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Quantum critical transport at a continuous metal-insulator transition
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In contrast to the first-order correlation-driven Mott metal-insulator transition, continuous disorder-driven
transitions are intrinsically quantum critical. Here, we investigate transport quantum criticality in the Falicov-
Kimball model, a representative of the latter class in the strong disorder category. Employing cluster-dynamical
mean-field theory, we find clear and anomalous quantum critical scaling behavior manifesting as perfect mirror
symmetry of scaling curves on both sides of the MIT. Surprisingly, we find that the beta function β(g) scales
as log(g) deep into the bad-metallic phase as well, providing a sound unified basis for these findings. We argue
that such strong localization quantum criticality may manifest in real three-dimensional systems where disorder
effects are more important than electron-electron interactions.
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The weak localization (WL) of noninteracting electrons
due to disorder is now well understood within the scaling
formalism [1] as a genuine quantum phase transition. In spite of
its extensive successes [2], further experimental developments
[3,4] present compelling evidence for a different kind of
quantum criticality that requires nontrivial extensions of the
WL paradigm. It has long been suggested, both experimentally
[5] and more recently theoretically [6], that electron-electron
interactions in a disordered system can cause a metal-insulator
transition (MIT) in D = 2 dimensions. Another possibility is
that the experiments may be probing the “strong localization”
region of a disorder model, i.e., in a regime kF l � 1, opposite
to that where WL theory works. This is supported by the
observation that features at odds with the WL predictions seem
to be qualitatively similar for D = 2,3 systems [4], as well as
the fact that observed resistivities can greatly exceed (2–3)�/e2

[the Mott-Ioffe-Regel (MIR) limit], reaching unprecedentedly
high values O(500–700)�/e2. Further, excellent “mirror”
symmetry and associated scaling behaviors in transport,
along with anomalous critical exponents suggestive of glassy
freezing close to the MIT, are known for the two-dimensional
(2D) electron gas in Si [3,4]. In these cases, either of the
two scenarios above can cause the perturbative approach
underlying WL to break down. This is because the infrared
pole structure of the one-fermion propagator is supplanted by a
branch cut, putting the very notion of well-defined Landau-like
quasiparticles in trouble in bad metals close to the MIT.

Such anomalous features as the above are also found in
systems close to purely correlation-driven Mott transitions [7],
because, e.g., while resistivity curves [ρdc(T ,X), X a control
parameter, e.g., external pressure] weakly depend upon X

at high temperature T , they rapidly converge toward either
metallic or insulating branches at low T . The Mott quantum
critical aspect is rather clearly borne out by perfect scaling
behavior and mirror symmetry of the scaling (beta) functions.
Since dynamical mean-field theory (DMFT) seems to capture
this aspect for the Hubbard model, albeit only above the
finite-T critical end point of the first-order MIT, the following
issues arise: (i) What kind of quantum criticality would operate
if the MIT were to be continuous at T = 0, and what scaling
phenomenology should one then expect? (ii) What are its
manifestations in transport in the quantum critical region?

Though the possibility of strong localization has been
studied [8] in the context of the MIT in D = 2, no study
of how such strong-coupling quantum criticality might arise
in transport in a specific microscopic model is yet available. In
this Rapid Communication, we answer these questions for the
spinless Falicov-Kimball model (FKM), which is isomorphic
to the Anderson disorder model (ADM) with a binary-alloy
disorder distribution. We choose the FKM since it can be
exactly solved and shows a continuous MIT at T = 0, both
within DMFT and cluster-DMFT (CDMFT) studies [9–12],
allowing us to study the genuine quantum criticality in the
strong localization limit in detail. The Hamiltonian is [9]

HFKM = −t
∑
〈i,j〉

(c†i cj + H.c.) + U
∑

i

ni,cni,d (1)

on a Bethe lattice with a semicircular band density of states
(DOS) as an approximation to a D = 3 lattice. ci(c

†
i ),di(d

†
i )

are fermion operators in dispersive band (c) and dispersionless
(d) states, t is the one-electron hopping integral, and U is the
on-site repulsion for a site-local doubly occupied configura-
tion. Since ni,d = 0,1, vi = Uni,d is also viewed as a static
“disorder” potential for the c fermions. Since HFKM is exactly
soluble in DMFT, extensive studies of dc and ac transport,
relying on the absence of vertex corrections in Bethe-Salpeter
equations (BSEs) for conductivities, have been done [9]. The
very interesting issue of the effects of intersite correlations
on transport in the FKM have, however, not been considered,
to our best knowledge. We use our recent exact-to-O(1/D)
extension of the DMFT for the FKM to investigate the issues
(i) and (ii) detailed above, a program greatly facilitated by
semianalytic cluster propagators and self-energies [10]. This
fortunate circumstance permits a detailed analysis of transport
properties near the Mott quantum critical point (QCP) in
the FKM to O(1/D) (D = spatial dimensionality), including
situations with finite short-range order (SRO).

Remarkably, it turns out that transport properties can also
be exactly computed in our two-site CDMFT because (1)
the “bare” bubble term in the BSE is directly obtained from
the CDMFT Green’s functions G(K,ω) for cluster momenta
K = (0,0).(π,π ), its computation being most conveniently
done in the real space bonding (S)-antibonding (P ) cluster (C)
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FIG. 1. The dc resistivity for various U/t across the continuous
Mott transition in the binary-alloy disorder model. For small U/t ,
ρdc(T ) ≈ AT at high T crosses over smoothly to a T -independent
behavior at low T . However, when 0.90 � U/t < 1.8, an intermedi-
ate bad insulator regime separates the high-T incoherent metal from
the T → 0 very bad metal, beyond which a split-band (Mott) insulator
obtains. The blue squares mark the disorder-dependent temperature
scale where ρdc(T ) changes from insulatorlike to a bad-metal-like
behavior.

basis, and, (2) more importantly, since the irreducible p-h
vertex function �(K,ω) identically vanishes, exactly as
in DMFT. This is because these enter in the form [13]
�(k) = ∑

k vkGkGk , which identically vanish when k =
K = (0,0),(π,π ). Thus, remarkably, only the bare bubbles
contribute in both S,P channels, and the total conductivity,
σxx(T ) = σS

xx(T ) + σP
xx(T ), with

σxx(T ) = σ0

∑
K

∫ +∞

−∞
dεv2(ε)ρK

0 (ε)

×
∫ +∞

−∞
dωA2

K(ε,ω)

(−df

dω

)
, (2)

and the dc resistivity is just ρxx(U/t,T ) = 1/σxx(U/t,T ). In
Fig. 1, we show ρxx(U/t,T ) as U/t is raised from small to
large values across a critical value, (U/t)c = 1.80, where a
continuous MIT occurs in the FKM within CDMFT [10].
Several features clearly stand out: (1) At high T , ρxx(T ) ≈ AT

with small A, and always attains bad-metallic limiting values
∀ U/t � 0.5. This behavior persists up to rather low T 0.01 −
0.02t , below which it levels off to a T -independent value,
as expected of a weakly disordered metal. Thus, the metallic
state is never a strict Landau Fermi liquid. (2) Remarkably,
∀U/t � 0.90, ρxx(T ) develops a minimum at intermediate
to low T , and further, ρxx(T → 0) > (2 − 3)�/e2, exceeding
the Mott-Ioffe-Regel (MIR) limit. This describes a reentrant
transition from a bad insulator to bad metal at very low
T . Both ρxx(T ) � T and bad metallicity are found for the
FKM in DMFT [9], though we find much cleaner linear-
in-T behavior up to much lower T here. (3) Even more
surprisingly, in the regime 0.90 � U/t � 1.80, ρxx(T ) crosses
over smoothly from a high-T bad-metallic behavior to a

progressively wider intermediate-to-low T window where it
shows progressively insulating behavior, followed by a second
reentrant transition to an extremely bad metal with ρxx(T →
0) � O(20–250)�/e2, before the T → 0 Mott insulating state
obtains as a divergent resistivity. These features are very
different from expectations based on WL approaches, and cry
out for deeper understanding.

Theoretically, two-site CDMFT reliably captures arbitrarily
strong, repeated scattering processes off spatially separated
scatterers on the cluster length scale l � k−1

F . Thus, it works
best in the MIR regime, where kF l � O(1), opposite to
the weak-scattering regime, where kF l 	 1. Hence, quantum
criticality in this regime has no reason to be of the WL type,
since no (1/kF l) expansion is now tenable. Rather, as in
the locator expansion [8], one expects criticality associated
with strong localization. To unearth the nature and effects
of the underlying quantum criticality, we analyze our results
by performing a detailed scaling analysis, which we now
describe. In Fig. 2, we show log [ρxx(T )/ρ(c)

xx (T )] vs T , where
ρc

xx(T ) is the critical resistivity just at (U/t)c = 1.80, where
the MIT occurs. Perfect mirror symmetry of the curves about
that for (U/t)c is testimony to the genuine quantum criticality
underlying the resistivities. Interestingly, in stark contrast to
the Hubbard model (within DMFT) where ρ(c)

xx (T ) is bad
metallic but quasilinear in T , ρ(c)

xx (T )|(U/t)c
in the FKM is

insulatorlike up to very low T and reaches extremely high
values O(200)�/e2, attesting to a very different underlying
behavior. To further unveil the unusual quantum criticality,
we show log[ρ(T )/ρc(T )] as a function of T and T/T0

in Fig. 2, with T0(U ) chosen using standard procedures
[3,6] to make the insulating and metallic curves collapse
onto two master curves. This unbiased procedure has the
advantage of directly and explicitly yielding zν, the product
of the critical exponents associated with diverging spatial
and temporal correlations at the Mott QCP, directly from the
U dependence of a low-energy scale T0(U ) which vanishes
precisely at the MIT. Remarkably, as Fig. 2 (right panel)

FIG. 2. log(ρ/ρc) vs T (left panel) and log(ρ/ρc) vs T/T0(U/t)
(right panel) for the same parameters as in Fig. 1. Perfect mirror
symmetry around (U/t)c = 1.8 and collapse of the T → 0 metallic
and insulating curves on to two universal scaling trajectories is clear.
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FIG. 3. The parameter T0(U/t) vs δU = (|U − Uc| (left panel)
and conductivity σxx(T → 0) vs δU (right panel). The insets
show that T0(δU ) = (δU )1.32 � (δU )4/3 and σxx(T → 0) = (Uc −
U )1.31 � (Uc − U )4/3, testifying to clear quantum critical behavior
(see text).

clearly shows, we find that the metallic and insulating curves
cleanly collapse onto two universal scaling curves for a wide
range of |U − Uc|. In Fig. 3 (left panel), we also confirm that
T0(δU ) � c1|δU |zν , with zν = 1.3. Further, by plotting the dc
conductivity at T → 0 as a function of U in Fig. 3 (right
panel), we also find that σxx(U,T → 0) � |Uc − U |1.3 as the
MIT is approached from the metallic side. More confirmation
of quantum critical behavior is shown in Fig. 4, where we
exhibit log[ρ(T )/ρc(T )] as a function of the scaling variable
(δU )/T 1/zν : The fact that the scaling curves for both insulating
and metallic phases have the same scaling form on either side
of the MIT testifies to robust quantum critical scaling. Since the
critical behavior of the dc conductivity at the MIT reflects the
critical divergence of the only relevant length scale, namely,

FIG. 4. log(ρ/ρc) vs the scaling parameter (δU )/T 1/zν on both
sides of the MIT. Both metallic and insulating branches exhibit the
same scaling form on either side of Uc. Continuity of the scaling
curve across Uc clearly bares Mott quantum criticality.

the localization length ξ (U ), via σxx � e2/�ξ [14], and since
ξ (U ) � |U − Uc|−ν , we directly extract ν = 1.3 � 4/3 and
z = 1. It is interesting to note that ν = 4/3 is characteristic
of a percolation mechanism for transport. This intriguing
possibility indeed holds qualitatively in the FKM as follows:
As shown by Pastor et al. [15], one can define a configuration
averaged charge-glass susceptibility χ [2] which is also singular
in the disordered Mott insulating phase of the FKM. Noticing
that intersite correlations already effectively arise in our two-
site CDMFT [near the transition on the metallic side, these read
Hres � J1

∑
〈i,j〉 σ

z
i σ z

j + fourth-order Ising “ring” exchange
for the FKM, with σ z

i = (ni,c − ni,d )/2 and J1 � 4t2/U ] at
sizable U � Uc, one expects an effective intersite term H ′ �
j

∑
〈i,j〉 ni,cnj,c with a modified j �= J to persist somewhat

into the very bad-metallic regime. Since the glass transition
is also signaled by the equation (1 − jχ [2]) = 0, χ [2] will
already diverge before the MIT. Thus, our finding of ν = 4/3
may be due to the onset of an electronic glassy dynamics
near the MIT. Percolative transport is a strong possibility in
glassy systems. Though our results suggest such an emerging
scenario near the MIT, clinching this link requires a deeper
analysis as that by Pastor et al., which we leave for future
work. Moreover, noticing that the Harris criterion ν > 2/D

always holds for D � 2 in our case also implies that intrinsic
disorder effects in the FKM cannot lead to droplet formation
(which requires ν < 2/D [16] for a second-order transition)
[16]. Thus, the quantum criticality is “clean.” Interestingly,
along with the extended mirror symmetry, our zν � 1.3 is
qualitatively consistent with zν � 1.6 for the 2D electron gas
(2DEG) in Si near the MIT [3] and zν � 1.5 for Bi films.
Our computed zν = 1.3 is very different from zν = 0.67 for
the one-band Hubbard model within DMFT. The latter value
is consistent with data for 2D organics [7]. Thus, one may
conclude that MITs in the 2DEG in Si and Bi films, among
others, are better understood by a strong localization limit in
a physical picture where strong disorder is more relevant than
local Hubbard correlations.

Further, upon plotting the transport beta function (or
Gell-Mann and Low function), defined by β(g) = d[log(g)]

d[log(L)] =
d[log(g)]
d[log(T )] (since L � T −z with z = 1 as above) versus log(g)
in Fig. 5 (left panel) [2], we find that β(g) � log(g) over a
wide range of U , from the insulator, through Uc, extending
deep into the metallic phase. In fact, it persists up to
(U/t) � 0.90, showing now that the intermediate-to-low-T
pseudogap feature in ρxx(T ) in Fig. 1 is a manifestation of
this underlying Mott quantum criticality. It is clear that this
scaling is naturally deep in the insulator, where ρxx(T ) �
exp(Eg/kBT ). Its persistence deep into the metallic regime
shows that the appearance of the very low-T “reentrant metal”
is due to the same physical processes which cause Mott
insulating behavior, and provides deeper insight into the origin
of this anomalous state. Specifically, this means that this QCP
arises from strong-coupling physics, and is out of scope of
perturbative weak-coupling schemes, as alluded to earlier. This
has additional deep implications as follows. (i) Consequent to
the above, we find that the symmetry relation linking ρ and
σxx on two sides of the MIT, ρ(δU )

ρc
= σxx (−δU )

σ c
xx

, also holds over
an extended region around Uc, as shown in the right panel of
Fig. 5. (ii) We also find that log(ρ/ρc) is a universal function
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FIG. 5. The conductivity β function vs log(g) (left panel) and
ln(ρ/ρc) (insulating) and ln(ρc/ρ) (metallic) vs ln(T/T0) (right
panel). The left panel shows that β(g) = log(g) clearly holds over
an extended regime in U/t on both sides of Uc, testifying to clear
Mott quantum criticality. The right panel establishes the symmetry
relation ln[ρ(δU )/ρc] = ln[σxx(−δU )/σc] around Uc.

of the scaling parameter δU
T 1/zν as shown in Fig. 4. (iii) Further,

this also allows us to explicitly construct β(g) for a specific
microscopic model (known to be a hard task) [8] as follows: In
scaling approaches to WL [2], β(g) depends explicitly (only)
on g, and that the probability distribution of g, P (g), is sharply
peaked at its mean value. This assumption breaks down at
strong localization, where one expects a broad distribution,
i.e., P (g) is broad. It has been argued, based on insight from
a locator expansion [8], that it is P (log g), or more generally,
P [log φ(g)] with φ(g) = a/g + b + cg + · · · as g → 0, that
is sharply peaked in this case. Then it turns out that β(g) �
log[φ(g)/φ(gc)], with gc the critical conductivity. Comparing
this with our results, we now explicitly find that φ(g) � 1/g

for the FKM. Finally, it is interesting that similar scaling
features are also seen in DMFT (see the Supplemental Material
[17]), but with zν = 1.2, distinct from zν = 4/3 found in
CDMFT. Thus, all conclusions found above remain valid,
and the only important difference is that the glassy dynamics
strongly hinted at in CDMFT (see above) is absent in DMFT.

Thus, our findings confirm support for clear manifesta-
tions of an unusual quantum criticality associated with the
continuous Mott-like MIT. Perfect mirror symmetry, along
with β(g) � − ln(g) and its persistence deep into the metallic
regime all indicate similarities with Mott criticality in the
Hubbard model (HM). But while such features appear above
the finite-T end point (T ∗) of the line of first-order Mott
transitions in the HM, they persist down to T = 0 in the
FKM, underlining a genuine Mott QCP. We can understand this
qualitatively as follows: Observe that the Landau quasiparticle
picture is already destroyed above TLFL < T ∗ in the HM [7].
We are then left with a bad metal where the absence of
coherent ↓-spin recoil in the HM prevents the lattice Kondo
effect, making it possible to “map” the HM onto two coupled
FKMs (one for each spin species) [18]. This qualitatively
explains why the Mott criticality features we find for the
FKM resemble those seen for the HM, even though (zν)FKM �
1.3 � 2(zν)HM � 0.67. We are presently unable to explain this
difference. Experimentally, we posit that this QCP leaves its
imprint in ρxx(T ) as a bad insulator at intermediate T , followed
by an anomalously bad metal as T → 0: This is also distinct
from the Hubbard case, where a bad metallic ρc

xx(T ) � AT

obtains at the critical point. Finally, within (C)DMFT, the
quantum disordered phase in the FKM is known to possess
a finite residual entropy O(ln 2) per site. Along with infrared
branch-cut continuum spectral functions [10] in earlier work,
our findings are reminiscent of “holographic duality” scenarios
[19]. Thus such quantum criticality, originally proposed
for QCPs associated with Kondo-destruction approaches to
(T = 0) melting of quasiclassical order, may also hold for
Mott quantum criticality associated with a continuous metal-
insulator transition.
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