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Description of quasiparticle and satellite properties via cumulant expansions of the retarded
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A cumulant-based GW approximation for the retarded one-particle Green’s function is proposed, motivated
by an exact relation between the improper Dyson self-energy and the cumulant generating function. Qualitative
aspects of this method are explored within a simple one-electron independent phonon model, where it is seen that
the method preserves the energy moment of the spectral weight while also reproducing the exact Green’s function
in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the
bottom of the band, albeit with inaccurate peak spacing. However, its quasiparticle properties and correlation
energies are more accurate than both previous cumulant methods and standard G0W0. Our results point to features
that may be exploited within the framework of cumulant-based methods and suggest promising directions for
future exploration and improvements of cumulant-based GW approaches.
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I. INTRODUCTION

The development of methods that can accurately and
affordably describe both the total electronic energy and the
electronic excitations of complex systems remains a long-
standing challenge in both condensed matter physics and
chemistry. Substantial progress has been made in recent
decades on the development of approximate approaches to
calculate correlation contributions that go beyond the Hartree-
Fock level of mean-field theory. While density functional
theory (DFT), including its extensions to hybrid functionals,
has emerged as an accurate and efficient means of calculating
many properties of both solids and molecules, systematic
improvement of DFT is challenging [1]. In particular, while the
Kohn-Sham eigenvalues in the theory often give a surprisingly
useful band structure, there are fundamental differences with
respect to properly calculated excitation energies [1,2]. More
broadly, considering the proliferation of a myriad of approxi-
mate exchange-correlation functionals, care must be taken in
applications to assess empirical evidence of the accuracy for
specific classes of materials.

Separate from DFT, direct many-body methods based on
wave functions have achieved impressive accuracy, exempli-
fied by coupled-cluster methods for finite systems [3] and
quantum Monte Carlo (QMC) methods for extended sys-
tems [4]. These approaches are very challenging numerically
due to unfavorable scaling with system size (or complexity),
but are often regarded as a “gold standard” when they can
be applied. They are also typically more difficult to apply to
excited state properties with the same accuracy. Nonetheless,
recent progress is encouraging for more widespread applica-
tion to solids [5–7].

On the other hand, Green’s function–based perturbation
expansions by their very nature describe spectral features
and quasiparticle properties of extended systems in a size-
consistent manner [8]. In particular, the development of the
GW approximation for application to the one-particle Green’s
function [9] led to the first predictive calculations of charged
excitation energies in real materials [10–13]. The extension
to the Bethe-Salpeter equation for the two-particle Green’s

function has correspondingly supported calculation of the
neutral excitations, such as those probed in optical absorp-
tion [2]. The development of systematic corrections beyond
GW , including approximations to the vertex corrections and
the use of self-consistency, remains a subject of ongoing
research [14–21]. Interestingly, the corresponding Green’s
function–based method for the total electronic energy has not
been widely used, although several formulations have been
investigated [16,22,23].

The homogeneous electron gas model in three dimensions
(3D), capturing essential features of the electronic structure
of simple metals, has been widely used as a model system.
Results based on G0W0 (the non-self-consistent first iteration
of the GW approximation) show very reasonable quasiparticle
properties, but a satellite structure (“plasmaron peak”) about
1.5ωp below the quasiparticle peaks (ωp being the plasma
energy) [24]. This is a surprising result since standard coupled
electron-boson models would suggest a series of satellite peaks
near integer multiples of ωp [25] below the quasiparticle peaks.
Calculations in which G was iterated to self-consistency,
conceptually part of Hedin’s original framework [9], indicated
further unphysical changes in the satellite region [14,15].
Interestingly, self-consistent GW gave reasonable correlation
energies, but it was suggested that vertex corrections were
needed in addition to restore physical spectral properties [22].

The difficulty of describing satellite structures in the
spectral function strongly suggests a cumulant-based approach
to approximately include vertex corrections [26]. This idea has
been extensively explored with a time-ordered formulation
of G [20,27–32], and has been successful in describing the
satellite structure in metals and semiconductors [33–37].
The approach restores the expected satellite progression
and modifies the quasiparticle properties quantitatively. In
part, the exponential form imposed by the cumulant ansatz
leads to the inclusion of higher-order exchange-like diagrams
that are only accessible in the standard GW formalism
by way of vertex corrections. However, these higher-order
diagrams do not correspond exactly to standard diagrams
in the time-ordered Dyson expansion. More generally, the
cumulant approach has not yet reached the formal level of
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sophistication that is afforded by the standard diagrammatic
apparatus that surrounds the Dyson equation. In particular,
aspects related to self-consistency, conservation laws, and
the one-to-one correspondence of terms within the cumulant
expansion to standard Feynman-Dyson diagrammatics require
further investigation.

The time-ordered cumulant approach is limited by the
serious drawback that it precludes the possibility of positive
spectral weight both above and below the chemical potential.
Recently, Kas et al. showed that the retarded Green’s function
is a more natural quantity to employ with the cumulant
formalism, as it allows for the description of both particles
and holes within one spectral weight profile [38]. Compared
with standard G0W0 [24], the retarded cumulant approach
predicts more physical satellite properties, similar energies,
but somewhat less accurate wave-vector-dependent occupation
numbers for the 3D electron gas. In this work, we take this
retarded Green’s function perspective as a starting point to
investigate and compare cumulant-based GW schemes.

II. METHODOLOGY

The many-body perturbation expansion for the one-particle
Green’s function can be resummed via the Dyson equation,

Gk(ω) = G0
k(ω) + G0

k(ω)�I
k (ω)G0

k(ω),

= G0
k(ω)

[
1 + �I

k (ω)G0
k(ω)

]
(1a)

= G0
k(ω)

1 − �∗
k (ω)G0

k(ω)
, (1b)

where G0
k(ω) is the noninteracting Green’s function, �∗

k (ω)
is the proper self-energy, and �I

k (ω) is the improper self-
energy [8]. In the non-self-consistent GW approximation
(henceforth referred to as G0W0), �∗

k (ω) is truncated at first
order, and the random phase approximation (RPA) Wk(ω) is
used in place of the bare Coulomb interaction vk [8]:

�∗
k (ω) = i

�

1

(2π )4

∫
d3qdω′Gk(ω)Wk−q(ω − ω′), (2a)

Wk(ω) = vk

1 − �k(ω)vk

, (2b)

�k(ω) = i

�

1

(2π )4

∫
d3qdω′Gq(ω)Gk+q(ω − ω′). (2c)

The retarded cumulant ansatz is a resummation of Eqs. (1).
It can be written as [38]

GR
k (t,T ) = G

0,R
k (t,T )eCR

k (t,T ), (3)

where Ck(t,T ) is the time-local cumulant function and the R

superscripts denote retarded quantities.
When considered with Eq. (1a), the cumulant ansatz for the

retarded one-particle Green’s function leads to a simple closed
and exact relation between the improper Dyson self-energy
and the cumulant generating function:

Ck(t,t ′) = ln

(
1 + [

G
R,0
k (t,t ′)

]−1
∫∫

dt1dt2

×G
R,0
k (t,t1)�R,I

k (t1,t2)GR,0
k (t2,t

′)
)
. (4)

For simplicity, the expressions are written for the electron
gas model. While it is clear that Eq. (4) trivially reduces to
the standard Dyson equation, it should be noted that such
a simple direct and exact relationship between the retarded
cumulant and improper retarded Dyson self-energy has, to
the best of our knowledge, not been noted before. Such a
relation is only possible when retarded quantities and the
improper as opposed to the proper self-energy are used. This
relation implies new cumulant-like approximations distinct
from earlier formulations. For example, the lowest order
expansion of the logarithm in conjunction with a retarded,
improper self-energy calculated using the normal first-order
GW diagrams yields

Ck(t,t ′) = [
G

R,0
k (t,t ′)

]−1
∫∫

dt1dt2G
R,0
k (t,t1)�R,I

GW,k(t1,t2)

×G
R,0
k (t2,t

′). (5)

This equation for the cumulant (henceforth referred to as
G0W0 with improper retarded cumulant, or G0W0 IRC) is
superficially nearly identical to the cumulant approach of Kas
et al. (G0W0 proper retarded cumulant, or G0W0 PRC) [38],
except that the improper self-energy is used in place of the
proper self-energy. To calculate the Green’s function within
one of these two cumulant schemes, then, a proper or improper
retarded self-energy is first computed as in the G0W0 scheme.
Then the self-energy is inserted into the following Fourier-
transformed version of Eq. (5) to find the cumulant:

Ck(t) ≡ Ck(t0,t0 + t)

=
∫

dω
1

π

|Im�R
k (ω + εk)|
ω2

(e−iωt + iωt − 1). (6)

Finally, the spectral weight for the Green’s function is obtained
by taking a Fourier transform of Eq. (3) [38].

Unlike standard G0W0 and G0W0 PRC, the cumulant
approach outlined above no longer sums diagrams in order
of the number of interactions, and is thus not perturbative
in the interaction coupling. Instead, the first cumulant in
Eq. (5) contains diagrams of all orders of the interaction. We
emphasize that this fact renders the approach neither more or
less accurate than the more standard G0W0 and G0W0 PRC
approximations. Regardless, the simplicity of the cumulant
formalism as outlined above does lead to important properties
such as positive and normalized spectral weight [38].

III. RESULTS

To gain a first understanding of the implications of the
G0W0 IRC approximation, we apply it to the study of a system
of independent phonons coupled to a single electronic state:

H =
∑

k

ωkb
†
kbk + c†c

[
εc +

∑
k

λk(b†k + bk)

]
, (7)

where bk,b
†
k are the annihilation and creation operators for

the phonon states, c,c† are those of the electronic state,
and εc,λk are the excited state electronic energy and the
phonon coupling, respectively. We utilize an Einstein spectral
density, J (ω) = gδ(ω − ωc). This is crudely reminiscent of the
plasmon spectral density in the 3D electron gas. This model
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has been used previously in the analysis of interaction effects
for core-holes [39] and to develop models for valence band
spectral functions [22].

For this model Hamiltonian in which the interaction
propagator W has been replaced by its phonon propagator
analog D, the G0D0 PRC approach gives the exact result
for the spectral weight [25]. In this regard our goal is not
to compare with the standard cumulant approach, which will
of course in this model yield “better” results, but to gain an
intuition for the expected spectral features produced by the
IRC method as well as to see which features of the approach
are likely to be well described.

The dynamical part of the proper Dyson self-energy within
this model is

�∗(ω) = i

2π

∫ ∞

−∞
dω′gω2

cG
0(ω − ω′; εc)D0(ω′; ωc)

= i

2π

∫ ∞

−∞
dω′gω2

c

1

ω − ω′ − εc + iδ

×
(

1

ω′ − ωc + iδ
− 1

ω′ + ωc − iδ

)

= gω2
c

ω − ωc − εc + iδ
, (8a)

|Im �∗(ω)| = πgω2
cδ(ω − (ωc + εc)). (8b)

The frequency integration was done by closing the contour
in the lower imaginary half plane. The exact and approximate
spectral functions are then evaluated as outlined in the previous
section; the improper self-energy is described by

|Im �I (ω)| = πg(1 + g)ω2
cδ(ω − ωc(1 + g) − εc), (9)

and the exact and approximate results are

APRC(ω) = e−g

∞∑
l=0

gl

l!
δ(ω − εc + gω0 − ω0l), (10)

AG0D0 (ω) = 1

1 + g
δ(ω − εc + gω0)

+ g

1 + g
δ(ω − εc − ω0), (11)

AIRC(ω) = e−g/(1+g)
∞∑
l=0

1

l!

(
g

1 + g

)l

× δ(ω − εc + gω0 − ω0l(1 + g)), (12)

respectively. The exact solution describes a sequence of peaks
separated by multiples of ω0 in energy. The basic G0D0

(Dyson) approximation predicts just two peaks, a quasiparticle
peak and a satellite peak separated by ω0(1 + g), while the
G0D0 IRC formulation predicts an infinite series of peaks
separated by ω0(1 + g). The G0D0 IRC spectrum inherits
the unphysical spacing from the G0D0 improper self-energy,
which becomes correct only in the weak-coupling (g � 1)
limit. It is easy to check that all three methods give normalized

spectral weights with an identical first moment

〈∣∣∣∣∣cc†
(

εc +
∑

k

λk(b†k + bk)

)∣∣∣∣∣
〉

=
∫

ωA(ω)dω = εc, (13)

where |〉 represents the direct product of the ground electronic
state and all ground phonon states. The G0D0 IRC spectrum,
although inaccurate in its peak spacing, still encodes the correct
first energy moment. Thus, the IRC approach appears, within
this simple toy model, to embody a compromise between
the standard cumulant and self-energy GW approaches.
Furthermore, it appears not to corrupt some important aspects
of the problem, such as the existence of multiple satellites and
the value of the “correlation” energy.

The electron gas problem provides a more stringent and in-
formative grounds of comparison for the different approxima-
tion schemes because no known method, including the G0W0

PRC scheme, is exact. Although the electron gas Hamiltonian
differs significantly from the form of Eq. (7), many of the
observations made earlier about the three approximations to
the Green’s function should still apply. In Figs. 1(a) and 1(c),

FIG. 1. A comparison of three distinct GW schemes. (a), (c) The
spectral weight for the 3D electron gas with rs = 4.0. (b), (d) The
absolute value of the imaginary part of the proper self-energy, solved
using Dyson’s equation, corresponding to the spectral weights in (a)
and (c).
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FIG. 2. Band structure for various GW schemes at rs = 4. Note
that the G0W0 IRC contains multiple satellites, similar to the G0W0

PRC case, but with a spacing that mimics the incorrect position of
the G0W0 plasmaron peak.

we present the spectral weight

Ak(ω) = − 1

π
ImGR

k (ω) (14)

for the 3D electron gas at density rs = 4.0 both at the Fermi
energy and at the bottom of the band. The spectral weight for
the Dyson GW self-energy is plotted for the same cases in
Figs. 1(b) and 1(d). The full band structure is reported for all
three calculation schemes in Fig. 2.

Both cumulant schemes improve the qualitative description
of the satellite region at low k: whereas the G0W0 scheme
predicts just one satellite at an energy 1.5ωp below the
quasiparticle (QP) peak, both cumulant schemes predict a
series of evenly spaced satellites with decreasing weights.
The G0W0 PRC scheme predicts that these satellite peaks are
separated by approximately the plasmon energy ωp, whereas
the G0W0 IRC scheme inherits the (presumably unphysical)
∼1.5ωp spacing from the G0W0 calculation, exactly as it did
in the electron-phonon model explored earlier. At and above
the Fermi wave vector kF , the G0W0 IRC results are much
more similar to the G0W0 results as compared to those from
the G0W0 PRC. Overall, the G0W0 IRC scheme interpolates
between the rounded spectral behavior of G0W0 at larger k and
the multiple satellite peak behavior of G0W0 PRC at lower k.

In addition to the spacing of satellite peaks, another
unphysical feature of the IRC approach is the appearance
of spurious sharp quasiparticle resonances which are most
apparent in the unoccupied portion of the spectral function.
These features can be easily removed in a manner that hardly
affects Ak(ω) for k � kF , n(k), or εcorr/N (the latter two of
which are discussed next). The origin of these features and the
means for their removal are discussed in the Appendix.

While the results for the 3D electron gas in the high-
frequency satellite wing suggest that the G0W0 PRC is most
accurate in this spectral region, these results shed little light on
other properties, to which we now turn. We present in Fig. 3

n(
k)

G0W0 IRC
QMC
G0W0
G0W0 PRC

0.7

0.8

0.9

1

k/kF

0.0

0.1

0.2

0.6 0.8 1.0 1.2 1.4

FIG. 3. The k-dependent occupation number n(k) for all three
approximation schemes at rs = 4.0, plotted against the “exact” QMC
result [40,41].

the wave-vector-dependent occupation number

nk =
∫ μ

−∞
Ak(ω)dω. (15)

The G0W0 IRC scheme performs similarly to G0W0, erring
on the opposite side of the “exact” quantum Monte Carlo
(QMC) data [40,41]. Notably, the G0W0 IRC occupation
numbers match the QMC results almost exactly for k < 0.9kF

and k > 1.1kF ; although the scheme suffers from unphysical
satellite peak spacing at small k, it inherits rather accurate
occupation numbers from G0W0. The G0W0 PRC occupation
numbers are not as accurate, and yield a QP renormalization
factor which is too small.

The accuracy of the occupation numbers in the G0W0 IRC
approximation can be explained using the self-energy spectra
in Figs. 1(b) and 1(d). The most significant dependence of
the momenta are on the weight of the main QP peak, which
is determined by the slope of the real part of the self-energy.
Since the real and imaginary parts of the self-energy are related
by a Kramers-Kronig transform, the slope of the real part of the
self-energy depends most strongly on the weight and positions
of the peaks in the self-energy spectrum closest to ω 	 εk .
Since the G0W0 IRC self-energy spectrum peaks are more
similar to the G0W0 ones, one would expect the G0W0 IRC
momentum distribution near k = kF to more closely resemble
that of G0W0. In particular, the increased QP renormalization
factor with respect to the G0W0 approximation is explained

TABLE I. Correlation energies of the 3D electron gas per particle
εcorr/N in hartrees for various GW schemes and rs values [42].
QMC values are obtained from Vosco et al.’s parametrization [43] of
Ceperley and Alder’s fixed-node diffusion Monte Carlo data [44].

rs G0W0 G0W0 PRC G0W0 IRC QMC

1 −0.0742 −0.0688 −0.0642 −0.0600
2 −0.0542 −0.0516 −0.0467 −0.0448
3 −0.0436 −0.0411 −0.0368 −0.0369
4 −0.0375 −0.0350 −0.0310 −0.0318
5 −0.0329 −0.0304 −0.0267 −0.0281
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FIG. 4. Correlation energies of the 3D electron gas per particle
εcorr/N for various GW schemes and rs values compared with the
“exact” QMC result. Exact values are reported in Table I.

by the slightly smaller peaks in the G0W0 IRC self-energy
spectrum at k = kF .

Finally, total energies may be calculated from Ak(ω) using
the Galitskii-Migdal formula

ε =
∑

k

∫ μ

−∞
(ω + εk)Ak(ω)dω, (16)

where εk = k2/2 is the free-electron energy dispersion. The
correlation energy per particle is calculated using εcorr =
(ε − εHF)/N , where εHF is the Hartree-Fock energy. For the
cumulant schemes, μ is determined by enforcing the total
particle number. These energies are reported in Table I and
plotted in Fig. 4. For reference, the results from fixed-node
diffusion Monte Carlo calculations of Ceperley and Alder [44]
are shown based on the parametrization by Vosko and
coworkers [43]. The G0W0 IRC scheme yields significantly
more accurate correlation energies as compared to earlier
schemes over this important range of rs values.

IV. CONCLUSION

In this work, we motivate the use of the improper retarded
self-energy in the cumulant generating function using Dyson’s
equation. Non-self-consistent calculations of the spectral
weight show that the improper retarded cumulant (IRC)
scheme predicts a series of multiple satellite bands with
a larger-than-expected spacing at the bottom of the band.
However, compared to the G0W0 PRC scheme, which predicts
a series of satellite bands with a more physical ωp spacing, the
IRC scheme yields noticeably improved occupation numbers
and correlation energies. This is promising in the ongoing
research directed to unified, efficient approaches for both total
electronic energy and excitation energies. Further work should
be done to investigate other aspects related to the retarded
cumulant-based GW approaches discussed here, including
self-consistency and the influence of higher-order cumulants.

Note added. Recently, several related studies have ap-
peared [45–47]. The spectral weights reported in these works
for the electron gas model in the G0W0 PRC approximation
are identical to the ones presented here.
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APPENDIX : SPURIOUS SHARP QUASIPARTICLE
RESONANCES AT k > kF

The standard description of the cumulant function requires
the evaluation of

Ck(t) = 1

π

∫
dω

|Im�(ω + εk)|
ω2

(e−iωt + iωt − 1), (A1)

which for the IRC demands that the integrand be constructed
with Im�I,R(ω + εk). It should be noted, however, that
the geometric sequence that is the improper self-energy is
ill-defined when evaluated precisely on the energy shell
since G0

k(εk) is divergent there. This divergence implies
Im�I,R(εk) = 0, resulting in a sharp quasiparticle-like feature
in Ak(ω) superimposed on a smooth continuum. This feature
is most apparent for k > kF , as can be seen in Fig. 5(a). Note
that the smooth continuum behavior is much like that of the
standard G0W0 spectral function.

This feature may be removed in a variety of ways that
preserve all of the conclusions reached in the main text. For
example, if the cumulant function Ck(t) is defined such that
the evaluation of Im�k(ω + ε

G0W0
k ) is used as opposed to

Im�k(ω + εk), then no spurious resonance appears (rIRC). In
addition, Ak(ω) for k � kF , n(k), and εcorr/N are essentially
unchanged. The same outcome occurs if the frequency of

FIG. 5. Band structure for various GW schemes at rs = 4 and
k = 3kF . The sharp quasiparticle resonance predicted by G0W0 IRC
is broadened by the bIRC and rIRC schemes.
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G0
k(ω) within �

I,R
k (ω) is given an imaginary part equal

to �∗
k (εG0W0

k ), the quasiparticle lifetime associated with a
standard G0W0 calculation (bIRC).

These distinct regularization procedures do however alter
the shape of Ak(ω) for k > kF as shown in Fig. 5(b). Table II
shows the robustness of the correlation energies for the
different schemes; we do not replot Ak(ω) for k � kF or n(k)
because they are essentially unaltered from Figs. 1, 2, and 3.
Overall, we find that the most important features of the IRC
approach are basically unmodified under the removal of these
spurious resonances.

TABLE II. Correlation energies of the 3D electron gas per
particle εcorr/N in hartrees for the broadened IRC (bIRC) and the
renormalized IRC (rIRC) schemes.

rs G0W0 IRC G0W0 bIRC G0W0 rIRC QMC

1 −0.0642 −0.0643 −0.0600
2 −0.0467 −0.0467 −0.0448
3 −0.0368 −0.0363 −0.0369
4 −0.0310 −0.0304 −0.0308 −0.0318
5 −0.0267 −0.0260 −0.0281
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