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Klein tunneling and magnetoresistance of p-n junctions in Weyl semimetals
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We study the zero temperature conductance and magnetoconductance of ballistic p-n junctions in Weyl
semimetals. Electron transport is mediated by Klein tunneling between the n and p regions. The chiral anomaly
that is realized in Weyl semimetals plays a crucial role in the magnetoconductance of the junction. With the
exception of field orientations where the angle between B and the junction plane is small, magnetoconductance is
positive and linear in B at both weak and strong magnetic fields. In contrast, magnetoconductance in conventional
p-n junctions is always negative.
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A theory of low temperature resistance and magnetoresis-
tance (MR) of p-n junctions in conventional semiconductors
was developed long ago [1–3]. The junction conductance is
determined by tunneling processes of electrons between the
conduction and valence bands in the presence of the built-in
electric field of the junction. In this case the MR is positive,
and becomes exponentially large at strong magnetic fields B.
Two- and one-dimensional p-n junctions in semiconductors
with a gapless Dirac spectrum εp = ±v|p| (v is the velocity
of electrons) can be realized in graphene [4–6], armchair
carbon nanotubes [7,8], and on the surface of topological
insulators [9]. The main difference with conventional semicon-
ductors is that in the gapless case the junction conductance is
dominated by Klein tunneling; electrons near normal incidence
are transmitted through the junction without backscattering. As
a result, at B = 0 the conductance of a graphene p-n junction is
proportional to the square root of the built-in electric field E of
the junction, G ∼ e2

h
W
lE

. Here, W is the width of the junction

and lE = √
�v/|e|E is the characteristic length determined

by the built-in electric field E. In a finite magnetic field
perpendicular to the graphene sheet the MR of the junction
is positive [5] and becomes exponentially large at large B.

Recently, a new class of three-dimensional materials (Weyl
semimetals) was discovered [10–25], in which the dynamics of
low energy electrons in valley i may be described by a gapless
Dirac Hamiltonian

Hi = χiv σ · p + �i + U (r). (1)

Here, χi = ±1 is the valley chirality, σ = (σx,σy,σz) are the
Pauli matrices, p is the momentum measured from the Weyl
node, �i is the energy offset of the Weyl node from the
chemical potential in an undoped crystal, and U (r) is the
potential energy. Due to the Nielsen-Ninomiya theorem [26],
the number of the Weyl nodes g in the Brillouin zone must
be even, and the number of opposite chirality nodes should
be equal. The stability of the Weyl nodes is related to the
fact that the flux of Berry curvature through a closed surface
surrounding the node is quantized. Since the time reversal
symmetry requires the Berry curvature to be an odd function
of momentum and inversion symmetry requires it to be even,
Weyl nodes can only exist in crystals with either broken
inversion or time reversal symmetry. In the former case the
minimal number of Weyl nodes is four, while in the latter
case it is two. An interesting property of Weyl fermions is

the existence of chiral (zeroth) Landau levels in a magnetic
field. This feature is related to the chiral anomaly [26–28] and
leads to a strong anisotropic MR [26,29,30] in these materials.
In this Rapid Communication we study the conductance and
magnetoconductance of a p-n junction in a Weyl semimetal.
We show that the interplay between the chiral anomaly and
Klein tunneling results in negative MR of the junction.

The specific geometry of the junction is shown in the
inset of Fig. 1. Doping in the p and n regions creates a
built-in electrostatic potential U (z). Similar to graphene p-n
junctions [4], the probability of Klein tunneling in valley i is
determined by the value of the built-in electric field Ei at the
crossing points zi , where the electrochemical potential crosses
the Weyl node, i.e., U (zi) + �i = 0 (see Fig. 1). Therefore,
we start by expressing the conductance in terms of the electric
fields Ei at the crossing points and then evaluate these fields
by solving the corresponding nonlinear screening problem.

Conductance at zero magnetic field. Let us consider trans-
mission of an electron at the Fermi level across the junction.
For an electron in valley i with momentum parallel to the
junction plane, �k‖ = �(kx,ky), the transmission coefficient
may be determined by solving a one-dimensional Dirac
equation,(

−i�v ∂z + U (z) + �i v�k‖
v�k∗

‖ i�v ∂z + U (z) + �i

)(
u

v

)
= 0.

(2)

Here, the complex wave number k‖ = kx − iky parametrizes
the conserved momentum parallel to the junction plane.
We will assume that the dimensionless coupling constant
α = ge2/�v is small. In this case, in the region relevant
for Klein tunneling, which is of order lEi

= √
�v/|e|Ei near

the crossing points, the potential can be approximated by
U (z) + �i = −eEi(z − zi). In such case the transmission
coefficient is well known,

Ti(|k‖|) = exp
( − π |k‖|2l2

Ei

)
. (3)

This result may be understood from a semiclassical con-
sideration. For a given k‖ the value of the z component
of the electron momentum is dictated by energy conser-

vation, vpz(z) = ±
√

[eEi(z − zi)]2 − (�v|k‖|)2, which yields
the stopping points zi ± |k‖|lEi

. The transmission coeffi-
cient is determined by the imaginary part of the action
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FIG. 1. Sketch of the built-in electric potential (blue line) of the
junction U (z). The crossing points zi correspond to locations where
the electronlike (green line) and holelike (orange line) Weyl nodes
cross the Fermi level.

of the tunneling trajectory accumulated in the classically
forbidden region between the stopping points, Ti(|k‖|) =
exp (−2 Im

∫
pz(z)dz/�) = exp (−π |k‖|2l2

Ei
). This coincides

with the exact result, Eq. (3), according to which only electrons
with small parallel momenta, |k‖| � l−1

Ei
, have an appreciable

transmission probability.
Substituting Eq. (3) into the Landauer formula and sum-

ming over valleys and k‖, we obtain the conductance of the
junction

G = e2

h

∑
i

S

(2πlEi
)2

, (4)

where S is the area of the junction.
Magnetoconductance. Next, we consider the magnetic

field dependence of the junction conductance G(B) at zero
temperature for a magnetic field perpendicular to the plane of
the junction. In the vicinity of the crossing points, the electron
Hamiltonian has the form Hi = v σ · (−i�∇ − e

c
A) − eEiz.

Using the Landau gauge for the vector potential, A =
(0,Bx,0), we look for the energy eigenstates in the form
ψT = eikyy(u(x,z),v(x,z)). The spinor amplitudes u and v

satisfy the Dirac equation

�v

( ∂
∂z

− i z

l2
Ei

∂
∂x

− x−x0

l2
B

∂
∂x

+ x−x0

l2
B

− ∂
∂z

− i z

l2
Ei

)(
u

v

)
= 0, (5)

with lB = √
�c/|e|B being the magnetic length and

x0 = kyl
2
B . The solutions have the form (u,v) =

(φn−1(x)ũn−1(z),φn(x)ṽn(z)), where φn(x) are wave functions
of the nth Landau level. The amplitudes ũ and ṽ obey the
differential equation

�v

⎛
⎝ ∂

∂z
− i z

l2
Ei

√
2n

lB√
2n

lB
− ∂

∂z
− i z

l2
Ei

⎞
⎠(

ũn−1(z)

ṽn(z)

)
= 0. (6)

Note that, in addition to “conventional” Landau levels, there
is one chiral, n = 0, Landau level (in this case ũn−1 = 0).
Since Eq. (6) coincides with Eq. (2) for a quantized value
of the parallel momentum, |k‖,n| = √

2n/lB , the transmission
coefficient for the nth Landau level may be obtained by

FIG. 2. Magnetic field dependence of the conductance G at
different angles θ between the magnetic field and the normal to the
junction plane. G is measured in units of the e2

h

S

2πl2
E

.

substituting |k‖,n| = √
2n/lB in Eq. (3):

Tn,i = exp

(
−2πn

l2
Ei

l2
B

)
. (7)

Substituting Eq. (7) into the Landauer formula, summing
over the Landau levels, and accounting for their degeneracy,
S/(2πl2

B), we get the magnetic field dependence of the
conductance

G(B) = e2

h

S

2πl2
B

∑
i

1

1 − e
−2πl2

Ei
/ l2

B

, (8)

which is plotted in Fig. 2 (θ = 0 curve). As expected, at B → 0
the above expression reproduces the zero field result, Eq. (4).

It follows from Eq. (8) that G(B) is a monotonically
increasing function of the magnetic field. Note that the
magnetoconductance is a linear function of the magnetic
field, δG(B) = G(B) − G(0) ∼ B, at both weak (lB � lE)
and strong (lE � lB) fields. The positive magnetoconductance
(or negative MR) is a signature of the chiral anomaly in
Weyl materials [26,29,30]. At strong fields, lB � lE , the
conductance is determined entirely by the electrons in the
chiral (n = 0) Landau levels, which move between the p and
n regions without backscattering. In this case the positive
magnetoconductance is due to the linear in B growth of Landau
level degeneracy.

The results (4) and (8) assume an absence of scattering
and intervalley electric or magnetic breakdown. They hold
provided the electron mean free path exceeds lE and lB , and
the magnetic field and the built-in electric field are not too
strong; �K � l−1

E ,l−1
B (here, �K is the momentum difference

between the Weyl nodes). The electric fields Ei must be
determined by solving a nonlinear screening problem inside
the junction.

Tilted magnetic field. In the general situation, in which
the magnetic field makes an angle θ with the normal to
the junction plane, the electron transmission problem can be
solved analytically. The resulting conductance of the junction
is obtained in the Supplemental Material [31] and is given by

G(B) = e2

h

S cos θ

2πl2
B

∑
i

cos αi(θ )

1 − exp

(
− 2π

√
|λi−|
λi+

) , (9)
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where

λi± = 1

2

√(
l4
B

l4
Ei

− 1

)2

+ 4 cos2 θ l4
B

l4
Ei

± 1

2

(
l4
B

l4
Ei

− 1

)
,

tan 2αi(θ ) = sin 2θ

cos 2θ + l4
B/l4

Ei

.

For θ = 0 this expression reproduces Eq. (8). Magnetocon-
ductance remains positive and linear in B at both low and
high fields for most tilting angles θ (see Fig. 2). For θ � 70◦
magnetoconductance becomes nonmonotonic and develops a
shoulderlike feature at lB/ lE ∼ 1. The latter arises because at
lB/ lE � 1 Klein tunneling occurs along the z axis, whereas at
lB/ lE � 1 tunneling occurs in the direction of the magnetic
field. As a result, for θ close to 90◦, the apparent area of
the junction available for tunneling sharply decreases as the
increasing magnetic field passes lB = lE .

Evaluation of the built-in electric field. For simplicity, be-
low we assume that the offsets in the electronlike and holelike
valleys are equal in magnitude, �i = ±�. The corresponding
density of states has the form ν(ε) = g(ε2 + �2)/π2

�
3v3, and

the number density of electrons depends on the electrostatic
potential as n(U ) = −g(U 3 + 3�2U )/(3π2

�
3v3). The elec-

trostatic potential U (z) obeys the following Poisson equation,

d2U (z)

dz2
= 4πe2

[
−nd(z) + g

U 3 + 3�2U

3π2�3v3

]
, (10)

where nd(z) is the dopant density, which we model as nd(z) =
n0 sgn(z)�(|z| − d) with �(x) being the step function.

Before presenting an analytic solution of Eq. (10), let us be-
gin with a qualitative discussion of its essential features. Deep
inside the doping regions, |z| � d, the electrostatic potential
approaches constant values ±εF determined by the dopant
density n0. In the middle of the junction |U (z)| � �, and the
screening is linear, with the intrinsic screening length κ−1 =√

π/4α �v/�. At |U (z)| � � screening becomes nonlinear.
Since the creation of the p-n junction requires |U (z)| > �,
one should distinguish between the following two cases: (i)
moderate doping, εF � �, and (ii) strong doping, εF � �. In
either case we assume that the junction width d exceeds the
screening length in the doping region, d � (

√
α εF /�v)−1.

The magnitude E∗ of the electric field at the crossing points in
these regimes may be estimated as follows.

(i) For moderate doping, εF � �, the crossing points are
located within the screening length κ−1 from the boundary
of the doping regions, and the electric field at the crossing
points may be estimated as E∗ ∼ εF κ/|e|. Here, we assume
that Fermi energies in different valleys are of the same order
εF . Using Eq. (4), the conductance can be estimated as

G(0) ≈ e2

2πh

gS

2π
kF κ, kF = εF

�v
. (11)

Note that the conductance turns out to be independent of the
junction width d.

(ii) For strong doping, εF � �, near the boundary with
the doping region, d − |z| � κ−1,d, the last term in Eq. (10)
may be neglected and the solution (on the doping-free side)

acquires a simple form,

U (z) ≈ A/(d + z0 − |z|).
Since inside the doping region |U (z)| ∼ εF and the screening
length is ∼ (kF

√
α)−1, continuity of the potential and electric

field at |z| = d yields |A| ∼ v/
√

α, and z0 ∼ 1/(
√

αkF ). Thus
the locations of the crossing points, |U (z∗)| = �, may be
estimated as d − |z∗| ∼ min{κ−1,d}, and the electric field
in them as E∗ ∼ �v/|e|√α min{κ−2,d2}. This results in the
following estimate for the junction conductance,

G ∼ e2

2πh

gS√
α min{κ−2,d2} .

Note that at strong doping the conductance becomes indepen-
dent of the doping level εF .

Let us now turn to the quantitative treatment of the
nonlinear screening problem. The first integral of the Poisson
equation (10) can be cast in the following dimensionless form,

Ũ 2
ζ = (Ũ − 1)2(Ũ 2 + 2Ũ + 3 + 6δ2), ζ > ζd, (12a)

Ũ 2
ζ = Ũ 4 + 6δ2Ũ 2 + Ẽ2

c , 0 < ζ < ζd, (12b)

where Ũ = U/εF , δ = �/εF , ζ = √
2α/3πkF z, and Ẽc =√

3π/2α |e|Ec/(kF εF ) are, respectively, the dimensionless
electrostatic potential, energy offset, coordinate, and electric
field at the center of the junction. Finally, Ũζ denotes the first
derivative of Ũ with respect to ζ and εF is related to the dopant
density by n0 = 4α(1 + 3δ2) kF ε2

F /(3π2e2).
The solution of Eq. (12a) inside the doping region ζ > ζd

is given by

Ũ = 1 − 3
√

2(1 + δ2)√
2 + √

1 + 3δ2 sinh
√

6(1 + δ2)(ζ − ζ0)
. (13)

The solution of Eq. (12b) in the doping-free region is given by

Ũ = −ia− sn(ia+ζ,k), (14)

where sn(u,k) is the Jacobian elliptic function [32], and the
parameters a± and k are given by

a± =
√

3δ2 ±
√

9δ4 − Ẽ2
c , k = a−

a+
. (15)

The integration constants ζ0 and Ẽc in Eqs. (13) and (14) are
determined from the following equations, which express the
continuity of the potential Ũ and its derivative at the boundary
of the doping region (ζ = ζd ),

3
√

2 (1 + δ2)√
2 + √

1 + 3δ2 sinh[
√

6(1 + δ2)(ζd − ζ0)]
− 1 = ia−sd,

6
√

3 (1 + δ2) cosh[
√

6(1 + δ2)(ζd − ζ0)]

{√2 + √
1 + 3δ2 sinh[

√
6(1 + δ2)(ζd − ζ0)]}2

= Ẽccddd .

(16)

Here, the abbreviations sd , cd , and dd stand for

sd ≡ sn(ia+ζd,k), cd ≡ cn(ia+ζd,k), dd ≡ dn(ia+ζd,k).

The dimensionless electric field at the center of the junction
Ẽc can be found by solving the above equations numerically.
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For the dimensionless electric field Ẽ∗ at the crossing points,
Ũ (ζ∗) = ±δ, using Eq. (12b) we get

Ẽ2
∗ = Ẽ2

c + 7δ4. (17)

At strong doping determination of the potential inside the
undoped region can be further simplified. In this case both Ẽc

and δ are small, and by Eq. (15) so are a±. Then the matching
conditions can be satisfied only if the function sn(ia+ζ,k) in
Eq. (14) has a pole near the boundary with the doping region,
ζ ≈ ζd . Since in real space the location of the pole is offset
from ±d by a distance of order of the screening length in the
doping region, then to accuracy 1/(

√
αkF d) we can determine

Ẽc from the condition that sn(ia+ζ,k) in Eq. (14) must have a
pole at ζ = ζd .

The Jacobian elliptic function sn(w,k) has a series of
simple poles at w = wmn = 2mK(k) + (2n + 1)iK(

√
1 − k2)

with residues (−1)m/k. Here, m,n are integers, and K(k) =∫ π/2
0 dφ/

√
1 − k2 sin2 φ, is the complete elliptic integral of

the first kind. Near the poles the dimensionless potential Ũ in
Eq. (14) has the form Ũ (ζ ) ≈ (−1)m+1/(ζ + iζmn/a+). Since
Ũ must be real for real ζ , the pole at ζ = ζd corresponds
to m = n = 0. This gives the condition that determines
the dimensionless electric field Ẽc at the center of the
junction,

ζd = 1

a+
K(

√
1 − k2). (18)

The right hand side of this condition is real for all values of Ẽc.
For Ẽc < 3δ2 this is obvious since in this regime 0 < k < 1
and a+ is real [see Eq. (15)]. For Ẽc > 3δ2 the location of the
pole remains real although the parameters a± and k become
complex. To see this, we express Ẽc in terms of a parameter θ

in the form

Ẽc = 3δ2

cosh θ
. (19)

Here, θ is real and positive for Ẽc < 3δ2, and becomes purely
imaginary, θ → iϑ , 0 < ϑ < π/2, for 3δ2 < Ẽc. The param-
eters a± and k in Eq. (15) may be expressed in terms of θ as
a± =

√
3 e±θ/2√
cosh θ

δ and k = e−θ . Using the identity K(
√

1 − k2) =
2

1+k
K( 1−k

1+k
) [see formula 13.8 (12) of Ref. [32]], we can rewrite

Eq. (18) in the form

δ ζd =
√

cosh(θ )/3

cosh(θ/2)
K

[
tanh

(
θ

2

)]
, (20)

which is explicitly real for all values of the electric field Ẽc.
The electric field Ẽ∗ at the crossing points may be obtained
using Eqs. (17) and (19).

In the limiting case of d � 1/κ (strong intrinsic screening),
Ẽc � 3δ2, we have θ � 1 and Eq. (20) simplifies to Ẽc ≈
24δ2e−√

6δζd = 24δ2e−κd . The characteristic length lE∗ at the

crossing points can be found from Eq. (17),

l−2
E∗ ≈

√
7π

24α
κ2 ≈ 0.96√

α
κ2. (21)

In the opposite limit of d � 1/κ (weak intrinsic screen-
ing), we have θ = iϑ → iπ/2, and Eq. (20) yields Ẽc ≈
2K2(−i)/ζ 2

d = 3πK2(−i)/αd2. The characteristic length lE∗
corresponding to the electric field at the crossing points is
given by

l−2
E∗ ≈

√
6π

α
K2(−i)

1

d2
≈ 7.45√

α d2
. (22)

The junction conductance (4) in these limiting cases is
expressed in the form

G(0) ≈ e2

2πh

g S

2π
√

α

{
0.96κ2, d � κ−1,

7.45d−2, d � κ−1.

As expected, at strong doping it is independent of the doping
level εF .

We note that the assumption that the potential U (z) changes
linearly with z in the interval of order lE near the crossing
points is justified as long as the dimensionless coupling
constant is small, α � 1.

It is important to note that the MR of the junction can
be significant even in the interval of magnetic fields where it
can be treated semiclassically in the regions of the junction.
Therefore, one can neglect the magnetic field dependence of
the density of states in these regions. Finally, we note that the
value of Ec is unaffected by the magnetic field in all cases
considered above.

We would like to discuss the differences between the above
negative MR in p-n junctions and the recently observed neg-
ative MR of bulk Weyl semimetals. In bulk Weyl semimetals
at εF � �v/lB electrons can be described semiclassically. In
the latter case the magnitude of the negative MR is quadratic
in B [29,30]. It exists only in a situation where the intervalley
relaxation time is much longer than the intravalley one and
only in certain intervals of angles between the external electric
and magnetic fields, and only in some (usually small) intervals
of angles between the external electric and magnetic fields.
In contrast, the negative MR of the p-n junction is governed
by the parameter lE/ lB and is independent of the relaxation
times. Both at small and large magnetic fields its magnitude is
linear in B.

Another way to distinguish the contribution of the p-n
junction to the total negative MR of the device is to study it as
a function of the bias voltage V on the junction: The value of
G(V,B) should exhibit characteristic asymmetry with respect
to a change V → −V for diodes.

The work of S.L. and A.A. was supported by the U.S.
Department of Energy Office of Science, Basic Energy
Sciences under Award No. DE-FG02-07ER46452.

[1] L. V. Keldysh, Sov. Phys. JETP 6, 763 (1958). [2] A. G. Aronov and G. E. Pikus, Sov. Phys. JETP 24, 188 (1967).

081408-4



RAPID COMMUNICATIONS

KLEIN TUNNELING AND MAGNETORESISTANCE OF p- . . . PHYSICAL REVIEW B 94, 081408(R) (2016)

[3] R. R. Haering and E. N. Adams, J. Phys. Chem. Solids 19, 8
(1961).

[4] V. V. Cheianov and V. I. Falko, Phys. Rev. B 74, 041403 (2006).
[5] A. V. Shytov, N. Gu, and L. S. Levitov, arXiv:0708.3081.
[6] L. M. Zhang and M. M. Fogler, Phys. Rev. Lett. 100, 116804

(2008).
[7] A. V. Andreev, Phys. Rev. Lett. 99, 247204 (2007).
[8] W. Chen, A. V. Andreev, E. G. Mishchenko, and L. I. Glazman,

Phys. Rev. B 82, 115444 (2010).
[9] J. Wang, X. Chen, B.-F. Zhu, and S.-C. Zhang, Phys. Rev. B 85,

235131 (2012).
[10] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[11] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[12] G. B. Halász and L. Balents, Phys. Rev. B 85, 035103 (2012).
[13] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,

235126 (2011).
[14] O. Vafek and A. Vishwanath, Annu. Rev. Condens. Matter Phys.

5, 83 (2014).
[15] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V.

Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla,
Nat. Phys. 12, 550 (2016).

[16] J. Xiong, S. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger,
W. Wang, R. J. Cava, and N. P. Ong, Science 350, 413 (2015).

[17] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B.-K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S.
Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373
(2015).

[18] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. S. Sanchez, B.-K. Wang, A. Bansil, F. Chou,
P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349,
613 (2015).

[19] N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V.
N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C.
Plumb, M. Radovic, G. Auts, O. V. Yazyev, Z. Fang, X. Dai,
T. Qian, J. Mesot, H. Ding, and M. Shi, Nat. Phys. 11, 748
(2015).

[20] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, W. Wang, R.
J. Cava, and N. P. Ong, arXiv:1503.08179.

[21] C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong,
G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang, T.-R. Chang,
G. Chang, C.-H. Hsu, H.-T. Jeng, M. Neupane, D. S. Sanchez,
H. Zheng, J. Wang, H. Lin, C. Zhang, H.-Z. Lu, S.-Q. Shen,
T. Neupert, M. Z. Hasan, and S. Jia, Nat. Commun. 7, 10735
(2016).

[22] X. Yang, Y. Li, Z. Wang, Y. Zheng, and Z. Xu,
arXiv:1506.03190.

[23] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao, and D.-P.
Yu, Nat. Commun. 6, 10137 (2015).

[24] C. Zhang, E. Zhang, Y. Liu, Z.-G. Chen, S. Liang, J. Cao,
X. Yuan, L. Tang, Q. Li, T. Gu, Y. Wu, J. Zou, and F. Xiu,
arXiv:1504.07698.

[25] F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. D. dos Reis, N.
Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin,
J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M.
Nicklas, C. Felser, E. Hassinger, and B. Yan., Nat. Commun. 7,
11615 (2016).

[26] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
[27] S. Adler, Phys. Rev. 177, 2426 (1969).
[28] J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969).
[29] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[30] B. Z. Spivak and A. V. Andreev, Phys. Rev. B 93, 085107 (2016).
[31] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.94.081408 for the derivation.
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