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Atomic-scale silicon wires, patterned by scanning tunneling microscopy (STM) and degenerately doped with
phosphorus (P), have attracted significant interest owing to their exceptionally low resistivity and semiclassical
Ohmic conduction at temperatures as low as T = 4.2 K. Here, we investigate the transition from semiclassical
diffusive to quantum-coherent conduction in a 4.6 nm wide wire as we decrease the measurement temperature. By
analyzing the temperature dependence of universal conductance fluctuations (UCFs) and one-dimensional (1D)
weak localization (WL)—fundamental manifestations of quantum-coherent transport in quasi-1D metals—we
show that transport evolves from quantum coherent to semiclassical at T ∼ 4 K. Remarkably, our study confirms
that universal concepts of mesoscopic physics such as UCF and 1D WL retain their validity in quasi-1D metallic
conductors down to the atomic scale.
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Individual phosphorus (P) donors, precision placed within
the silicon crystal by scanning tunneling microscopy (STM)
[1–4], are attracting growing interest as candidates for quantum
bits (qubits) in solid-state quantum information processing.
However, the engineering of scalable quantum computing
architectures [5–7] will rely on forming arrays of exchange-
coupled donor qubits with atomic-precision alignment of
gate electrodes and electron reservoirs at a similar length
scale as the P donor atoms themselves (Bohr radius aB �
2.5 nm). We have recently shown that electrodes of such
extreme dimensions can be patterned by STM [2,8] and
exhibit semiclassical Ohmic conduction with exceptionally
low resistivity at temperatures down to T = 4.2 K. This has
since allowed the implementation of these electrodes within
increasingly complex device architectures [4,9–11] for Si:P
donor-based quantum information processing.

The semiclassical metallic attributes of these Si:P wires
seem surprising [12], regarding that these atomic-scale elec-
tronic systems have been measured at cryogenic temperatures
(4.2 K) where quantum effects can be expected to dominate.
In particular, here the quantum phase-coherent nature of
the conduction electrons in a disorder potential is expected
to localize electronic wave functions, leading to insulating
behavior [13]. In a recent communication [8] we have indeed
shown that metallic conduction in STM-patterned Si:P wires is
fundamentally limited by a metal-insulator transition driven by
Anderson localization [13–15]. While electron transport in the
metallic regime remains well described by semiclassical Drude
models at T = 4.2 K [8,16], conductance fluctuations with a
Gaussian distribution and root mean square amplitude δGW ∼
e2/h [8] emerge at millikelvin temperatures, consistent with
universal conductance fluctuations (UCFs) [17–19]—a funda-
mental manifestation of phase-coherent diffusive conduction
in quasi-one-dimensional (quasi-1D) metals. In this Rapid
Communication, we explore the limits of phase-coherent
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transport by analyzing UCFs in the presence of magnetic and
gate-induced electric fields. This allows us to obtain estimates
of the length scale over which electron phase coherence is
maintained—the phase-coherence length lϕ . Importantly, we
determine the transition from the quantum phase-coherent
to semiclassical regime at a temperature T = 4.2 K [2,8],
and confirm that these fundamental concepts of mesoscopic
physics remain valid in quasi-1D metallic conductors at the
atomic scale.

A 47 nm long silicon wire as narrow as 4.6 nm is
shown in Figs. 1(a) and 1(b). This wire was patterned by
scanning tunneling microscopy (STM) lithography on the
hydrogen terminated Si(001)-2 × 1 reconstructed surfaces
of n-doped (P, 1–10 m� cm) substrates [2,8]. An atomic-
resolution STM image of the wire is shown in Fig. 1(b),
showing the atomic dimer rows of the Si(001)-2 × 1 surface
reconstruction. Following lithography, the wire was exposed
to phosphine (PH3) gas (5 × 10−8 mbar, 6 min), passivating
the reactive silicon dangling bonds. This protects the wire
against contaminants during patterning of larger electrodes
(S,D,V1,V2) and gates (G1,G2) which connect the wire to
micrometer-scale Si:P-doped contacts [2,8]. As previously
shown [8], two electrodes on either end of the wire allow
four-probe measurements, providing a precise measure of the
wire conductance independent of contact resistances [20]. A
second exposure to PH3, followed by annealing (350 ◦C,
1 min), and low-temperature (250 ◦C, 3 h) silicon epitaxy
(�25 nm), selectively dopes the completed pattern to 1/4
monolayer planar density (N2D � 2 × 1014 cm2) [21,22] with
atomically sharp doping profiles. The equivalent bulk density
N3D ∼ 1021 cm3 is three orders of magnitude higher than
the critical density (�3 × 1018 cm3) of the Mott metal-
insulator transition [23], providing a highly metallic electron
system [2].

Electron transport was measured in a 3He /4He dilution
refrigerator with a base temperature of ∼50 mK (electron
temperature �200 mK). The sample was mounted with the
magnetic field applied perpendicular to the Si:P δ-doped plane.
Four-probe electrical characterizations were subsequently
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FIG. 1. Phase-coherent transport in a 4.6 nm wide silicon
nanowire. (a) Overview STM image of a 4.6 nm wide and 47 nm
long nanowire after STM hydrogen lithography. (b) High-resolution
STM image of the wire showing its precise lithographic width
corresponding to six dimer rows (DR) of the Si(001)-2 × 1 surface
reconstruction. (c) Temperature dependence of the measured four-
terminal conductance and conductance fluctuations of order ∼e2/h.
Horizontal lines indicate the calculated mean conductance 〈GW〉
used for the background subtraction (see main text). (d) Root
mean square amplitude δGW,rms of the conductance fluctuations as
a function of temperature. (e) Mean conductance 〈GW〉 as a function
of temperature. Both (d) and (e) have been extracted from (c) (see
main text).

performed using standard dc measurement techniques with
gate voltages applied simultaneously to G1 and G2.

A comparison of the conductance GW measured at T =
4.2 K (black) and at the base temperature (Tel � 200 mK) of
our dilution refrigerator (blue) [8] is shown in Fig. 1(c). In
these data, electron phase coherence manifests itself twofold
[19,24,25]. First, as we reduce temperature, weak localization
(WL) causes an overall reduction δGWL ∼ 2e2/h of the mean
conductance 〈GW〉 (dashed horizontal lines), consistent with
1D weak localization [19]. Second, at 200 mK we observe
fluctuations with an amplitude δGW ∼ e2/h around the mean
conductance (blue shaded band), consistent with UCF. Both
phenomena arise from quantum interference of diffusively
propagating carriers along quasi-1D metals [19], and can
be described based on their well-known dependencies on
temperature T and applied magnetic field B.

The conductance fluctuations after correcting for both
temperature- and gate-voltage-dependent backgrounds are
plotted in Fig. 1(c) (bottom) and are seen to collapse around
GW = 0. For this background correction, we first subtract the
mean conductance 〈GW〉 at each measurement temperature,
followed by a subtraction of the conductance measured at
T = 4.2 K, corrected by its mean. This now allows for a
statistical analysis of the fluctuations. The root mean square
(rms) amplitude of the fluctuations is plotted in Fig. 1(d).
The saturation below T � 200 mK occurs as the electron
temperature exceeds the mixing chamber temperature of
our dilution refrigerator. The temperature-dependent mean
conductance used for the background subtraction is plotted
in Fig. 1(e). In these figures, solid blue lines show fits to the
Lee, Stone, and Fukuyama theory of UCF [18,19,26] and 1D
WL [19,27], respectively, providing two independent methods
to extract the phase-coherence length lϕ .

The observed power law temperature dependence of the
fluctuations in the low-temperature limit (lϕ � lT where lT =√

�D/kBT [28]) is described by

δGUCF = αC
gsgv

2
β−1/2

(
e2

h

)(
lϕ

L

)3/2

. (1)

Here, C is a constant of order unity [18,26]. The factor β =
1,2 describes the symmetry of the system, where β = 1 for
time-reversal symmetry, and β = 2 otherwise. The factor α =
{1, . . . ,1/gv} is a measure of the intervalley scattering strength
[29], where gv = 6 is the valley degeneracy of P δ-doped
silicon [8,30].

The temperature dependence enters Eq (1) implicitly, as
the phase-coherence length follows a power law temperature
dependence lϕ ∝ (1/T )p, where p is determined by the
dominant phase-breaking mechanism. From the fit in Fig. 1(d),
we find

δGW,rms = (0.45 ± 0.02)

(
1

T

)(0.49±0.03)

(2)

in units of e2/h, from which we extract

lϕ = (27 ± 1)

(
1

T

)(0.33±0.02)

nm. (3)

For this estimate, we have assumed β = 1, as well as C = 1
[31,32], and αgv = 1 for strong intervalley scattering [33].

The only dephasing mechanism known with a temperature
exponent p = 1/3 is electron-electron scattering with small
energy transfers—the so-called Nyquist dephasing—which
can be understood as scattering of carriers with the fluctuating
electric field generated by the quasi-1D electron gas [34].
Nyquist scattering has been found to universally dominate
dephasing at low temperature, in a wide variety of quasi-1D
metallic systems, ranging from metal wires [35–37] to carbon
nanotubes [38] and quasi-1D semiconductor nanostructures
such as silicon metal-oxide-semiconductor field-effect tran-
sistors (MOSFETs) [39,40] and larger delta-doped silicon
wires [41]. We can compare the extracted phase-coherence
length with that which is theoretically predicted for quasi-1D
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disordered metals [42],

lϕ =
(

D�
2LG0√

2e2kBT

)1/3

= 69

(
1

T

)1/3

nm, (4)

and find reasonable agreement within a factor of 2. For this
estimate, we used the diffusion constant, D = 1/2vFl = 1.8 ×
10−3 cm2/s, where vF = �kF/m∗, with m∗ = 0.28me, kF =√

4πns/gsgv = 1.45 nm−1, and an electron mean free path
l = 6 nm [8]. G0 is the semiclassical Drude conductance for
which we assume GW = 4.7e2/h, measured at T = 4.2 K and
at VG = 0 V.

To confirm this estimate of the phase-coherence length,
we also fit the temperature-dependent mean conductance
[Fig. 1(e)] with a sum of the (temperature-independent) Drude
conductance G0 [8] and a (temperature-dependent) 1D weak
localization correction δGWL(T ) [19,27],

〈GW〉(T ) = G0 + δGWL(T ), (5)

where [42,43]

δGWL = −gsgv
e2

h

(
lϕ

L

)
. (6)

Assuming Nyquist dephasing (p = 1/3) and αgv = 1, we find

lϕ = (29 ± 3)

(
1

T

)0.33

nm, (7)

in excellent agreement with the value extracted from the UCF
temperature dependence. Remarkably, this estimate agrees
exceptionally well with much wider (w > 30 nm) STM-
patterned wires [41] where lϕ = 40 × (1/T )0.31 nm was found
by analysis of 1D weak localization.

Consistent values of the coherence length extracted from
two separate (though related) theories thus corroborates the
presence of quasi-1D diffusive quantum transport in these
atomic-scale metals. The extracted temperature dependence
lϕ � 28 nm × (1/T )1/3 now allows us to extrapolate the
coherence length at Te � 200 mK, where we find lϕ =
(48 ± 3) nm. Notably, this value closely coincides with the
wire length, L = 47 nm, implying that transport is fully phase
coherent (lϕ ≈ L). Indeed, at this temperature, the conductance
fluctuations reach their universal amplitude, δGW,rms ∼ e2/h

[see Fig. 1(d)], similar to observations in fully phase-coherent
metal wires [44] and quasi-1D silicon MOSFETs [31,32]. On
the other hand, at T = 4.2 K we find lϕ � 20 nm, which
approaches the length scale of the carrier mean free path
l � 6 nm [8]. This therefore indicates the onset of semiclassical
conduction, confirmed by the observation that both UCF and
weak localization effects subside around this temperature.

It can be shown theoretically [17–19] that both a sufficiently
large change in the Fermi energy EF and large enough magnetic
flux can be regarded as equivalent to a complete change in
a sample’s disorder configuration. This consequently allows
us to study UCF as a function of both gate voltage and
magnetic fields. To further test the conductance fingerprint
for reproducibility upon thermal cycling, we measured their
magnetic field dependence in a separate cooldown.

The conductance at varying magnetic field strengths is
plotted in Fig. 2(a) [45]. Importantly, we find that the
conductance fluctuations are highly reproducible with minor
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FIG. 2. Magnetotransport at millikelvin temperatures. (a) Gate-
voltage-dependent conductance fluctuations for perpendicular mag-
netic fields between 0.1 and 8.1 T. (b) Magnetoconductance fluctua-
tions for constant gate voltages as indicated in the figure. Individual
traces in (a) and (b) have each been offset by 2e2/h. (c) Mean
conductance 〈GW〉(B), extracted from traces such as shown in (a),
with finer magnetic field increments. The solid blue line shows a fit to
Altshuler-Aronov theory [19,43] for 1D weak localization correction
[Eq (8)].

changes in the UCF pattern after thermal cycling. We explain
this by the robust disorder potential in Si:P wires which
is dominated by the position and density of P donor ions
providing both charge confinement and scatters for mobile
charge [2,8]. However, as we can see from Fig. 2(a), the pattern
of the UCF can be sufficiently randomized by the application of
a perpendicular magnetic field. Correspondingly, in Fig. 2(b)
we plot magnetoconductance at different gate voltages.
These data—similar to the gate-voltage fluctuations—also
show amplitudes of ∼e2/h, as expected from UCF theory
[17–19].

A perpendicular magnetic field breaks time-reversal sym-
metry [19], leading to a gradual quenching of the weak
localization contribution. This is illustrated in Fig. 2(c), where
we plot the mean conductance 〈GW〉 as a function of magnetic
field. The data have been extracted from curves such as those
plotted in Fig. 2(a) with finer magnetic field increments. The
solid blue line is a fit to the well-known Altshuler and Aronov
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[19,43] expression for 1D weak localization:

〈GW(B)〉 = G0 + δGWL(B)

= 〈GW(B � BC)〉 − gsgv
e2

h

1

L

[
1

l2
ϕ

+ e2B2w2

3�2

]−1/2

.

(8)

Again assuming αgv = 1 due to strong intervalley scattering,
we find

lϕ(T � 200 mK) = (36 ± 1) nm, (9)

in good agreement with the previous extrapolation of lϕ at this
temperature. We calculate the critical field [19,43]

BC = �

e

√
3

wlϕ
(10)

at which time-reversal symmetry is broken by enclosing a
magnetic flux as large as BC � 5 T, a direct consequence of
the atomic-scale width of the wire, which—due to its atomic
dimensions—requires extraordinary large magnetic fields in
order to enclose a single magnetic flux quantum �0 = h/e

within its area S = lϕw. This confirms that transport along
the wire can be regarded as fully phase coherent (lϕ � L) at
�200 mK. From the fit, we furthermore find G0 = 5.1e2/h,
close to the measured value at 4.2 K and at zero gate voltage,

indicating that both magnetic field and temperature effectively
quench the 1D weak localization.

We conclude that electron transport in atomic-scale Si:P
wires can be described consistently within the framework of
coherent diffusive conduction in quasi-1D metals. We have
shown that both the weak localization correction and the
amplitude of universal conductance fluctuations reach their
universal values at millikelvin temperatures. This confirms
that carriers maintain their phase coherence over the length
of the wire. As the temperature is raised above 4.2 K,
we observe the quantum-coherent to semiclassical transition
as Nyquist scattering of electrons causes decoherence over
length scales approaching the carrier mean free path. The
concomitant disappearance of both UCF and weak localization
effects at temperatures above T ∼ 4.2 K implies that electron
transport in these quasi-1D metals can be well approximated
by semiclassical models [2,8] at such low temperatures. Our
results thus ultimately confirm that universal concepts of
mesoscopic physics such as UCF and weak localization retain
their validity in these metallic conductors at the atomic scale.
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