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Fingerprint of topological Andreev bound states in phase-dependent heat transport
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We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson
junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel
surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the
thermal conductance for a phase difference φ = π , in clear contrast to a maximum of the thermal conductance
at φ = π that occurs for trivial Andreev bound states in superconductor–normal-metal tunnel junctions. This
opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and
nontrivial 4π modes. Furthermore, we propose a superconducting quantum interference device geometry where
phase-dependent heat currents can be measured using available experimental technology.
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Introduction. At the interface between a normal metal
and a superconductor, an electron with an energy inside the
superconducting gap gets reflected from the superconductor
as a hole in a process called Andreev reflection [1]. In
a superconductor–normal-metal–superconductor (S-N-S)
junction, this electron-hole conversion leads to the formation
of Andreev bound states with discrete energies [2]. In the case
of a short, one-dimensional junction there is exactly one pair
of such bound states with energy ε = ±�

√
1 − D sin2 φ/2

where D denotes the transmission probability of the
junction in the normal state, � is the absolute value of the
superconducting pair potential, and φ the phase difference
across the junction [3].

Recently, there has been a growing interest in Josephson
junctions based on topological insulators (TIs). The surface
states of a three-dimensional TI give rise to the formation
of topologically nontrivial helical Andreev bound states with
energy ε = ±� cos φ/2 [4], i.e., they exhibit a zero-energy
crossing at φ = π . In contrast to the S-N-S case where even
weak backscattering leads to a splitting of the accidental
degeneracy of Andreev bound states at φ = π , the crossing
in the S-TI-S case is robust due to topological protection.
It gives rise to a 4π -periodic Josephson current [5]. The
latter is difficult to observe in experiment [6,7] as it is a
single-channel effect and subject to quasiparticle poisoning.
Although recent experiments provide some evidence for the
existence of helical Andreev bound states in the nonsinusoidal
current phase relation [8], in the diffraction pattern [9] and
missing Shapiro steps in the ac Josephson effect [10], it is still
an outstanding challenge to distinguish between topologically
trivial and nontrivial 4π modes.

Interestingly, not only the Josephson current but also the
heat current between two superconductors kept at different
temperatures depends on the phase difference across the
junction. The effect arises due to the interference between
quasiparticles carrying heat and Cooper pairs carrying phase
information. It was theoretically predicted for tunnel junc-
tions [11–15] as well as for point contacts with arbitrary
transmission [16,17]. Phase-dependent heat currents can be
used as an alternative approach to probe Andreev bound
states. Indeed their effects have been very recently observed
experimentally in a superconducting quantum interference
device (SQUID) based on S-N-S junctions [18]. Subsequent

experiments demonstrated the diffraction of heat currents in
large junctions subject to magnetic fields [19] and realized
a double SQUID that allows for enhanced control of heat
flows [20]. Theoretically, phase-dependent heat transport
has been investigated in ferromagnetic Josephson junctions
[21,22] as well as for ac-driven systems [23]. Furthermore,
the fluctuations of phase-dependent heat currents [24] and
their influence on the dephasing of flux qubits [25] have been
studied.
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FIG. 1. (a) SQUID geometry to detect phase-dependent heat
currents. A magnetic flux � controls the phase difference across two
identical Josephson junctions connecting superconductors SL and SR

at temperatures TL and TR, respectively. Normal metal contacts N1−4

serve as heater and thermometer for the left and right superconductor,
respectively. (b) Thermal model accounting for heat flows, see text
for details.
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In this Rapid Communication, we demonstrate that phase-
dependent heat currents provide a robust tool to probe the
existence of topological Andreev bound states in S-TI-S
Josephson junctions as well as to distinguish them from trivial
4π -periodic Andreev bound states. Since heat currents are
carried by quasiparticles with energies above or below the
superconducting gap, they provide complementary informa-
tion to the Josephson current which is due to the formation
of Andreev bound states within the gap. For the same reason,
heat transport does not suffer from quasiparticle poisoning in
contrast to the 4π -periodic Josephson effect. We find that the
thermal conductance carries clear signatures of the helical An-
dreev bound states both for short and long junctions as well as
in the one-dimensional and two-dimensional cases. Finally, we
propose an experimental setup based on a SQUID (cf. Fig. 1)
that allows for the detection of phase-dependent heat currents
within the reach of state-of-the-art experimental technology.

Model. We consider a ballistic Josephson junction1 based
on the surface states of a three-dimensional TI in the x-y
plane. The areas |x| > L/2 are covered by conventional BCS
superconductors with pair potential �eiφr where φr is the
phase of superconductor r = L,R such that there is a phase
difference φ = φR − φL across the junction. For |x| < L/2,
the pair potential vanishes, � = 0. We assume that the pair
potential changes on a length scale much shorter than the
superconducting coherence length. This allows us to approxi-
mate the pair potential as a step function at the S-TI interface.
We, furthermore, neglect proximity effects that would require
a self-consistent determination of the pair potential.

Electron- and holelike quasiparticles are described by the
Bogoliubov–de Gennes Hamiltonian [26]

H =
(

ĥk iσ̂y�eiφr

−iσ̂y�e−iφr −ĥ∗
−k

)
, (1)

acting on wave functions describing electron- and holelike
quasiparticles with spin ↑ and ↓. The single-particle Dirac
Hamiltonian ĥk = �vFk · σ̂ − μσ̂0 describes the helical sur-
face states of the TI in the absence of superconductivity where
vF is the Fermi velocity, k the charge carrier wave vector, σ̂

the vector of Pauli matrices in spin space with σ0 denoting the
unit matrix, and μ the chemical potential.

The eigenfunctions of the Bogoliubov–de Gennes
Hamiltonian describing right-moving electron- and
left-moving holelike quasiparticles of energy ω are
given by ψ1(x,y) = (u,eiθeu, − e−iφr eiθev,e−iφr v)T eike ·r
and ψ2(x,y) = (v,eiθhv, − e−iφr eiθhu,e−iφr u)T eikh·r,
respectively, where r = (x,y), ke,h = ke,h(cos θe,h, sin θe,h),

and u = 1
2

√
1 +

√
ω2−�2

ω
and v = 1

2

√
1 −

√
ω2−�2

ω
denote the

usual coherence factors. The eigenfunctions ψ3(x,y) and
ψ4(x,y) describing quasiparticles moving in the opposite
direction are obtained from ψ1(x,y) and ψ2(x,y) by replacing
the angle of incidence θe,h with π − θe,h. In the following,
we will assume that the superconducting regions are heavily

1The diffusive regime is detrimental to the p-wave component of
superconductivity that yields the topological Andreev bound states,
see for example Ref. [42].

doped, μ � �,ω, such that we can approximate ke = kh ≡ kS

and θe = θh ≡ θS.
Let us now consider the situation of an electronlike

quasiparticle incident from the left-hand side. It gives rise
to reflected and transmitted electron- and holelike quasi-
particles such that the wave function in the two supercon-
ductors reads ψL(x,y) = ψ1(x,y) + reψ3(x,y) + rhψ2(x,y)
and ψR(x,y) = teψ1(x,y) + thψ4(x,y), respectively. For a
short junction, L = 0, we model the interface barrier by a
delta potential, Uδ(x), with barrier height U , although our
results are qualitatively independent of the barrier shape.
The potential leads to the boundary condition ψL(0,y) =
(cos Zτ̂0σ̂0 + i sin Zτ̂zσ̂x)ψR(0,y) where Z = U/�vF and τ̂

denotes the vector of Pauli matrices in particle-hole space.
In a long junction, scattering arises due to the wave vector
mismatch between the normal and superconducting regions.
For simplicity, we assume that there is no additional potential
barrier at the interface. Thus, in this case, wave functions are
continuous at the interface. From the boundary conditions, the
transmission amplitudes and subsequently the transmission
probability for electron- and holelike quasiparticles Te,h(ω,φ)
can be determined.

The thermal conductance of a one-dimensional Josephson
junction is given by

κ(φ) = 1

h

∫ ∞

�

dω ω[Te(ω,φ) + Th(ω,φ)]
df

dT
, (2)

where f = [exp(ω/kBT ) + 1]−1 denotes the equilibrium
Fermi distribution. For a two-dimensional Josephson junction,
one has to perform an additional average over sin θS and
multiply with the number N � 1 of open transport channels.

Short junction. For a short, one-dimensional S-TI-S junc-
tion, the transmission probability of quasiparticles is given by

Te,h(ω,φ) = ω2 − �2

ω2 − �2 cos2 φ

2

. (3)

It is independent of the potential barrier at the interface,
similarly to superconducting Klein tunneling for Andreev
bound states [27] and does not depend on the detailed spatial
profile of the superconducting gap [28]. In consequence,
the thermal conductance of the junction exhibits a universal
behavior independent of the interface scattering [cf. Fig. 2(a)].
In the limit x = �/kBT � 1, we obtain the analytical approx-
imation

κ(φ = 0) = 2k2
BT

h
(x2 + 2x + 2)e−x, (4)

κ(φ = π ) = 4k2
BT

h
(x + 1)e−x, (5)

i.e., lowering the temperature increases the amplitude of the
thermal conductance oscillations but also reduces the total
heat flow due to the reduced number of thermally excited
quasiparticles [28].

The phase dependence of the S-TI-S junction is in clear
contrast to the S-N-S case. The latter exhibits a transition from
a minimal thermal conductance at φ = π for a transparent
interface to a maximal thermal conductance at φ = π in the
tunneling limit [16,17] [cf. Fig. 2(a)]. The different behaviors
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FIG. 2. (a) Phase dependence of the thermal conductance in units of the thermal conductance quantum GQ = π 2k2
BT/(3h) for short,

one-dimensional S-N-S and S-TI-S Josephson junctions for different interface barrier strength Z. (b) Thermal conductance for short, two-
dimensional S-N-S and S-TI-S Josephson junctions with N � 1 channels as a function of the interface barrier strength. The temperature is
chosen as kBT = �/2.

can be understood by analyzing the density of states at the
interface. For an S-TI-S junction, the density of states is given
by

ρ(ω) = ρNTe,h(ω,φ)
|ω|√

ω2 − �2
, (6)

where ρN is the interface density of states in the normal
state. At φ = 0, we recover the usual BCS density of states
with a singularity at ω = � due to the topological Andreev
bound states merging with the continuum, similar to the
S-N-S junction. For transparent S-N-S and S-TI-S junctions
the low-energy Andreev bound states remove density of states
from above the gap leading to a reduced thermal conductance.
However, in the tunneling regime S-TI-S junctions show
strikingly different behavior from S-N-S junctions. This is
because helical Andreev bound states are protected by time-
reversal symmetry against backscattering independent of the
height of the barrier [27,29]. Therefore, they always stay
in the middle of the superconducting gap leading to the
suppression of the density of states and the minimum in
thermal conductance for φ = π . This is in clear contrast to
the S-N-S junction, where the Andreev bound states shift to
the edge of the superconducting gap leading to an enhancement
of the thermal conductance at φ = π [16,17].

Due to their simplicity, one-dimensional systems allow for
a transparent discussion of the underlying physics. At the
same time, experiments on S-TI-S junctions typically realize
two-dimensional setups due to issues with confinement in
one dimension. A two-dimensional S-N-S junction behaves
qualitatively similar to its one-dimensional counterpart. It
exhibits a transition from a minimal to a maximal thermal
conductance at φ = π with increasing strength of the interface
potential barrier [cf. Fig. 2(b)]. Since quasiparticles with
oblique incidence experience an effectively higher potential
barrier at the interface, the crossover occurs at smaller values
of Z in the two-dimensional case. In a two-dimensional S-TI-S
junction, only quasiparticles with normal incidence exhibit
unit transmission, while quasiparticles with oblique incidence
can be backscattered. Nevertheless, the S-TI-S junction always
exhibits a minimal thermal conductance at φ = π , in contrast
to an S-N-S junction [see Fig. 2(b)]. It originates from the

fact that the heat current contribution for oblique incidence
is geometrically suppressed compared to that for normal
incidence. This leads to a dominant contribution of the
topological Andreev bound state even in the two-dimensional
case. This remarkable finding allows one to distinguish
between topological and trivial 4π modes in two-dimensional
junctions by tuning the junction transparency via a gate voltage
acting on the central part of the junction. Further, the thermal
conductance of an S-TI-S junction oscillates as a function of
the barrier strength due to the formation of resonances at the
interface. This is a unique feature of the scattering of Dirac
quasiparticles. To summarize, we find that for short S-TI-S
junctions there are clear signatures of helical Andreev bound
states for both the one- and the two-dimensional case.

Long junction. For a long, one-dimensional S-TI-S junction,
the energy dependence of the electron and hole wave vector in
the intermediate TI region, kN,e/h = kN ± ω/(�vF), where kN

is the Fermi wave vector, gives rise to a modified transmission
function,

Te,h(ω,φ) = ω2 − �2

ω2 − �2 cos2
(

φ

2 ∓ ωL
�vF

) . (7)

As a consequence, the maximal thermal conductance no longer
occurs at φ = 0 but is shifted to finite values of φ [cf. Fig. 3(a)].
This is reminiscent of the φ-junction behavior of the Josephson
current in certain Josephson junctions with singlet and triplet
pairing [30–39]. We remark that the φ-junction behavior of the
thermal conductance here is due to the wave vector difference
between electrons and holes and, thus, of a completely different
origin than the φ-junction behavior of the Josephson current
in the aforementioned junctions. Furthermore, the oscillations
of the thermal conductance with φ are damped on the scale of
the superconducting coherence length ξ0 = �/(�vF).

For an S-N-S junction, the energy dependence of electron
and hole wave vectors in the normal region of the junction also
gives rise to a φ-junction behavior of the heat conductance
just as for an S-TI-S junction. On top of this, the S-N-S
junction exhibits Fabry-Pérot-type oscillations that occur on a
length scale k−1

N due to finite scattering probabilities at the S-N
interfaces. The interplay between these two effects gives rise
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FIG. 3. (a) Thermal conductance of a long, one-dimensional S-TI-S Josephson junction in units of GQ as a function of junction length L

and phase difference φ for kBT = �/2. (b) Thermal conductance of a long, one-dimensional S-N-S junction in units of GQ with kN = 0.1kS,
�vFkS = 50�, and kBT = �/2.

to a complicated interference pattern [cf. Fig. 3(b)]. Hence,
a distinct φ-junction behavior of the thermal conductance
provides a clear signature of a topological Josephson junction.

Possible experiment. In order to experimentally confirm our
theoretical predictions, we suggest using a SQUID consisting
of two superconducting electrodes connected via identical S-
TI-S Josephson junctions [cf. Fig. 1(a)]. The phase difference
across the junctions can be controlled by a magnetic flux �,
while the junction transparency can be tuned via gate voltages
[40]. Control over the junction length can be achieved by
growing samples with different L on the same wafer such that
other junction properties are very similar. The heat flow can
be accounted for in a simple thermal model [see Fig. 1(b)]
with the heat Q̇heater injected by a heater, the phase-dependent
heat flow Q̇(�) = 2κ(φ)(TL − TR) through the two Josephson
junctions, as well as heat losses into the substrate due to
electron-phonon coupling, Q̇r

e-ph = 0.98e−�/kBTr �rVr (T 5
r −

T 5
bath), r = L,R [41]. In the following, we assume an electron-

phonon coupling strength of �r = 109 W m−3 K−5 and take
the volume of each superconductor to be Vr = 10−20 m3 [18].
For a bath temperature of Tbath = 100 mK, a temperature of the
left superconductor TL = 500 mK and a superconducting pair
potential equal to twice the average electron temperature, we
find that the temperature of the right superconductor varies

between 360 and 380 mK for single-channel Josephson
junctions. This variation is clearly within the reach of current
experimental sensitivity which is around 100 μK [18] such that
our predicted effect is observable. We remark that while the
precise value of the temperature of the right superconductor
depends on the exact values of parameters, the variation of
about 20 mK is very robust with respect to parameter variations
and occurs, e.g., also for junctions with many open transport
channels.

Summary. We demonstrated that the phase-dependent ther-
mal conductance of an S-TI-S Josephson junction contains
clear signatures of the existence of topological Andreev bound
states. Importantly, the predicted effects are robust with respect
to the dimensionality and length of the junction. Furthermore,
we have proposed an experimental setup that permits one to
verify our predictions using available SQUID devices. Our
results allow one to observe experimentally a clear difference
between topologically trivial and nontrivial 4π modes and
open the perspective of studying exotic superconductivity in
various materials via heat transport.
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