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Ground-state properties of the Hubbard model on a two-dimensional square lattice are studied by the
auxiliary-field quantum Monte Carlo method. Accurate results for energy, double occupancy, effective hopping,
magnetization, and momentum distribution are calculated for interaction strengths of U/t from 2 to 8, for a range
of densities including half-filling and n = 0.3,0.5,0.6, 0.75, and 0.875. At half-filling, the results are numerically
exact. Away from half-filling, the constrained path Monte Carlo method is employed to control the sign problem.
Our results are obtained with several advances in the computational algorithm, which are described in detail.
We discuss the advantages of generalized Hartree-Fock trial wave functions and its connection to pairing wave
functions, as well as the interplay with different forms of Hubbard-Stratonovich decompositions. We study the
use of different twist angle sets when applying the twist averaged boundary conditions. We propose the use
of quasirandom sequences, which improves the convergence to the thermodynamic limit over pseudorandom
and other sequences. With it and a careful finite size scaling analysis, we are able to obtain accurate values of
ground-state properties in the thermodynamic limit. Detailed results for finite-sized systems up to 16 × 16 are
also provided for benchmark purposes.
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I. INTRODUCTION

The two-dimensional (2D) Hubbard model [1] is one of the
simplest models that are relevant to many correlated electron
phenomena including interaction-driven metal-insulator tran-
sitions [2], spin and charge density waves [3], magnetism [4],
and superconductivity [5]. The ability to predict the properties
of the 2D Hubbard model is crucial to our understanding of
the related exotic quantum states and the transition between
them. Though the one-dimensional Hubbard model is exactly
solvable [6], no exact solution for the Hubbard model exists in
two or higher dimensions except for a few special parameter
values.

The ground-state property of the 2D Hubbard model has
been investigated by a variety of methods that have both
strengths and weaknesses in different regions of the parameter
space. In a recent work [7], the 2D Hubbard model was studied
by state-of-the-art numerical methods [8–15]. In the present
paper, we provide a detailed account of the auxiliary-field
quantum Monte Carlo (AFQMC) study in Ref. [7], introduce
two methodological advances that improve the accuracy and
efficiency of AFQMC calculations, and present systematic
results for finite-size supercells and detailed analysis of the
scaling to the thermodynamic limit. Because of the high
accuracy of AFQMC, the results in this paper will be able
to serve as benchmarks for future calculations and method
development. Such benchmarks will be very valuable given
the fundamental nature of the Hubbard model.

In addition to the detailed and systematic data, we pro-
pose here the use of a quasirandom sequence that reduces
the fluctuations and accelerates convergence when imple-
menting twist averaged boundary conditions (TABC). We
test this approach and study the convergence of different
boundary conditions. The quasirandom twist is applicable
to all many-body calculations of extended systems, includ-
ing realistic electronic structure calculations in correlated
materials.

We also describe the use of generalized Hartree-Fock
(GHF) trial wave functions over the more standard unre-
stricted Hartree-Fock (UHF) form, and discuss how and
when improvement in accuracy and efficiency results, both at
half-filling and in the doped regime. The connection between
the GHF form for magnetic correlations (repulsive model,
half-filling) and the BCS form for superconducting order
(attractive, spin-balanced model) is discussed, as well as their
relation to the form of the many-body propagators and their
symmetry properties. Such wave functions can be readily
generalized to other quantum Monte Carlo calculations in
many-electron systems.

At half-filling in the repulsive Hubbard model, the result
from AFQMC is numerically exact and the method is com-
putationally very efficient. Away from half-filling, AFQMC
methods suffer from the minus sign problem [16,17] associated
with Fermi statistics which leads to exponentially growing
statistical errors with system size and inverse temperature.
We employ the constrained path formalism under AFQMC,
commonly referred to as constrained path Monte Carlo
(CPMC), to control the sign problem by introducing a trial
wave function to guide the walk in the Slater determinant
space. This restores the algebraic computational scaling as
in the half-filled case, but introduces a possible systematic
error. The goal of considering different forms of the trial wave
function is to minimize this error, and to improve the prefactor
in the algebraic scaling.

The rest of the paper is organized as follows. In Sec. II, we
first define the Hubbard model and give a brief summary of the
method used in this work. We also introduce the use of twist
boundary conditions in computations of finite supercells. In
Sec. III, we describe the computational algorithmic advances.
The use of a quasirandom sequence in the twist averaged
boundary conditions is discussed, with test results presented.
We also study the use of GHF trial wave functions and analyze
their connection to BCS wave functions. The interplay between
the form of the trial wave function and symmetry properties
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of the Hubbard-Stratonovich transformation is examined. In
Sec. IV, we present detailed, exact numerical finite-size results
at half-filling for a range of supercell sizes and boundary
conditions, from weak to strong-coupling regimes. A careful
finite-size scaling analysis is carried out to extrapolate the
computed quantities to the thermodynamic limit. In Sec. V,
the results for a system away from half-filling are presented.
A short summary in Sec. VI will conclude this paper. The
Appendix contains the finite size numerical data including the
ground-state energy, double occupancy, and kinetic energy.

II. MODEL AND METHOD

A. Hubbard model

The Hubbard model is defined as

H = K + V = −
∑
i,j,s

tij (c†i,scj,s + H.c.) + U
∑

i

ni↑ni↓,

(1)

where K and V are the kinetic and interaction terms,
respectively. The creation (annihilation) operator on site i is
c
†
i,s (ci,s), with s = ↑,↓ the spin of the electron, and ni,s is the

corresponding number operator. We denote the total number
of electrons with up and down spin by N↑ and N↓. In this
work, we only consider the spin-balanced (N↑ = N↓) systems.
The filling factor is defined as n = (N↑ + N↓)/N , where N is
the total number of lattice sites in the supercell. Half-filling is
n = 1, and away from it the hole density is given by h = 1 − n.
We deal with only nearest neighboring and uniform hopping,
tij = t for each near-neighbor pair 〈ij 〉, and set t as the energy
unit. The strength of the repulsive interaction is given by
U/t . With the exception of the h = 1/8 doping case where
a rectangular lattice is studied to accommodate the underlying
spin density wave structure, we consider supercells of square
lattice with size N = L × L.

In order to better extrapolate to the thermodynamic limit
(TDL), we use TABC [18]. As shown in Sec. IV, the
standard periodic boundary conditions (PBC) turns out to give
nonmonotonic convergence with supercell size. Under twist
boundary conditions (TBC), an electron gains a phase when
hopping across the boundaries:

�(. . . ,rj + L, . . .) = eiL̂·��(. . . ,rj , . . .), (2)

where L̂ is the unit vector along L, and the twist angle
� = (θx,θy) is a parameter, with θx (θy) ∈ [0,2π ). This is
equivalent to placing the lattice on a torus topology and
applying a magnetic field, which induces a flux of θx along
the x direction (and a flux of θy along the y direction). In
Eq. (2), the translational symmetry is explicitly broken, but
we can also choose another gauge with which the translational
symmetry is preserved, i.e., adjust t to t × eiθx/L along x and
t × eiθy/L along y. By imposing a random TBC, the possible
degeneracy of the noninteracting energy levels is lifted by
breaking the rotational symmetry of the lattice. This eliminates
the so-called open-shell effects.

To implement TABC, we choose a set of Nθ twist angles and
carry out the calculation for each separately. The constrained
path condition can be generalized straightforwardly to the
case of TBC [19]. The computational cost is thus nominally

Nθ times that of a single calculation for, say, the PBC.
However, by averaging the same physical quantities from all
the calculations, the statistical error bar of the TABC value
of the given quantity is reduced. As will be discussed later,
the associated statistical uncertainty can be estimated from
the distribution among the twist angles. For noninteracting
systems, the TABC energy at half-filling approaches the exact
TDL value as Nθ is increased. However, if the canonical
ensemble is used with fixed particle number N , the TABC
result with Nθ → ∞ is in general not equal to the TDL
value [18,20]. This is the case away from half-filling in the
2D Hubbard model. (Of course, the discrepancy goes to zero
as the system size N is increased.)

The use of TABC and the treatment of finite-size effects,
including the effect from electron correlations, have been
discussed earlier [19,21,22]. The quasirandom sequence we
discuss below can be directly applied in this framework.
Recently, another method has been proposed to reduce the
one-body finite-size effect in the Hubbard model by modifying
the energy levels of the free electron part of the Hamiltonian in
a way consistent with the corresponding one-particle density
of states in the TDL [23]. In this work, we have chosen to treat
the original Hubbard Hamiltonian, since part of our goal is to
produce benchmark data for finite-size supercells.

B. Auxiliary-field Monte Carlo method

In this section, we will briefly introduce the AFQMC [24]
method. (For a comprehensive discussion of this method, see
Ref. [25].) By repeatedly applying the projection operator to
a state |ψ0〉 whose overlap with the ground state |ψg〉 of the
Hamiltonian H in Eq. (1) is nonzero, we can obtain |ψg〉

|ψg〉 ∝ lim
β→∞

e−βH |ψ0〉 (3)

and the expectation value of an operator O can be calculated
as

〈O〉 = 〈ψ0|e−βH Oe−βH |ψ0〉
〈ψ0|e−2βH |ψ0〉 . (4)

Through the Trotter-Suzuki decomposition, we can decou-
ple the kinetic and interaction part in the projection operator:

e−βH = (e−τH )n = (e− 1
2 τKe−τV e− 1

2 τK )n + O(τ 2), (5)

where β = τn. The Trotter error can be eliminated by an
extrapolation of τ to 0. We typically choose τ = 0.01 in this
work, with which we have verified that the Trotter error is
below the targeted statistical errors.

We usually choose |ψ0〉 as a Slater determinant in AFQMC.
The one-body term e− 1

2 τK can be directly applied to it and the
result is another Slater determinant. This does not hold for
the two-body term e−τV . However, we can decompose the
two-body term into an integral of one-body terms through the
so-called Hubbard-Stratonovich (HS) transformation. There
exist different types of HS transformations for e−τV . The two
commonly used types in the literature are the so-called spin
decomposition

e−τUn↑n↓ = e−τU (n↑+n↓)/2
∑
x=±1

1

2
eγsx(n↑−n↓) , (6)
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with the constant γs is determined by cosh(γs) ≡ exp(τU/2),
and the charge decomposition

e−τUn↑n↓ = e−τU (n↑+n↓−1)/2
∑
x=±1

1

2
eγcx(n↑+n↓−1) , (7)

with cosh(γc) ≡ exp(−τU/2) [26]. Here, x is an Ising-spin-
like auxiliary field. Different choices of the HS can lead
to different accuracies or efficiencies, because of symmetry
considerations [27,28] or other factors [29]. We will further
comment on the decompositions later.

After the HS transformation, Eq. (4) turns into

〈O〉 =
∑

{Xi,Xj }〈ψ0|
∏n

i=1 Pi(Xi)O
∏n

j=1 Pj (Xj )|ψ0〉∑
{Xi,Xj }〈ψ0|

∏n
i=1 Pi(Xi)

∏n
j=1 Pj (Xj )|ψ0〉 , (8)

where Xi is the collection of the N auxiliary fields introduced
by the HS transformation, and Pi is the product of the
kinetic term e− 1

2 τK and the one-body terms from the HS
transformation at time slice i. The multi-dimensional integrals
can then be computed by Monte Carlo methods, e.g., with the
Metropolis algorithm.

At half-filling, the denominator of Eq. (8) is always non-
negative because of particle-hole symmetry [4]. Away from
half-filling, the denominator of Eq. (8) will, in general, become
negative for some auxiliary fields. In this situation the direct
evaluation of Eq. (8) by Monte Carlo will suffer from the
sign problem [16,17]. The sign problem can be eliminated
by the constrained path approximation. The framework within
which this has been implemented in a Hubbard-like model has
been referred to as the constrained path Monte Carlo (CPMC)
method [30]. To ensure the denominator in Eq. (9) is positive,
we constrain the paths of auxiliary fields so that the overlap
with |ψT 〉, computed at each time slice, remains non-negative.
A description of the CPMC method for Hubbard-like models
can be found in Ref. [32].

In CPMC, the wave function is represented as a linear
combination of a set of slater determinants, which are called
walkers. The evolution of the wave function in the imaginary
time is represented as random walks in the Slater determinant
space by sampling the auxiliary field. Physical quantities can
be calculated using the mixed estimator as

〈O〉mixed =
∑

k wk〈ψT |O|ψk〉∑
k wk〈ψT |ψk〉 , (9)

where |ψk〉 is the kth walker, wk is the corresponding weight,
and |ψT 〉 is the trial wave-function we introduced. The mixed
estimator is used to compute the energy (and other observables
that commute with the Hamiltonian). For observables that
do not commute with the Hamiltionian, the mixed estimate
is biased, and back propagation is applied to correct for
this [30,31].

In order to remove the sign problem, the constrained path
approximation in CPMC introduces a systematic error, which
depends on the trail wave function |ψT 〉. With the TBC, a
simple generalization of constraint can be made [19]. Previous
studies have shown the systematic error is small even with a
free-electron or Hartree-Fork trial wave function [19]. We will
further discuss the accuracy of CPMC and the role of the trial
wave function below in Secs. III B and V.

III. METHODOLOGICAL DEVELOPMENTS

A. Quasirandom twist angles

To implement TABC, a set of twist angles need to be chosen.
If we only consider how to minimize the one-body finite-size
effect [21,22], the problem is related to the calculation of a
two-dimensional quadrature. In this section, we compare three
choices of random twist angles, i.e., the pseudorandom (PR)
sequence, quasirandom (QR) sequence, and uniform grid.

A quasirandom sequence is also known as low-discrepancy
sequence, which is a sequence with the property that for all
values of N , its subsequence x1, . . . ,xN has a low discrepancy.
Low discrepancy means that the proportion of points in
the sequence falling into an arbitrary set B is close to
being proportional to the measure of B. Different from a
pseudorandom sequence, it fills the sampling space more
uniformly at the price of losing some randomness. In this
sense, a quasirandom sequence is correlated. We choose the
Halton sequences [33] to generate our twist angles in this work.
In the uniform grid method, the Nθx × Nθy twist angles are set
as

θij =
(

2π

Nθx

i,
2π

Nθy

j

)
, (10)

where the integers i = 0, . . . ,Nx − 1 and j = 0, . . . ,Ny − 1.
For pseudorandom twists, we generate the twist � by a
pseudorandom number sequence.

The PR and QR twists both have residual errors that are
statistical, while the grid will have a systematic residual error.
The errors vanish in the limit of a large number of twists, Nθ .
From two-dimensional quadrature considerations, one would
expect the convergence rate, i.e., the residual error as a function
of Nθ , should be 1√

Nθ
, ln Nθ

Nθ
, 1
Nθ

for PR, QR, and the uniform
grid, respectively. In Fig. 1, we show the convergence rates of
the ground-state energy of the noninteracting Hubbard model
(U = 0) for the 4 × 4 lattice at half-filling. The results are

FIG. 1. The convergence rate of the ground-state energy of the
noninteracting Hubbard model computed using TABC with twist
angles from QR sequence, PR sequence, and uniform grid. The system
is 4 × 4 at half-filling. The vertical axis shows the absolute value of
the relative error with respect to the exact value, which is −16/π2.
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FIG. 2. (a) The error bar of the ground-state energy computed
from TABC vs the number of twist angles used with twists generated
by QR sequence, PR sequence, and the uniform grid. The system is
4 × 4 with 2 up and 2 down electrons, and U = 8. The ground-state
energies are obtained by the ED method. Note the log - log scale of the
plot. (b) Similar results for an 8 × 8 lattice at n = 0.5, with U = 4,
for QR and PR twist angles. The energies are computed by the CPMC
method.

consistent with the expectation above. The convergence rate
with QR TABC is almost the same as that of the uniform grid,
both much faster than with the PR sequence.

In Fig. 2(a), we study an interacting case, with U = 8 and
a filling factor of n = 0.25 (N↑ = N↓ = 2), again in a 4 × 4
lattice. We use exact diagonalization (ED) to calculate the
ground-state energy for each twist angle. A total of N̄θ = 3600
twist angles are used in each method. To estimate the statistical
error bar of the TABC energy for Nθ (<3600) twist angles for
QR and PR sequences, we partition all the data into blocks with
size Nθ . The standard derivation of the average energies from
the [N̄θ/Nθ ] blocks then provides an estimate of the desired
statistical error. For the uniform grid, we calculate the relative
error for each grid size as the difference between its average
and that of the entire 3600 twist angles. As in the noninteracting
case shown in Fig. 1, the TABC energy using QR sequence
converges at a similar rate to that using uniform grid, with both
showing faster convergence rate than the PR sequence. Linear
fits of the logarithm of the “error bar” versus the logarithm
of Nθ are performed, and are shown in the figure. The slopes
of the fit are 0.94(3), 0.508(7), and 0.96(2), respectively, for
QR sequence, PR sequence, and the uniform grid. These are
consistent with the expected rate mentioned above.

In Fig. 2(b), we plot the result of an 8 × 8 system at n = 0.5.
We use the CPMC method to compute the ground-state energy

for each twist in this system, which is well beyond the
reach of ED. In the CPMC calculation, the corresponding
noninteracting (i.e., free electron) wave function is used
as a trial wave function. For many high-symmetry points
on a uniform grid of twist angles, the ground state of a
noninteracting system is degenerate. In such situations, the
trial wave function (of a single Slater determinant) is not
unique, and an arbitrary choice without consideration of
symmetry properties can affect the accuracy of the CPMC
result. (This issue is further discussed below.) To keep the
analysis simple here, we only test the PR and QR sequences.
A total of 360 twist angles are used for both methods. The
same error analysis procedure is employed as in Fig. 2(a). The
fitted convergence rate for PR and QR twist angles is 0.54(3)
and 1.0(1), respectively, again consistent with the theoretical
values.

These examples show that, with QR twist angles, the
computed total energy from TABC converges essentially as
quickly as with a uniform grid, and is much faster than with
PR twists. The use of QR twists allows the advantage of
the uniform grid, while overcoming two of the drawbacks
of the latter in QMC calculations. The first drawback of a
uniform grid is the degeneracy, which often exists with a high
symmetry grid point. As mentioned above, the degeneracy can
affect the noninteracting wave function, and correspondingly
the quality of the CPMC calculation. (Multideterminant trial
wave functions can improve the quality but they require extra
handling computationally.) The second disadvantage of the
uniform grid is that one needs to determine the size of the grid
prior to the calculations. We often cannot reuse the results from
a small grid size if a larger grid turns out to be necessary for
convergence. On the other hand, QR sequences are cumulative.
Given that in QMC one has both statistical and convergence
errors present, it is desirable to be able to add additional twist
angles “on the fly” as we accumulate better indications of the
magnitude of the associated errors. The QR TABC makes this
possible: one can add QR twists one by one until a desired
accuracy is reached.

B. GHF trial wave functions in AFQMC and their connections
to BCS wave functions

When the sign problem is present, we use a trial wave
function (TWF) to constrain the random walk paths in
AFQMC. The sign or phase of the overlap of the sampled
Slater determinants with the TWF is evaluated in each step, and
this is used as a gauge condition which determines or modifies
the acceptance of the move [25,30]. The constraint eliminates
the sign or phase instability and restores the low-power (third
power of system size here) computational scaling, at the cost
of introducing, in most cases, a systematic bias. The quality of
the TWF can affect the accuracy of the results. In this work,
we employ only single Slater determinant TWFs, which have
been shown to provide accurate results in many systems. In
Hubbard-like models, the most common choices have been the
free-electron wave function or the unrestricted Hartree-Fock
(UHF) solution. The two choices each have advantages and
disadvantages. The UHF is the best single Slater determinant
variationally, however, it breaks the spin and translational

085103-4



BENCHMARK STUDY OF THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 94, 085103 (2016)

TABLE I. The effect of the trial wave function on the (artificial)
constraint and its interplay with the form of the HS transformation.
Ground-state energies are shown for 4 × 4 with PBC (U = 4) at
half-filling. The exact ground-state energy is −13.62192. The UHF
and GHF trial wave functions are also with U = 4.

Trial WF HS spin HS charge

UHF −13.478(2) −13.6222(2)
GHF −13.623(1) −13.6223(2)

symmetry of the system. Both symmetries, on the other hand,
are preserved in the free-electron TWF.

In this work, we use a special form of the generalized
Hartree-Fock (GHF) [34] wave function as TWF in the
AFQMC calculations. This will increase the computation time
by a factor of 2 to 4 in different portions of algorithm, because
now the Slater determinant of up and down spin are coupled.
However, the usage of the GHF trial wave function will reduce
the bias as shown in the discussion below. This is implemented
as a UHF with spin order in the x-y plane. As we illustrate
next, this form combines the advantages of the UHF and
free-electron TWFs and performs better than both, even though
it is related to the z-direction UHF by a spin rotation and is
variationally the same.

In Table I, we compare the effects of different TWFs and
different HS decompositions. The system is a 4 × 4 with PBC
and U = 4. The spin and charge decompositions are defined
in Eqs. (6) and (7), respectively. The AFQMC results have
been extrapolated to the τ = 0 limit. The system is at half-
filling, where there is no sign problem. The CP calculations can
be easily made exact by redefining the importance sampling
to have a nonzero minimum [27]. However, we deliberately
apply the constraint as usual, which can prevent the walkers
from tunneling from one region of the determinant space to
another with an artificial boundary where 〈ψT |ψk〉 = 0, even
though both sides are positive. As can be seen, with the spin
decomposition, the calculations using the UHF as a TWF leads
to a bias.

When the GHF trial wave function is used instead of
the UHF, the bias of the spin-decomposition calculation is
removed. Below, we further discuss the symmetry properties
of the GHF to explain why it is a better TWF. With the charge
decomposition, the energies agree well with the exact energy
regardless of which trial wave function is used. This is because
the auxiliary fields are complex in this case. The sign problem
would become a phase problem [35]. However, since we are
at half-filling, the overlap 〈ψT |ψk〉 turns out to be real and
non-negative for all configurations of auxiliary fields. This
“two-dimensional” nature of the random walks [29,35] allows
ergodicity, and there is no constraint error.

The statistical error bars are also much smaller with the
charge than with the spin decomposition for the same amount
of computing, as seen in Table I. This is because the former
preserves SU(2) symmetry of spin degree of freedom [27]:
when we choose as an initial state for the projection the
noninteracting wave function [36], all the random walkers will
stay in the singlet space throughout the random walks, reducing
fluctuations. (When |ψT 〉 is used as the initial state as opposed

TABLE II. Effect of the GHF trial wave function on the constraint.
Mean absolute relative errors of the CP ground-state energy are shown
from TABC with free, UHF, and GHF trial wave functions. All UHF
and GHF trial wave functions are generated with effective U of 4.
The system is a 4 × 4 lattice with N↑ = 7 and N↓ = 7. A total of 60
twist angles are used. The TABC results from ED are −16.3964 and
−12.1510 for U = 4 and 8, respectively.

TWF U = 4 U = 8

free 0.51(2)% 1.8 (1)%
UHF 0.16(2)% 1.1 (1)%
GHF 0.21(1)% 0.51 (4)%

to the noninteracting wave function, the equilibration time
becomes much longer [37], and the fluctuations are larger. The
final converged results are consistent with each other between
the two different initial states, as we would expect.)

In Table II, we illustrate the effects away from half-filling.
We compare the TABC energy of 4 × 4, U = 4,8 systems at
n = 0.875 using noninteracting (free), UHF, and GHF trial
wave functions. Spin decompositions are used in this case. For
simplicity, we use a uniform parameter in the z (x) direction for
the UHF (GHF) calculation. In principle, we can implement a
full UHF (GHF) calculation, which will improve the quality
of the trial wave functions. For U = 4, the result from GHF
is similar to that from UHF. Improvement with the GHF can
be seen for the U = 8 case, with a CPMC energy closer to the
exact value.

Next, we further discuss the nature of the GHF wave
function, its connection to Bardeen-Cooper-Schrieffer (BCS)
wave functions [38], and correspondingly, the connection
between the repulsive Hubbard model we have studied, and
the attractive model. Let us consider a partial particle-hole
transformation P̂ , which only involves spin-↑ electrons:

P̂ †c†i↑P̂ = (−1)ici↑ (11)

and

P̂ †ci↑P̂ = (−1)ic†i↑. (12)

This operator P̂ transforms the interaction term in the Hubbard
model from repulsive to attractive (from U to −U ) but leaves
the hopping term unchanged.

For the attractive Hubbard model, the best mean-field
description is given by the BCS theory,

ĤBCS = −t
∑
〈ij〉,s

(c†i,scj,s + H.c.) +
∑

i

(	ic
†
i↑c

†
i↓ + H.c.),

(13)
where 	i is the order parameter. This Hamiltonian can be
transformed back to the repulsive case [4,39]

ĤGHF = −t
∑
〈ij〉,s

(c†i,scj,s + H.c.) +
∑

i

(Mic
†
i↑ci↓ + H.c.)

(14)
with Mi = (−1)i	i . The ground state of ĤGHF is a GHF wave
function, with antiferromagnetic order along the x-y plane. In
other words, the GHF wave function for the repulsive model
corresponds to the BCS for the attractive Hubbard model.
(The UHF wave function corresponds to a charge-density
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wave restricted Hartree-Fock single Slater determinant for the
attractive model.)

The symmetry properties of an AFQMC calculation di-
rectly affect its accuracy and efficiency [27,28]. The BCS
wave function conserves translational symmetry as shown in
Eq. (13), while breaking the conservation of particle numbers.
In AFQMC calculations of an attractive Hubbard model (with
N↑ = N↓ at any density), the walkers will break translational
symmetry because of the fluctuating auxiliary fields, which are
site-dependent if the charge decomposition is used. However,
the walkers remain single determinant with fixed particle
numbers. Thus the AFQMC calculation using a BCS trial wave
function [38,40] will have all symmetries conserved.

With particle-hole transformation, similar arguments apply
to the GHF wave function in the repulsive case. Particle-
number symmetry translates to spin symmetry along the x-y
plane. The GHF preserves all the other symmetries except
magnetic order in the plane. When combined with UHF-type
walkers, which always preserve magnetic order in the plane,
all symmetries are conserved during the AFQMC calculation.

We can also think of BCS or GHF wave functions as
linear combinations of single Slater determinants. A BCS
wave function can be written as the UHF wave function
plus all possible double excitations (c†i↑c

†
j↓), which is a large

multideterminant wave function. Similarly, the GHF wave
function is the UHF wave function with all possible spin-orbit
excitations (c†i↑cj↓), again a multideterminant wave function. It
is thus reasonable to expect the GHF wave function to perform
better than the UHF.

Incidentally, since the charge decomposition is transformed
to the spin decomposition under the particle-hole transforma-
tion, results in Table I would indicate that spin decomposition

would always give correct results for the attractive Hubbard
model. Further, the BCS trial wave functions would have
no constraint bias. The latter is consistent with observations
from calculations in Fermi gas systems in three [38] and two
dimensions [40].

IV. RESULTS AT HALF-FILLING

In this section, we present results at half-filling. As
mentioned, the AFQMC results are numerically exact, as the
sign problem is absent because of the particle-hole symmetry.
We use a combination of the path-integral approach [40]
and the random walk approach [25]. With the former, an
infinite variance problem exists, which makes the Monte
Carlo error bars unreliable and thus could render results from
standard AFQMC calculations incorrect [29]. The infinite
variance problem was removed [29] in our calculations, to
obtain reliable results and error estimates on the observables.
Results are presented for the ground-state energy, double
occupancy, effective hopping, and staggered magnetization
for U = 2, 4, 6, and 8. Detailed finite-size data are given,
up to 16 × 16, to provide benchmarks for future theoretical
and computational studies. Careful extrapolation and analysis
are then performed to obtain results at the thermodynamic limit
from the finite-size data.

A. Energy, double occupancy, and effective hopping

We consider three types of boundary conditions here,
i.e., PBC, PBC-APBC, and TABC. Here, PBC-APBC means
periodic along the x direction and antiperiodic along the y

direction, which gives a closed-shell at half-filling. In Fig. 3,

FIG. 3. Ground-state energy at half-filling calculated using different boundary conditions. PBC, PBC-APBC and TABC data are represented
by black triangular, blue star, and red dot, respectively. A fit of the TABC data is also shown, with solid red line. (a), (b), (c), and (d) correspond
to results for U = 2,4,6,8. In the insets of each panel, a zoom of the TABC results and the fit are shown for large supercell sizes. The cyan dot
in each inset represents the TDL value and combined statistical and twist error bars and the uncertainty from the fit.
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we plot the ground-state energies versus supercell size for
all three boundary conditions. Detailed data are given in
Appendix. As seen in the table there, our PBC and PBC-APBC
data typically range from 4 × 4 to 16 × 16. Our TABC data
contain about 200 twists for the smaller supercells to about
6 twists for 20 × 20. The statistical error bars contain joint
QMC and twist uncertainties. The fits to reach the TDL are
also shown in Fig. 3, with the insets displaying the asymptotic
regime with the TABC, from which the TDL values are
obtained.

Our fit for the ground-state energy has the following form:

E0/L
2 = e0 + a/L3 + b/L4, (15)

where e0 is the energy per site at the TDL. In the large U limit
at half-filling, the Hubbard model reduces to the spin-1/2
Heisenberg model with coupling constant J = 4t2/U [41].
From spin density wave theory, the leading order of finite
size correction of ground-state energy per site for the latter is
1/L3 on a square lattice [42]. This scaling relationship was
also confirmed by quantum Monte Carlo calculations [43].
Our scaling choice in Eq. (15), based on these considerations,
is seen to fit the data in the Hubbard model with excellent
accuracy.

From Fig. 3, we see that the TABC energies tend to lie
between the PBC and PBC-APBC results. With PBC and
PBC-APBC, the curves are less smooth. In fact the PBC
energies are nonmonotonic for U = 4 and U = 6. To enter
the scaling region of Eq. (15), large system size is needed,
which makes extrapolation to the TDL challenging. The finite
size effect is reduced with TABC, as expected from our
discussion in the previous section. Even at small system sizes,
the scaling relationship in Eq. (15) holds well, making the fit
more robust comparing to that using PBC and PBC-APBC
data. With a least squares fit of the TABC data, a reliable

estimate of the ground-state energy in TDL is obtained. For
U = 2, 4, 6, and 8, the final ground-state energies per site
are −1.1760(2), −0.8603(2), −0.6567(3), and −0.5243(2),
respectively. (The ground-state energy for U = 4 is consistent
with a previous QMC result −0.85996(5) obtained with a 45 ◦
tilted supercell [44].)

The magnitude of the finite size effect is seen to decrease
with U . (Note the vertical scales are different in the different
panels.) This is the result of a balance of one-body and two-
body finite-size effects. The one-body effects are especially
pronounced at low U because of shell effects. The two-body
finite-size effects are weakened in the Hubbard model because
of the very short-range nature of the interaction. That the
TABC results fit the ansatz in Eq. (15) so well across the
entire range of lattice sizes for all interactions is an indication
of the separation (or additive nature) of the one- and two-body
finite-size effects. The relative improvement of TABC over
other boundary conditions is the largest at low U . At large
U , the effect of boundary condition is suppressed, and the
finite-size effect is dominated by the interaction and the
antiferromagnetic correlation. All three boundary conditions
give results that fall on the same finite-size curve of Eq. (15)
for lattice sizes beyond L ∼ 8.

In Fig. 4, we plot the double occupancy, D =
〈∑i ni↑ni↓〉/N . Similar to the situation with the ground-state
energy, the data with TABC lie between the PBC and PBC-
APBC data and the finite size effect is reduced by using TABC.
We carry out a least squares fit of the TABC data using the
scaling relationship given in Eq. (15), although the variation
with L is not large compared to the statistical error bars, and
the extrapolation is insensitive to the precise form used here.
The TDL value obtained by the fits are 0.1923(3), 0.1262(2),
0.0810(1), and 0.0540(1) for U = 2, 4, 6, and 8, respectively.
The double occupancy decreases rapidly with U as expected.

FIG. 4. Double occupancy at half-filling calculated using different boundary conditions. Symbols and setup are similar to Fig. 3.
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FIG. 5. The dependence of the effective hopping, teff/t , on
the interaction strength U at half-filling. The inset shows the
corresponding potential energy in units of the noninteracting kinetic
energy.

To help quantify the effect of U on the bandwidth, we
calculate the effective hopping teff/t [45], defined as the ratio
of kinetic energy in the presence of U to its noninteracting
(U = 0) value,

teff

t
= 〈K〉U

〈K〉U=0
. (16)

The kinetic energy can be obtained straightforwardly by
subtracting the potential energy, given by U times the
double occupancy discussed above, from the total energy.
The effective hopping at the TDL is shown in Fig. 5 as a
function of interaction. The decrease of effective hopping with
the increase of U is consistent with the increasing of locality, as
the system develops stronger antiferromagnetic order, which
we characterize next.

We list the data of total energy, double occupancy, and
kinetic energy with finite system size from 4 × 4 to 16 × 16
for PBC and PBC-APBC in Appendix.

B. Spin correlations and magnetization

To quantify the magnetic properties in the ground state, we
compute the spin correlation function,

C(x,y) = 〈ψ0|S(0,0) · S(x,y)|ψ0〉 . (17)

S(x,y) is the spin operator at site i with coordinate (x, y),
which is given by

S(x,y) = 1

2

∑
ss ′

c
†
is
−→σ cis ′ , (18)

where −→σ denotes the Pauli matrices. In our calculation, trans-
lational symmetry is preserved statistically, so the reference
point (0,0) can be averaged over the whole lattice to reduce
the statistical error. In Fig. 6, we plot the ground-state spin
correlation function for system sizes ranging from 4 × 4 to
16 × 16 under PBC for U = 4. Long-range order is clearly
seen. However, the strength of the correlation decreases
substantially from its short-distance values and also as system
size is increased, saturating to the asymptotic value very slowly
with distance and with system size.

FIG. 6. Spin correlation function in the ground state at half-
filling. System sizes ranging from 4 × 4 to 16 × 16 are shown,
under PBC, with U = 4. The horizontal axis is the relative distance,√

x2 + y2. The top panel shows the spin correlation function, while
the bottom panel shows the staggered correlation. The dashed
horizontal line in (b) shows the final TDL value obtained from the fit.

We also compute the staggered magnetization. Two defi-
nitions are usually used in the literature [43]. One uses the
spin-spin correlation function at the greatest distance which,
for a square lattice, is M2

1 = C(L/2,L/2). The other relies on
the spin structure factor,

M2
2 = S(π,π ) = 1

N

N∑
i=1

(−1)xi+yi C(xi,yi) . (19)

Both definitions have significant finite-size effects, as can
be deduced from the results in Fig. 6. We use a modified
definition [47]

M(d)2 = 1

N − n

N∑
x2

i +y2
i >d2

(−1)xi+yi C(xi,yi) , (20)

where n is the number of sites that fall within a sphere (circle)
of radius d centered at the reference point. All three definitions
of the magnetization will converge to the same TDL value
as L → ∞. However, Eq. (20) gives a compromise which
removes the large local effects near the reference point while
averaging over multiple distances of the long-range correlation
to reduce fluctuations.

The computed magnetizations are plotted in Fig. 7 for U =
4 and 8. In each case, we show results for a sequence of
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FIG. 7. Magnetization computed with TABC at half-filling for (a)
U = 4 and (b) U = 8. For each choice of d , the result of a fit using
the form in Eq. (21) is also plotted. The cyan dot represents the final
TDL value and the estimated error bar.

choices for d. We fit the computed magnetization as a function
of supercell size, for each choice of d, with the following
scaling form:

M2 = M2
0 + a

L
+ O

(
1

L2

)
, (21)

where M0 is the staggered magnetization at the TDL. Similar
to scaling forms used above, the form in Eq. (21) is motivated
by spin-wave theory [46]. The evolution of the fitting with d is
illustrated in the figure. The TDL results of magnetizations are
0.119(4),0.236(1),0.280(5), and 0.26(3) for U = 2, 4, 6, and
8, respectively. Note that the U = 2 result is different from that
listed in Ref. [7] which contained an error in the extrapolation
to the TDL. An upper bound for the magnetization is given
by the value of 0.3070(3), from the spin-1/2 Heisenberg
model on a square lattice [43]. Our results are consistent
with the scenario that the long-range AFM order persists to
small U values, with no Mott transition at finite U in the
two-dimensional Hubbard model at half-filling.

V. RESULTS AWAY FROM HALF-FILLING

We next study the ground state when the system is doped.
The constrained-path approximation is applied to control the
sign problem, as mentioned. Previous studies have shown
that the systematic error from the constraint in the CPMC

FIG. 8. Ground-state energy and double occupancy vs supercell
size at n = 0.5 for U = 4 and 8. TABC is used. (a) and (b) correspond
to U = 4. (c) and (d) correspond to U = 8. The solid lines are from
a fit using E0/L

2(D) ∼ e0(D0) + a/L3.

calculation is small in the Hubbard model [19]. We carried
out additional benchmarks to further quantify the systematic
errors [7]. At low and intermediate densities, the CP errors are
small, using free-electron TWFs. At higher densities where
magnetic correlation is enhanced, the GHF trial wave function
improves the CP result and brings them to a level roughly
comparable to that at intermediate densities, as discussed in
Sec. III B.

All results reported in this work have thus used single-
determinant TWFs. Recent progress has resulted in further
improvement in the accuracy of CPMC, by use of symmetry
properties [27,28], by constraint release [27], or by improving
the trial wave function within CPMC via a self-consistent
iteration [48]. We have used multideterminant trial wave
functions and constraint release to verify the accuracy in a
few systems of larger L. The results are consistent with the
benchmark discussed above.

A. Low to medium density

In this section, we present numerical results for densities
of n = 0.3, 0.5, 0.6, and 0.75 in the TDL. We first illustrate
the finite-size effects and the extrapolation to the TDL with
n = 0.5, which can be precisely realized for any even L. In
Figs. 8(a) and 8(c), we plot the ground-state energy for U = 4
and 8, using TABC. The corresponding double occupancy
is presented in Figs. 8(b) and 8(d). We have also relaxed
the targeted statistical accuracy somewhat compared to half-
filling, because of CP systematic errors. Given this and given
the large system sizes we compute, the residual finite-size
effects are modest. For example, the results from 16 × 16
lattices with TABC are indistinguishable from the extrapolated
TDL value within statistical errors. Both quantities are seen to
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TABLE III. Ground-state energy and kinetic energy per site, and
double occupancy for low to intermediate densities at U = 4 and 8.

n 0.3 0.5 0.6 0.75

U = 4 e0 − 0.8793(2) − 1.141(2) − 1.1845(5) − 1.1491(2)
D 0.00932(1) 0.02740(4) 0.0404(1) 0.06606(6)
k − 0.9166(2) − 1.251(2) − 1.3461(6) − 1.4133(3)

U = 8 e0 − 0.8534(1) − 1.066(2) − 1.0729(1) − 0.9666(4)
D 0.00442(1) 0.01232(2) 0.01776(3) 0.02847(4)
k − 0.8888(1) − 1.165(2) − 1.2150(3) − 1.1944(5)

continue to fit well the general form in Eq. (15), being linear in
1/L3 for large L. With double occupancy, the TABC reduces
the finite-size effects substantially. The residual two-body
finite-size effects are seen to have opposite slopes for U = 4
and 8. Similar behavior is seen in the results at half-filling
presented in Fig. 4.

Similar calculations and analysis were carried out for
the other densities. For n = 0.3 and 0.6, integer fillings are
not possible in certain finite systems. In these cases, we
interpolate from the results for the nearest two integer fillings.
A prior study [19] had computed the equation of state for
U = 4. Our results in this density range are consistent with
theirs. In Table III, we list the ground-state energies, double
occupancies, and kinetic energies for all densities studied in
this regime for both U = 4 and 8.

We also computed the momentum distribution at n = 0.5,
which is shown in Fig. 9. For each U , we plot the results for
several twist angles. The x axis is the noninteracting energy for
the given momentum normalized by the noninteracting Fermi
energy of the corresponding twist. For U = 4, we can find
a a obvious discontinuity, which is a indicator of the Fermi
liquid behavior in this system and agree with an early QMC
calculation [49]. For U = 8, there is no obvious jump.

B. n = 0.875

The nature of the ground state at n = 0.875 is still not
completely known. Many competing tendencies are present
including spin density wave, charge density wave, and possibly
superconducting order [50]. We did not measure the supercon-
ducting correlation function in this work. (Prior calculations
with CPMC using free-electron trial wave functions did not
find long-range pairing correlation in the ground state with the
resolution possible then [51].) In a previous study [52], a spin
density wave (SDW) ground state with wave length λ = 16
(2/h) was found at n = 0.875 and U = 4. The computed
energies with supercells which are commensurate with the
SDW wavelength are seen to be slightly lower than those
which are not. Our new GHF trial wave functions gave results
consistent with this.

To accommodate the SDW structure, we studied a range
of systems with sizes 4 × 16, 8 × 16, 16 × 16, 8 × 32,
and 8 × 48. The energy per site under TABC for these
were −0.7674(7), −0.7658(3), −0.7657(2), −0.7657(4), and
−0.7660(3), respectively, at U = 8. The energies are consis-
tent with each other except for the one with the smallest width
of 4. A conservative estimate the ground-state energy in the
TDL is −0.766(1). Similarly, the TDL value for U = 4 is

(a)

(b)

FIG. 9. Momentum distribution at n = 0.5 for (a) U = 4 and (b)
8. The horizontal axis is the noninteracting energy for the given
momentum normalized by the noninteracting Fermi energy of the
corresponding twist.

estimated to be −1.026(1). [The corresponding energy results
using free-electron trial wave functions are −0.773(1) and
−1.032(1), respectively. Based on the analysis and benchmark
discussed earlier, these are expected to be less accurate than
the GHF results.] The corresponding double occupancy values
are 0.0403(2) for U = 8 and 0.0940(3) for U = 4.

VI. CONCLUSION

The Hubbard model is one of the most fundamental models
in many-body physics. It is often used as a test ground as new
approaches are developed in the quest to reliably treat interact-
ing fermion systems or correlated materials. In this work, we
have presented detailed benchmark results for the ground state
of the two-dimensional Hubbard model. The total energy, dou-
ble occupancy, effective hopping, spin correlation function,
and magnetization are computed with the AFQMC method.

At half-filling, the results are numerically exact. By a finite
size scaling of the TABC data, the most accurate values to
date of these quantities are obtained. We also provide the finite
size data for system sizes ranging from 4 × 4 to 16 × 16 so as
to facilitate benchmark of future analytical and computational
studies.

Away from half-filling, we employ the constrained path
CPMC method, which removes the sign problem and allows
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us to systematically reach large system size in the same
manner as at half-filling. Prior results and a new set of
benchmark calculations here show that the systematic error
from the constraint is small. Results are presented from low to
intermediate densities for U/t = 4 and 8. We also study the
case of n = 0.875 with a new form of single Slater determinant
trial wave function, obtaining energetics and determining the
spin correlations for both values of U/t .

In addition to the generalized Hartree-Fock trial wave
functions, which we have shown to improve the accuracy
of the constraint, we have also introduced the use of quasir-
andom twist sequences when implementing twist boundary
conditions. The quasirandom twists allow convergence with
the number of twists, which is as fast as a uniform grid,
while eliminating any shell effects from degeneracies in
the single-particle levels. The connection between GHF and
BCS trial wave functions, and their interplay with the form
of Hubbard-Stratonovich transformations will have broader
impacts beyond Hubbard models.
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APPENDIX: FINITE-SIZE DATA AT HALF-FILLING

In Table IV, we list the total ground-state energy, potential
energy, and kinetic energy with PBC and PBC-APBC.

TABLE IV. Total ground-state energy (E), potential energy (P ), and kinetic energy (K) in the Hubbard model at half-filling, for
U = 2, 4, 6, and 8. Supercell cell sizes ranging from 4 × 4 to 16 × 16 are studied. Results are listed for both PBC and PBC-APBC.
Statistical errors are on the last digit and are indicated in parenthesis.

U = 2 U = 4 U = 6 U = 8

PBC PBC-APBC PBC PBC-APBC PBC PBC-APBC PBC PBC-APBC

4 × 4 E − 18.024(6) − 20.114(2) − 13.616(6) − 14.594(3) − 10.541(4) − 10.902(7) − 8.476(9) − 8.646(8)
P 5.135(9) 6.389(1) 7.370(8) 9.227(7) 7.559(4) 8.56(1) 6.864(8) 7.26(1)
K − 23.164(3) − 26.503(3) − 20.989(4) − 23.823(8) − 18.097(7) − 19.46(1) − 15.34(2) − 15.90(2)

6 × 6 E − 41.457(5) − 43.499(2) − 30.865(9) − 31.43(2) − 23.74(1) − 23.84(1) − 19.00(2) − 19.01(1)
P 12.522(7) 14.357(1) 17.43(1) 19.21(2) 17.276(7) 17.78(1) 15.51(2) 15.67(1)
K − 53.982(4) − 57.857(4) − 48.230(8) − 50.63(1) − 41.012(9) − 41.62(1) − 34.51(2) − 34.69(2)

8 × 8 E − 74.470(5) − 76.308(3) − 55.05(1) − 55.31(1) − 42.16(2) − 42.17(2) − 33.68(3) − 33.66(2)
P 23.098(5) 25.407(6) 31.747(8) 33.006(9) 31.08(2) 31.21(1) 27.67(2) 27.70(2)
K − 97.565(5) − 101.710(8) − 86.793(8) − 88.314(8) − 73.24(2) − 73.37(1) − 61.30(3) − 61.33(3)

10 × 10 E − 116.908(4) − 118.505(4) − 86.12(4) − 86.20(2) − 65.80(2) − 65.76(2) − 52.54(3) − 52.49(2)
P 36.793(5) 39.521(7) 50.14(2) 50.89(3) 48.56(3) 48.64(3) 43.18(4) 43.22(2)
K − 153.699(5) − 158.024(9) − 136.23(1) − 137.10(2) − 114.37(2) − 114.41(2) − 95.73(3) − 95.69(3)

12 × 12 E − 168.749(7) − 170.112(3) − 123.95(2) − 123.99(3) − 94.66(2) − 94.67(2) − 75.54(2) − 75.58(3)
P 53.616(7) 56.629(9) 72.52(3) 72.96(2) 69.96(2) 69.96(3) 62.23(2) 62.20(2)
K − 222.364(8) − 226.741(9) − 196.48(1) − 196.95(2) − 164.64(2) − 164.64(2) − 137.77(4) − 137.74(4)

14 × 14 E − 229.981(6) − 231.134(4) − 168.67(2) − 168.69(3) − 128.76(2) − 128.78(3) − 102.85(3) − 102.83(4)
P 73.545(8) 76.661(8) 98.93(3) 99.12(3) 95.24(2) 95.24(2) 84.65(3) 84.60(4)
K − 303.530(6) − 307.795(8) − 267.59(2) − 267.82(2) − 224.01(2) − 224.02(3) − 187.49(4) − 187.47(4)

16 × 16 E − 300.596(6) − 301.562(5) − 220.29(4) − 220.30(4) − 168.19(3) − 168.21(5) − 134.23(3) − 134.25(3)
P 96.585(8) 99.694(7) 129.16(4) 129.36(5) 124.36(3) 124.33(6) 110.53(3) 110.57(3)
K − 397.184(8) − 401.259(8) − 349.52(2) − 349.68(2) − 292.54(3) − 292.57(3) − 244.72(5) − 244.82(5)
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