number/size of these
superconducting domains [42,43]. This rapid increase of noise
in the vicinity of superconducting transition has been reported
before both in 2D as well as in 3D superconductors [16]
and cannot help uniquely establish the dimensionality of the
superconducting phase.

We probed the presence of correlations in the system
near the superconducting transition through the measurement
of the second spectrum, which is defined as the four-point
correlation function of the resistance fluctuations calculated
over a chosen frequency octave ( f;, fi) [20,21]. It is expressed
mathematically as:

SPH(fr) = / OO<8R2<r>><6R2(r + 1)) cosRr for)dT, (4
0

where f; is the center frequency of the octave and f, is the
spectral frequency. Operationally, the first step in calculating
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the second spectrum is to make repeated measurements of
Sr(f) over a frequency band and to form a time series of noise
power. The power spectrum of this time series then is a measure
of the fluctuations in the noise power within a frequency
band of the original spectrum—this quantity is called the
second spectrum. Thus, S,’;‘( f») physically represents the
spectral wandering or fluctuations in the PSD with time. In
the infinite time approximation, the estimated power at any
frequency should not vary with time and hence the second
spectrum should be identically zero. However, due to the finite
measurement time, each of the frequency components of the
spectrum have a finite variance [44].

A convenient way of representing the second spectrum is

through its normalized form Sﬁ) defined as

=i iz ?
Sy = /0 Si?(fz)dfz/[ / SR<f>df] ®)

For Gaussian fluctuations, Sﬁ) = 3 and any deviation from 3
implies the presence of NGC in the fluctuation spectrum.

We have calculated the second spectrum over the frequency
octave 0.375-0.750 Hz, where the sample noise is significantly
higher than the background noise. This was in order to avoid
corruption of the signal by the Gaussian background noise. The
measured values of Sﬁ) as a function of temperature at V, =
0V are plotted in Fig. 6(b), note that we plot the excess second
spectrum defined as AS;%) = Sﬁ) —3.ForT » T¢ AS;&) ~0.
As the temperature is decreased below 7¢, S[(\?) starts increasing
monotonically reaching a value of almost 12 near T = Tgk7.
It is interesting to observe that the second spectrum reduces to
the Gaussian value by 140 mK while the relative variance of
resistance fluctuations (8 theet) /{Raheet)> continues to evolve
till at least 225 mK. This shows that the non-Gaussianity
seen in the region dominated by vortex fluctuations has an
origin distinct from the critical or percolative fluctuations that
dominate the measured noise.

D. V, dependence of noise

We now turn to the effect of carrier density modulation
on the resistance fluctuations in the superconducting state.
The superconducting state in this system can be tuned by
modulating the carrier density using a back gate voltage V,
[7,9-12]. In Fig. 7(a) we plot the sheet resistance (green
line) as a function of the gate voltage at 0 T magnetic
field and 20 mK temperature. At this temperature the system
showed superconductivity at all values of gate voltage larger
than V, = —20V. For V, > —20 V the PSD of voltage
fluctuations Sy (f) was below our detection limit of Sy (f) ~
1072 V2Hz!. As shown in Fig. 7(b), the measured noise
(8R3 o)/ (Rsheer)? increased by more than three orders of
magnitude as the system was driven from the normal state to
the superconducting state by electronic doping. Concurrently,
the value of S,(é) increased monotonically from the Gaussian
value of 3 near the normal state and reached a maximum
near to the gate voltage at which the macroscopic resistance
tends to zero; the data is plotted in Fig. 7(c). Application
of a 1 T perpendicular magnetic field suppressed the su-
perconductivity at all gate voltages [Fig. 7(a)], suppressed
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FIG. 7. (a) Plot of the sheet resistance as a function of V, at 0
T (olive solid line) and 1 T (red dashed line) magnetic fields. For
V, > =20V the system is in a superconducting state at 20 mK and
zero magnetic field. (b) Plot of the normalized noise (8 R?, o) / { Rsheet)
as a function of V, at 0 T (olive filled circles) and 1 T (red open
circles) magnetic fields. The error in the data is smaller than the size
of the symbols used. (c) Normalized excess second spectrum AS;?)
as a function of gate voltage at O T (olive filled circles) and 1 T
(red open circles) magnetic fields. Note that in zero magnetic field
both the noise and AS;&) increase rapidly as the superconducting
transition is approached as a function of charge carrier density. Error
bars were calculated as standard deviations from measurements of
AS}&) over 50 time windows. All the measurements were performed

at 20 mK.

the measured noise [Fig. 7(b)] and made the fluctuations
Gaussian [Fig. 7(c)]. As a further control experiment we
measured the noise at V, = —70V where the system is in
a resistive state over the entire temperature range; the results
are plotted in Fig. 6. As can be seen, the (8R52heet)/<Rsheet)2
is almost constant over the entire temperature range and the
normalized second spectrum Sﬁ) shows a consistent Gaussian
behavior.

III. THEORY AND SIMULATIONS

In two-dimensional superconductors, the fluctuation in
the conductivity arising from the proliferation of vortices at
temperatures above Tk is given by o o & (T)?, where £(T)
is the coherence length at a temperature 7. As pointed out in
Ref. [45] by appears in the BKT correlation length &. The
temperature dependence of & is given by the Halperin-Nelson
formula [38]

& 2 sinh bg
= — S1 .
VT,

& A (©)

where T, = (T — TBKT)/TBKT (T = Tgkr), A and by are
parameters related to the vortex and determine the shape of
the resistivity above Tgx 7. The normalized resistance is given
by

R 1
Ry 1+ (Ac/oy) 1+ (E/&)

@)
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FIG. 8. Schematic picture of a 9 x 9 resistor network consisting
of identical resistance at each junction. The macroscopic resistance
R is given by the current / flowing through the outer wire driven by
a potential V. A 100 x 100 network has been used in the calculation
to model the percolation dynamics across the superconducting
transition.

where Ry and oy are, respectively, the resistance and con-
ductivity in the normal state. However, the above temperature
dependence is not sufficient to reproduce the extended tail
usually observed in the sheet resistance curves near Tggr in
inhomogeneous two-dimensional superconductors. This tail,
in fact, appears because of the percolative nature of the
superconducting transition [46—48]. At temperatures above
Tc, there are superconducting islands in a nonsuperconducting
background. These islands percolate via Josephson tunneling
and grow in size as the temperature is reduced or as carriers are
added to the system. There exists a characteristic temperature
or doping at which macroscopic phase coherence is established
throughout the entire sample and global superconductivity sets
in.

To gain insight into the origin of the NGC near the BKT
transition, we perform a numerical simulation using a random
resistor network (RRIN) model. We consider a two-dimensional
square network of size L x L (L being the number of junctions
along one direction) with identical resistors present at all
bonds of the network as described in Fig. 8. The network
is assumed to be connected by external conducting wires
to a voltage source V, which causes a current / to flow
through the network, the macroscopic resistance is then given
by R = V/I. However, for simplicity, we deal with the
resistances at the junctions and the macroscopic resistance
is taken as the average of all the junction resistances. To
realize the percolation phenomenon occurring along with
the superconducting transition, we include circular resistive
patches with uniform superconducting background. As the
temperature rises, the patches grow both in size and in number
as depicted in Fig. 9.

The resistance r; at a junction j contained within a resistive
patch at a temperature 7 takes a value according to Eq. (7). The
number and the diameter of the patches, at a temperature 7', are
given respectively by Nester = C1(T — Tpkr) and Dejyseer =
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FIG. 9. The spatial profiles of the normalized resistance in
the resistor network of size 100 x 100 at temperatures (a) T =
120mK, (b) T =140mK, (¢) T = 160mK and (d) 7 = 180 mK.
The number and the diameter of the resistive patches both increase
with temperature beyond Tgk7.

C,T,. Here C; and C, are positive constants determined by
matching the temperature variation of the average resistance
with the experimental data as shown in Fig. 10. For comparison
we also plot on the same plot the experimentally determined
value of R/Ry.

Having defined the temperature dependence of the resis-
tance at the individual junctions, we incorporate the fluctua-
tions in the resistance. We start the simulation at temperature
Tgxr = 117mK and reach 300 mK and at each temperature,
the network is set to evolve for a maximum time duration .

1||||||||||||

0.75

0.5

RIR,

0.25

O 1 I 111 | I 11 1 1 I 11 1 1
0 005 01 015 02 025 03
T(K)

FIG. 10. Plots of the temperature dependence of the resistance
calculated using using two different techniques: (i) Halperin-Nelson
formula (olive squares) and (ii) average resistance of the 100 x
100 network extracted using the resistive patches to incorporate
percolation (red filled circles). Parameters used are: A = 1.4, bg =
0.1, C; =2.4, and C, = 10. For comparison, the experimentally
measured values of R/ Ry are also plotted (black filled triangles).
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The resistance at the junction j at a temperature 7 and at an
instant of time ¢ is given by

®)

where r;.)(T) is the average (time-independent) value of the
Jthresistance at temperature 7" and Ar;(T,¢) is the fluctuation
around this value at a given instant of time ¢. To take into ac-
count the finite relaxation time 7 of the resistance fluctuations,
we start with the initial condition Ar;(T = Tggx7,t =0)=0
and update the resistance r;(7',t) continuously at each interval
of time 7. The set of fluctuations in resistances {Ar;(T,t)} is
obtained from a normal distribution with a standard deviation
0.001 [dimensionless because the resistance r; is in the normal-
ized form see Eq. (7)] and having mean at zero. The relaxation
time t is also chosen randomly from a set {t,}, which governs
the statistics of the fluctuations in the resistance. At a given
temperature, we use {7,} = x{t,}ngc + (1 — x){t,}cc, Where
GC stands for Gaussian component and NGC for non-Gaussian
component. The parameter x controls the amount of NGC.
Since the source of the NGC is the Josephson coupling of
neighboring superconducting islands, x at a given temperature
is taken to be proportional to the ratio of the superconducting
region to the resistive region at that temperature. The exact
values of the parameters determining the distribution functions
for {t,}ngc and {1,}c¢c are found by looking at the PSD, as
discussed below.
The PSD of the resistance fluctuation is given by

1 ) ) 2
Sr(f) = lim <—>< / SR(t)e_’z”f’dt) 9)
fy—>o00 \ 2ty —to

and can be written in terms of the relaxation time 7 as [40]

ri(T.1) =r)(T)+ Arj(T.1),

(o]
Sr(f) = / dtF()2t/[1 + Qrfr)?], 10)
0

where F(7) is the distribution function for t. The experimental
data reveals that Sg(f) oc 1/f%, where « = 1 at higher tem-
peratures and « = 3 at T >~ Tgg7. We input this information
in the simulation through F (7). For the NGC, we use the non-
Gaussian distribution function F(t) = [1/(2/7)]/Te ¥/™,
typical for slow glassy dynamics [49], with 7o = 600 ns. For
the GC, F(t) is a Gaussian distribution with a mean t,, =
350 ns and standard deviation SD, = 100 ns. The distribution
of 7 at different temperatures across the superconducting tran-
sition, revealing the dominance of the NGC within temperature
range Tgxr < T < T, is shown in Fig. 11. The distribution
of the relaxation times, at a particular temperature, is extracted
from the experimental data using the PSD, expressed in
Eq. (10). While performing the time evolution, the relaxation
time is taken randomly from the distribution.

The PSD of resistance fluctuations calculated above was
used to estimate the second spectrum using Eq. (4) and the
normalized second spectrum was calculated by using Eq. (5).
Since many random numbers are involved in the method,
we perform several realizations of the random numbers and
calculate the average values. To check the sensitivity of
the final results to the initial conditions, we perform the
calculation for several configurations of the initial resistance
fluctuations with no qualitative difference in the final results.
In Fig. 12, we plot the normalized noise (& the‘st)/(Rsheet)2
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FIG. 11. The distribution of the relaxation time 7 at temperatures
(@) T =120mK, (b) T = 140mK, (¢) T = 160mK, and (d) T =
180 mK. Gaussian distribution is evident at higher temperatures
but deviation from Gaussianity appears primarily between Tpxr =
117mK and 7, = 150 mK.

and the normalized second spectrum S,(\?), obtained from
the simulation, as a function of temperature showing non-
Gaussian fluctuations. The experimentally obtained values of
(8 Rszheet) / (Rsheet)2 and SI(\?) are also plotted for comparison. The
good match of the simulated data with the measured data attests
to the fact that our simple model can capture the essential
features of the resistance fluctuations near BKT transition in
oxide heterostructures.

The simulation is composed of two parts: the temperature
variation of the resistance and the time evolution of the

~~

a)
o 10 L LU I T LU I T r 11111 1T
/\g s O Experiment
‘;,. 10 @ Simulation
Vo6
Fa 10
L2107
R
G 10
11 1 1 I 11 1 1
b 20 L LU T LU 1 o1 1 11 1 1T
( ) - ! o ! O Experiment
15 ® @ Simulation
~ 3 (@)
o
(/)Z 10_—
5_
O_I 11 1 I 11 1 1 I 1 11 1 1 I 111 1 I 11 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
T (K)

FIG. 12. Temperature variation of (a) the relative variance of the
resistance fluctuations (§R2...)/{Rsneer)* (plotted in a semilogarith-
mic scale) and (b) the normalized second spectrum S,(\%) obtained
from the simulation of the resistor-network model. For comparison
the experimentally measured values of (§R2..,)/{Rsneer)* and S are
also shown.
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resistance at a particular temperature. The parameters C|
(determines the number of the resistive clusters), C, (deter-
mines the radius of a cluster), the constants A and by in the
Halperin-Nelson equation are tuned to match the temperature
dependence of the resistance with the experimental data. Ata
given temperature, the time evolution of the resistance is set
up by choosing the appropriate distribution functions using
the parameters 7y (governs the non-Gaussian distribution),
7,, (mean of the Gaussian distribution), and SD, (standard
deviation of the Gaussian distribution).

In a true BKT transition, vortex fluctuations above Tggr
lead to the unbinding of paired vortices. Percolation adds
extra fluctuations above Tgg7. Consequently, the Tpgxr—Tc¢
range is increased and a tail appears in the temperature-
versus-resistance plot. To compare the situations in BKT
and non-BKT scenarios, we performed simulations using the
same resistance network and relaxation time distributions
considering BKT- and BCS -type transitions and found that the
large non-Gaussian fluctuation appears within the temperature
range Tpxr—T¢ in case of BKT transition, and only in the
vicinity of T¢ in case of BCS theory.

PHYSICAL REVIEW B 94, 085104 (2016)

IV. CONCLUSION

To conclude, we have probed the higher-order statistics
of resistance fluctuations around the transition temperature in
the two-dimensional superconducting state in LaAlO3 /SrTiO3
interface. We find large non-Gaussian components in the
fluctuation near Tk 7 that signify strong correlations among
interacting vortices. Our results confirm that the supercon-
ducting transition in this system is universal BKT-type in
nature. Our theoretical simulation indicates that the large
non-Gaussian resistance fluctuations are a manifestation of a
percolative transition of a Josephson-coupled superconducting
network. Our analysis also suggests that the NGC in resistance
fluctuation is a generic feature of two-dimensional inhomoge-
neous superconductors close to the transition temperature.
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