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From lattice Hamiltonians to tunable band structures by lithographic design

Athmane Tadjine, Guy Allan, and Christophe Delerue*

IEMN, UMR CNRS 8520, Lille, France
(Received 19 May 2016; revised manuscript received 21 July 2016; published 29 August 2016)

Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands,
and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians.
Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally
realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films.
The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for
the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting
artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different
ways, in energy or in k-space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones
extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns,
for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a
double quantum-well heterostructure. These new materials should be interesting for the experimental exploration
of Dirac-based quantum systems, for both fundamental and applied physics.
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I. INTRODUCTION

Nowadays, many popular research topics in condensed
matter are inspired by the physics of graphene. Among its
outstanding properties, its low-energy excitations are massless
Dirac fermions, which enable the realization of quantum
electrodynamics experiments on a laboratory table [1]. The
hope of manipulating relativistic fermions in condensed matter
has led to intensive research for alternative two-dimensional
(2D) Dirac materials [2–4]. Soon after the discovery of
graphene [5,6], silicene and germanene were predicted as 2D
Dirac materials [7]. Furthermore, a connection between the
honeycomb geometry and the appearance of Dirac cones has
been made, leading to the concepts of artificial graphene and
Dirac matter that presently receive huge attention [8].

In this context, several groups have proposed a top-down
approach to fabricate artificial graphene on the basis of a
2D electron gas confined in a semiconductor heterostructure
(quantum well) [9–14]. The idea is to apply a potential
modulation in order to confine the electrons on a honeycomb
lattice since it has been shown theoretically that massless
Dirac fermions could be generated near the corner of the
supercell Brillouin zone [9,10,13]. Pioneering experimental
works in this field used a modulation-doped AlGaAs/GaAs
heterostructure subjected to a lateral potential modulation
generated by remote gates periodically ordered on a hexagonal
lattice [10–14]. However, direct evidence of massless Dirac
fermions has not yet been obtained, mainly due to the small
bandwidth (�1 meV), which cannot overcome temperature
and disorder effects [14].

Another unexpected way to build artificial graphene has
been recently discovered by employing colloidal semicon-
ductor nanocrystals as artificial atoms [15–17]. The oriented-
attachment of the nanocrystals spontaneously forms long-
range ordered honeycomb lattices. Theoretical studies of these
structures have predicted the presence of Dirac cones and other
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interesting features, such as nontrivial flat bands in their energy
band dispersion [18–20].

On the theoretical side, different types of 2D Dirac materials
have been predicted [21–29]. In addition, several studies have
shown that, in principle, Dirac cones could be obtained in
other types of lattices, such as the kagome [30–32] and Lieb
[33–39] lattices. A recent theoretical work has explained,
based on a symmetry approach, how Dirac cones could be
found beyond the honeycomb lattice [40]. In spite of this
richness of predicted materials, their experimental realization
remains quite challenging. Many interesting properties that
have been predicted on the basis of effective tight-binding
Hamiltonians could be potentially investigated using ultracold
atoms trapped in optical lattices. However, solid-state realiza-
tions of these model systems are still lacking.

In this paper, we theoretically propose experimentally
feasible structures in which Dirac cones, nontrivial flat bands,
and band crossing points can be present. These structures
could be made by patterning superlattices in ultrathin films of
III-V and II-VI semiconductors using nanoscale lithography.
In these superlattices, our atomistic tight-binding calculations
show that the conduction bands are composed of minibands
characterized by energy dispersions, which have been previ-
ously derived from effective Hamiltonians.

Taking InAs as a model system, we study honeycomb
lattices formed by etched cylinders arranged on a triangular
lattice. We perform a systematic study by varying the main
structural parameters in order to design experimentally real-
izable structures with optimum properties. We show that this
lithographic approach opens a road towards other interesting
lattices such as kagome and Lieb lattices. We also predict
the existence of Dirac cones in a distorted honeycomb lattice,
which has not been investigated so far. We extend these results
to other III-V and II-VI semiconductor compounds. We also
propose the realization of bilayer artificial graphene.

In the following, we will see that the main requirement
to obtain these effects is the confinement of the electrons
in the superlattice vertices, and a strong connection between
these vertices. In fact, the confinement of the electrons creates
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discrete energy levels, which can be assimilated to those of
artificial orbitals that generate the minibands under the effect of
nearest-neighbor coupling. As a consequence, the superlattices
of these artificial orbitals can be described by simple effective
tight-binding models. Reciprocally, this study shows the
possibility to go from effective Hamiltonians to reality out
of lithographed structures that can be massively produced.

II. METHODOLOGY

A. Geometry of the superlattices

We consider superlattices made from a semiconductor
(mostly InAs) quantum well of thickness t in which electrons
are injected by (remote) doping or electrostatic gating. We
introduce in the layer a periodic array of holes (mostly
cylindrical), which form potential barriers for the electrons.
These holes can be realized by etching the layer using
e-beam lithography. Except otherwise stated, the surfaces of
the processed semiconductor layer are passivated by pseudo-
hydrogen atoms that push the surface states far from the energy
gap region. In these conditions, the electrons are entirely
confined in the remaining parts of the layer. The electrons,
which are totally free to move in two directions in the pristine
quantum well, are periodically scattered by the etched holes.
This leads to the formation of minibands in the conduction
band of the superlattices.

Several types of superlattices have been studied (Fig. 1).
The first one (discussed in Sec. III) is a square superlattice
made by etched cylindrical holes arranged on a square lattice
[Fig. 1(a)]. The second type (Sec. IV) results from the
hexagonal arrangement of the etched cylinders [Fig. 1(b)].
It forms an artificial graphene since the electrons are mostly
confined within the vertices of the structure that behave like
artificial atoms coupled together to form a honeycomb. In both
cases, the main structural parameters are the diameter D of the
holes, and the distance d between the centers of the holes
(which also corresponds to the superlattice parameter).

We have also explored four more exotic superlattices
discussed in Sec. V. The kagome (Sec. V A) and distorted
honeycomb (Sec. V B) superlattices have a hexagonal sym-
metry with respectively three and six artificial atoms per unit
cell [Figs. 1(c) and 1(d)]. The kagome is made by adding
to the honeycomb structure a second type of holes with
smaller diameter that are arranged as depicted in Fig. 1(c).
The distorted honeycomb is obtained from the honeycomb by
considering a unit cell of three holes and by changing the
shape of holes from circular to ellipsoidal. The three ellipses
per unit cell are rotated by 120◦ from each other. The Lieb
lattice (Sec. V C) is characterized by three artificial atoms
in a square unit cell and is obtained by mixing two different
cylindrical holes of diameter D and D′ [Fig. 1(e)]. The detuned
honeycomb (Sec. V D) is obtained by detuning the hole sizes
as depicted in Fig. 1(f).

The out-of-plane axis corresponds to the 〈001〉 crystallo-
graphic direction for square and Lieb superlattices, to the 〈111〉
direction for honeycomb, kagome, distorted, and detuned
honeycomb superlattices. In these conditions, the superlattice
vectors are consistent with the underlying microscopic zinc-
blende lattice of the semiconductor.

FIG. 1. Geometry of the studied superlattices. Schematics show-
ing the reproduction of the original atomic lattice (1) by etching holes
in a semiconductor thin film (2) and the unit cell of the actual studied
system (3). (a) Square, (b) honeycomb, (c) kagome, (d) distorted
honeycomb, (e) Lieb, and (f) detuned honeycomb. The atoms (not
distinguishable at this scale) of the unit cell are in red and those from
next-neighbor cells (for periodicity) are in blue. The main structural
parameters are: for (a) and (b), D is the diameter of the holes and d

is the distance between them; for (c), (e), and (f), D and D′ are the
diameters of the two different hole sizes and d is the distance between
them; for (d), M is the length of the ellipse’s major axis and m is the
length of its minor one, d is the distance between two holes taken
at the intersection of major and minor axes. The typical sizes of the
etched holes for the studied structures range from 7–21 nm and the
distances between them from 12–38 nm.
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B. Tight-binding calculations

An atomistic tight-binding method is used to compute the
electronic band structures. Each atom from the zinc-blende
structure is described by a double set of sp3d5s∗ atomic
orbitals, including the spin degree of freedom. Only first-
nearest-neighbor interactions are considered and the orbitals
are assumed to be orthogonal. The Hamiltonian matrix is
calculated using the tight-binding parameters derived in
Ref. [41] for InAs, InP, GaAs, and AlSb, in Ref. [42] for
CdTe, and in Appendix A for InSb. Those parameters are
fitted in order to reproduce the bulk band structure that is
obtained by ab initio calculations. There is no free parameter
in the calculations. The spin-orbit coupling is described by
intra-atomic Hamiltonian matrix elements in the p sector. The
surface states are pushed far from the energy gap using a
surface passivation with pseudo-hydrogen atoms.

For structures that can be realistically fabricated by top-
down lithography, the number of atoms per unit cell can be
huge, even though the etched holes contribute to reduce it. We
have investigated systems containing up to 1.3 × 105 atoms
and 2.6 × 106 atomic orbitals. Because of these large numbers,
only the lowest conduction minibands are calculated using the
numerical methods described in Ref. [43]. These methods are
based on the Jacobi-Davidson algorithm, which allows us to
compute only few eigenvalues (and corresponding eigenstates)
near a given energy σ . In this work, σ is always set in the bulk
gap, near the valence band edge. By convention, the zero of
energy is fixed at the top of the valence band of bulk systems.

Only the conduction bands of the superlattices are in-
vestigated in the present work because they can be easily
manipulated by tuning quantum confinement effects. The
situation is much more complex in the valence band because
of the presence of heavy-hole, light-hole, and split-off bands,
which are coupled in confined structures. Therefore, the
valence bands will not be discussed here, even if previous the-
oretical works have shown that the strong spin-orbit coupling
induces exotic quantum phases, such as the quantum spin Hall
effect predicted in semiconductors on which a potential with
hexagonal symmetry is superimposed [44] or in honeycomb
superlattices of colloidal CdSe nanocrystals [17,18].

III. ARTIFICIAL SQUARE LATTICE

To understand the mechanism of formation of artificial
superlattices in etched semiconductor thin films, we have
studied the simple case of a square superlattice. Figure 2(a)
shows the conduction band structure obtained for an InAs
film with D = 17.6 nm, d = 24.2 nm, and t = 6.1 nm. We can
distinguish two manifolds of minibands. Their behavior can
be understood as follows.

The electrons are mainly confined within the vertices of
the square superlattice, this results in discrete energy levels
whose coupling generates the minibands. The two lowest
levels have a s-like wave-function envelope [Fig. 2(b)], the
four others exhibit two opposite lobes and a single node in
the x-y lattice plane, which indicate that their wave-function
envelopes are px,y-like. Due to the strong confinement in the
vertical direction (z), the envelope wave functions are more
2D than 3D, the pz states are higher in energy (not shown),

FIG. 2. Results for a square superlattice in an InAs layer.
(a) Lowest six conduction minibands for the square superlattice vs
the wave vector k along the path shown in Appendix B for a structure
with d = 24.2 nm, D = 17.6 nm, and t = 6.1 nm. (b) Wave functions
of the six lowest conduction states in an isolated InAs nanocrystal
defined by a single unit cell of the superlattice. The two lowest states
of energy E = 0.63938 eV have a 2D s-like envelope wave function
while the four higher states (E = 0.69647 eV and E = 0.69695 eV)
have a 2D px,y-like envelope wave function. The small splitting
between the two manifolds of p states comes from the spin-orbit
coupling.
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and the s-like and px,y-like states are squeezed along the z

axis. The band structure presented in Fig. 2(a) is the expected
one for a simple tight-binding Hamiltonian with s and px,y

orbitals per atom, as already shown for square superlattices of
colloidal nanocrystals [45]. Figure 2(b) shows that the p states
are not pure px and py states, but they are mixed and their
degeneracy is lifted due to the spin-orbit coupling. The latter
is also responsible for the small splitting of the bands visible
in the p sector [Fig. 2(a)].

IV. HONEYCOMB SUPERLATTICES

A. Model system: InAs superlattices

Figure 3 presents results for an InAs honeycomb superlat-
tice, including a typical band structure that we predict for a
wide range of sizes [Fig. 3(a)]. This band structure exhibits
several Dirac cones and nontrivial flat bands. All minibands
are doublets of quasidegenerate bands. The behavior of the
lowest minibands can also be understood by considering each
vertex of the superlattice as an artificial atom. Figure 3(b)
shows that the envelope wave function of the two lowest states
in each artificial atom is s-like, while the one of the four other
states above in energy is p-like. Taking into account that the
superlattice unit cell is composed of two artificial atoms, these
s and px,y states are at the origin of the twelve lowest bands
(including spin degeneracy) forming two manifolds.

Due to the honeycomb geometry, the s states (of the artificial
atoms) give rise to bands with a Dirac cone at the K point.
Their energy dispersion behaves like the π and π∗ bands in
real graphene. px,y states also form π -like bands in addition
to nontrivial flat bands. The hexagonal symmetry induces
a frustration of the px,y artificial-atom orbitals resulting in
destructive interferences that cause the appearance of these
flat bands [46,47]. The flat bands are connected to the π

bands just at �. These band crossing points are protected by
the topology and the symmetry of the lattice [40,47,48]. The
splitting between the π -π∗ bands at the M point (hereafter
referred to as the bandwidth), a measure of the band dispersion,
varies significantly with the ratio D/d, for both s and px,y

bands [Fig. 4(a)]. In the p sector, it is inversely proportional
to D/d due to the weakening of the coupling between the
artificial-atom orbitals. For D/d smaller than 0.6, the π -like
bands in the p sector mix with higher-energy bands [Fig. 4(b)].
In the s sector, the bandwidth is reduced at small D/d due to
the increasing coupling between s and p states. Nevertheless,
splittings at the M point above 10 meV can be obtained
with reasonable (regarding lithography techniques) hole sizes
[Fig. 4(a)].

In absence of kinetic energy, nontrivial flat bands are
interesting for the study of correlated electron systems.
Theoretical studies have predicted that they could host exotic
quantum phases, such as the fractional quantum Hall phase
in presence of spin-orbit coupling [49–51]. Figure 4(b) shows
that these nontrivial flat bands no longer exist for small values
of D/d due to the coupling with higher bands.

The bands above the px,y bands in Fig. 3(a) come from 2D
d orbitals of the artificial atoms. They are characterized by a
well-defined Dirac cone in π -like bands, a flat band above the

FIG. 3. Results for a honeycomb superlattice in an InAs layer.
(a) Lowest conduction minibands for the honeycomb superlattice
vs the wave vector k along the path shown in Appendix B for a
structure with d = 24.5 nm, D = 19.7 nm, and t = 3.9 nm. (b) Wave
functions of the six lowest states confined in an isolated nanocrystal
defined by half a single unit cell of the superlattice, i.e., as found at
each superlattice vertex. The two lowest-energy states of energy E =
0.77157 eV have a 2D s-like envelope wave function while the four
higher-energy states (E = 0.89218 eV and E = 0.89387 eV) have a
2D px,y-like envelope wave function.
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FIG. 4. Evolution of the band structure with structural parameters for honeycomb superlattices. (a) Evolution of π -π∗ bandwidth at the M

point with the ratio D/d , where D is the diameter of the holes and d the distance between two consecutive holes. The film thickness is set at
t = 3.9 nm. Blue •: s sector bands with d = 15.6 nm, red ◦: s sector bands with d = 24.5 nm; blue �: p sector bands with d = 15.6 nm, red
�: p sector bands with d = 24.5 nm. (b) Lowest conduction bands for d = 24.5 nm, D = 5.0 nm (D/d = 0.2), and t = 3.9 nm. (c) Lowest
conduction bands for d = 24.5 nm, D = 17.3 nm (D/d = 0.7), and t = 3.9 nm. (d) Evolution of π -π∗ bandwidth at the M point with the
thickness t of the film. The ratio D/d is set at 0.8. Blue •: s sector bands with d = 15.6 nm, red ◦: s sector bands with d = 24.5 nm; blue �:
p sector bands with d = 15.6 nm, red �: p sector bands with d = 24.5 nm. (e) Lowest conduction bands for d = 24.5 nm, D = 19.7 nm, and
t = 1.1 nm. (f) Lowest conduction bands for d = 24.5 nm, D = 19.7 nm, and t = 9.4 nm.

upper π band, and a crossing point between the two bands
at �. This shows the multiorbital character of these artificial
superlattices that is certainly hard to find in real materials.

The evolution of the bandwidth in the s and p sectors vs
the thickness of the film is smooth and presents a quasiplateau
[Fig. 4(d)]. However, there is a missing information in this
representation, as shown in Figs. 4(e) and 4(f). The higher-
energy quantum well states (somehow pz-like, with a node
along the vertical direction), induced by the confinement
along the perpendicular axis, also couple together to create
minibands. At increasing thickness, these sub-bands have
lower energy and mix with the px,y ones. If one just wants to
investigate the s bands, this effect does not represent any issue.
However, for the investigation of px,y bands, film thicknesses
smaller than ∼10 nm are required to avoid these effects.

Finally, we notice that the bigger is the hole size, the smaller
is the bandwidth. This was expected since the confinement
is weaker when the size of the artificial atoms increases.
Nevertheless, we choose in the rest of this paper to focus
on hole sizes attainable experimentally (	10 nm).

B. Superlattices made from other compounds

From the explanation of the mechanism leading to Dirac
and nontrivial flat bands, we can see that the nature of the
semiconductor compound is not crucial, provided that it is
characterized by a single conduction valley with a relatively
small effective mass that enhances confinement effects. We
show in this section nonexhaustive results on other III-V and II-
VI compounds, namely InP [Fig. 5(a)], GaAs [Fig. 5(b)], InSb
[Fig. 5(c)], and CdTe [Fig. 5(d)]. For the sake of comparison,
we consider superlattices with D/d ≈ 0.8.

The band structures predicted for other semiconductors
(Fig. 5) are basically the same as for InAs [Fig. 4(c)], and
they present comparable bandwidths even if the largest ones
are found in materials with the smaller effective mass (InSb,
InAs). However, the band dispersions are slightly different
in the InSb system. Due to a strong spin-orbit coupling and a
broken inversion symmetry (〈111〉 and 〈1̄1̄1̄〉 directions are not
equivalent), the Rashba spin-orbit coupling induces a visible
spin splitting of the bands, especially in the p sector. In the next
sections, we will only show results for InAs systems, but one
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FIG. 5. Results for honeycomb superlattices with different III-V and II-VI compounds. Lowest conduction bands for (a) InP with d =
23.7 nm, D = 19.0 nm, and t = 3.7 nm, (b) GaAs with d = 22.8 nm, D = 18.3 nm, and t = 3.6 nm, (c) InSb with d = 26.2 nm, D = 21.0 nm,
and t = 4.1 nm and (d) CdTe with d = 26.2 nm, D = 21.0 nm, and t = 4.1 nm.

has to keep in mind that it is possible to recover similar ones
with other III-V and II-VI compounds. Thus, the number of
interesting structures using this lithographic approach is quite
large.

V. TOWARDS EXOTIC STRUCTURES BEYOND THE
HONEYCOMB LATTICE

In this section, we investigate more exotic structures made
by the lithographic approach. We show that it is possible to
reproduce band structures originally predicted using effective
Hamiltonians in different types of lattices. We will see that
the lithographic technique allows us to design artificial lattices
that mimics the behavior of their atomic counterparts, which
remain at the moment at the level of model systems. We also
consider an original lattice for which interesting features are
found.

A. Kagome

We have investigated the band structure of an artificial
kagome lattice made from an InAs films. The geometry
of the superlattice is described in Fig. 1(c). The Brillouin
zone is the same as for the honeycomb (Appendix B). The
effective tight-binding model for the kagome lattice with a
single orbital per site and a constant hopping term between
nearest-neighbor orbitals has been widely studied [30–32].
Three spin-degenerate bands are predicted, two behave as the
π -π∗ bands of graphene hosting a Dirac cone at the K point,
and a nontrivial flat band crosses the π∗ band just at the � point.
Thus, the spectrum consists of a flat band at E = Es + 2t and
two dispersive bands written as [30]

E±(k) = Es + t[−1 ±
√

4A(k) − 3] (1)

with A(k) = cos2 k1 + cos2 k2 + cos2 k3, where Es is the on-
site orbital energy, t the first-nearest-neighbor hopping energy,

and kn = k.an with a1 = (1,0)a, a2 = (1,
√

3)a
2 , and a3 = a2 −

a1, the three nearest-neighbor vectors of length a.
The band structure of Fig. 6(a) presents this expected

behavior in the s sector and a good agreement with the
effective tight-binding model is found (see Appendix D for
the fitted parameter values). This emphasizes the fact that the
artificial structure reproduces the lattice band structure. One
can clearly observe an asymmetry between the bandwidth of

the dispersive bands in the artificial structure, which is caused
by the interaction with higher bands that are not taken into
account in the effective Hamiltonian.

For the investigated structure size, the π -π∗ bandwidth at
the � point is equal to 10.4 meV. The upper band in the s

sector is extremely flat, showing that the effective coupling
between artificial atom s orbitals are mainly restricted to
nearest-neighboring ones. The crossing point between the π∗
band and the flat band at � is protected by the topology. In
the p sector, a more complex dispersion is found due to the
intermixing of the px,y states present at the vertices in the cells.

B. Distorted honeycomb

As described in Sec. II A, we have designed a new type of
lattice in the form of a distorted honeycomb [Fig. 1(d)]. This
lattice has six artificial atoms per unit cell and bonds between
them with different strengths and orientations. Figure 6(b)
shows a s sector composed of six spin-degenerate bands.
There are two manifolds of π -π∗ bands, giving rise to two
Dirac cones at K . In addition, there are two less dispersive
bands in the s sector. For the studied sizes, the bandwidth at
the � point of the first π -π∗ manifold is equal to 25 meV
while the bandwidth of the second one is equal to 54 meV.
We have developed in Appendix C an effective tight-binding
Hamiltonian, which reproduces the main features of the band
structure presented in Fig. 6(b).

C. Lieb lattice

The Lieb lattice, characterized by three atoms in a square
unit cell, has been studied both theoretically and experimen-
tally, in the case of ultracold atoms in optical lattices, and in
photonic lattices [33–39]. The effective tight-binding model
for a single s orbital per site gives three bands with interesting
features. If the on-site energy is the same on the three s orbitals
of the unit cell, two bands cross at the M point, forming a
Dirac cone. The third band is totally flat and intercepts the
Dirac cone at the same point. This behavior at the M point
can be described by a three-component quantum equation for
pseudospin 1 fermions [34]. However, if the on-site energy for
the atoms at the corners of the square lattice (denoted sites A)
is not the same as for the atoms located at the bond centers
(sites B), a gap opens up and the Dirac fermions acquire an
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FIG. 6. Results for kagome and distorted honeycomb superlat-
tices made from an InAs films. (a) Lowest conduction bands for the
kagome superlattice with d = 38.6 nm, D = 22.3 nm, D′ = 6.7 nm,
and t = 3.8 nm. The dashed lines in the s sector show the results
of the effective Hamiltonian. (b) Lowest conduction bands for the
distorted honeycomb superlattice with d = 26.1 nm, M = 12.5 nm,
m = 8.7 nm, and t = 3.9 nm.

effective mass [34]. Thus, the spectrum consists of a flat band
at E = Es + � and two dispersive bands

E±(k) = Es ±
√

�2 + 4t2

[
cos2

(
kx

a

2

)
+ cos2

(
ky

a

2

)]
,

(2)

where 2� is the difference between the on-site energies of sites
A and B, Es is their mean value, t the first-nearest-neighbor
hopping energy, and a the lattice parameter.

We reproduce the Lieb lattice using two different hole
sizes [Fig. 1(e)]. The resulting artificial atoms of sites A are
characterized by four nearest neighbors, and those of sites B
have only two nearest neighbors. The sites B are all equivalent
due to the symmetry between [100] and [010] orientations. A
typical band structure is shown in Fig. 7. As expected, we find
three bands in the s sector but there is no Dirac cone because
the on-site energy of the artificial atoms is, by construction,
different on sites A and B. This leads to massive Dirac fermions
at the M point [34]. However, the third band is remarkably
flat and touches one of the other bands at the M point that is
protected by the topology of the lattice. A good agreement with
the effective tight-binding model is found (fitted parameters
for the effective models are presented in Appendix D). As
in kagome, an asymmetry exists in the two dispersive bands
due to the coupling with higher bands that are missing in the
effective Hamiltonian.

If one takes into account the next-nearest-neighbor hopping
term in the effective Hamiltonian, the flat band becomes
dispersive [52]. Thus, the presence of a flat band confirms that
an effective nearest-neighbor coupling is sufficient to describe
the band structure.

D. Detuned honeycomb

In addition to distortions, the lithographic approach also
allows us to realize effective Hamiltonians with detuned
hopping energies [t0 and t1, cf. Fig. 1(f1)]. In a recent paper,
it was shown theoretically that by detuning the honeycomb
lattice in a certain fashion, a gap opens up and a topological
phase transition occurs [53]. We show in this section that it is
possible to realize this detuning and to open the gap.

Starting from the honeycomb lattice, if one considers a unit
cell of six atoms (i.e., three times bigger than the graphene
one), then the π -π∗ bands are folded as shown in Fig. 7(b).
If one now enhances the coupling between these hexagons by
taking t0 < t1, a gap opens up in the band structure [Fig. 7(c)].
This enhancement can be obtained by simply detuning the
etched hole sizes as shown in Fig. 1(f2) and Fig. 1(f3). For the
band structure shown in Fig. 7(c), we have taken a detuning
ratio D/D′ = 1.1.

If the detuning is increased again, the band structure tends
in a continuous manner towards a kagome one [Figs. 7(d)–
7(f)]. One can easily see in Fig. 1(f) that if D′ � D, the
system becomes a kagome one as in Fig. 1(c) (i.e., a hexagonal
arrangement of large holes surrounded by six smaller ones).
The six artificial atoms per unit cell in the structure of Fig. 1(f)
merge two by two to give the three artificial atoms of the
kagome lattice, resulting in a division of the s sector in s and p

ones, the p states resulting from the antibonding combination
of two neighboring s states. For example, for D/D′ = 2.7 the
band structure of the kagome lattice is recovered [Fig. 7(f) is
formally similar to Fig. 6(a)].

This approach gives a new way of seeing the band structure
of such lattices. Even though both graphene and kagome
share a hexagonal symmetry, the link between their energy
dispersion in the effective lattice Hamiltonian is not obvious.
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FIG. 7. Results for Lieb and detuned honeycomb superlattices made from an InAs film. (a) Lowest conduction bands for the Lieb superlattice
with d = 12.1 nm, D = 15.3 nm, D′ = 7.6 nm, and t = 6.1 nm. The path of the wave vector k in the Brillouin zone is depicted in Appendix B.
The dashed lines in the s sector show the results of the effective Hamiltonian. (c) Lowest conduction bands for the detuned honeycomb
superlattice with d = 14.0 nm, D′ = 10.5 nm, D = 11.6 nm (D/D′ = 1.1), and t = 3.9 nm. (b) Lowest conduction bands for the honeycomb
superlattice with d = 14.0 nm, D = D′ = 10.5 nm, and t = 3.9 nm represented in the same Brillouin zone as for the detuned one. (d) Same
as (c) with D′ = 8.9 nm and D = 13.1 nm (D/D′ = 1.5). (e) Same as (c) with D′ = 7.3 nm and D = 14.6 nm (D/D′ = 2.0). (f) Same as (c)
with D′ = 6.0 nm and D = 16.0 nm (D/D′ = 2.7).

Not only does the lithographic approach enlighten the relation
between their band structures, it should also allow us to study
the evolution of their properties when one goes from graphene
to kagome lattice and vice versa, which is of course impossible
with the real atomic lattices.

VI. REALIZATION OF THE POTENTIAL MODULATIONS
USING InAs/AlSb

In all our previous calculations, we passivated the surfaces
with pseudo-hydrogen atoms that form an artificial potential
barrier. Experimentally, this confining barrier can be obtained
by the use of oxides [54–56]. Although oxides are largely
used in device technology, a high density of electronic states
at the interface with III-V semiconductors is problematic for
our purpose [57]. We propose here to use semiconductor
heterojunctions instead, and we suggest the system InAs/AlSb
as a promising case.

InAs/AlSb heterostructures have been widely studied for
their high carrier mobility [58–60]. AlSb forms a natural
barrier of 1.35 eV for electrons with 1.3% lattice mismatch
between InAs and AlSb. We propose to fill the etched holes
by epitaxial regrowth of AlSb after the lithography patterning,

few layers of AlSb should also be grown under and on top
of the InAs film to completely surround it with the barrier
material [Fig. 8(a)].

Results of the calculation for a honeycomb InAs/AlSb
heterostructure are shown in Figs. 8(b) and 8(c), for two
different sizes. The AlSb barrier is high enough to efficiently
confine the electrons and to recover the band structure obtained
with the pseudo-hydrogen atom passivation. In fact, the band
structure of Fig. 8(c) completely matches the one of Fig. 3(a),
which is obtained for the same hole sizes.

VII. BILAYER ARTIFICIAL GRAPHENE

Besides monolayer graphene, bilayer graphene was also
intensively studied in recent years [61–71]. Two different
stackings are possible, the AA stacking where the two layers
are superposed in a perfectly aligned manner, and the AB
stacking where one of the layers is translated along a first-
nearest-neighbor bond. The AA stacking was theoretically
predicted to be structurally unstable [72,73]. Nevertheless,
some theoretical investigations were made on this system and
have shown promising properties such as Klein tunneling and
spin Hall effect [74–80].
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FIG. 8. Results for honeycomb superlattices realized with InAs/AlSb heterostructures. (a) Oblique view of the InAs/AlSb heterostructure:
the etched holes in the InAs film are filled with AlSb. Top and bottom surfaces are passivated with few layers of AlSb. AlSb surfaces are
passivated with hydrogen atoms (not shown). In atoms are in red, As atoms are in black, Al atoms are in yellow, Sb atoms are in blue.
(b) Lowest conduction bands for d = 16.0 nm, D = 12.8 nm, and t = 3.9 nm. (c) Lowest conduction bands for d = 24.6 nm, D = 19.7 nm,
and t = 3.9 nm.

By alternating AlSb and InAs layers before etching the
hexagonal lattice holes, it is possible to create an AA bilayer
artificial graphene [Fig. 9(a)]. As in the previous section, we
assume a regrowth of AlSb after the etching in order to fill the
holes with the barrier material.

The AA stacked graphene spectrum consists of a duplicated
graphene band structure separated in energy by 2γ , where γ

is the interlayer coupling. The dispersion relation of the π -π∗
bands is written as [1]

E±(k) = Es ± t
√

3 + f (k) (3)

with f (k) = cos(
√

3kya) + 4 cos(
√

3
2 kya) cos( 3

2kxa), where
Es is the on-site energy, t the first-nearest-neighbor hopping
energy, and a the lattice parameter.

Figure 9(c) shows the electron band structure of the system.
In the s sector, the duplicated π -π∗ bands of the monolayer
artificial graphene are found as expected. A good agreement
is found with the effective Hamiltonian (see Appendix D for
the fitted parameters).

To verify that the energy splitting takes its origin from
the coupling of the two monolayers (�E = 2γ ), we develop
hereafter a simple model. Assuming that γ is proportional to
the tunneling probability through the AlSb layer, we write

γ ∝ e−
√

2m∗(V −Es )
�

d ′ ≡ e−αd ′
, (4)

where d ′ is the distance between the two layers (i.e., the thick-
ness of the AlSb interlayer), V is the potential barrier, Es is the
energy of the artificial s state, and m∗ is the effective electron
mass in the barrier material. The exponential fit of Fig. 9(b)

FIG. 9. Results for the AA stacked artificial graphene realized with InAs/AlSb heterostructures. (a) Oblique view of the AA stacked
InAs/AlSb heterostructure: the etched holes in the two InAs films and the interlayer between them are filled with AlSb. Top and bottom surfaces
are passivated with few layers of AlSb. AlSb surfaces are passivated with hydrogen atoms (not shown). In atoms are in red, As atoms are in
black, Al atoms are in yellow, Sb atoms are in blue. (b) Evolution of the energy splitting (�) between the two Dirac points in the s sector vs
the thickness d ′ of the AlSb interlayer between the two InAs quantum wells. The solid line is a numerical fit assuming a splitting varying like
exp (−αd ′). (c) Lowest conduction bands for d = 24.6 nm, D = 19.7 nm, d ′ = 3.2 nm, and t = 3.9 nm. The dashed lines in the s sector show
the results of the effective Hamiltonian.
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TABLE I. TB parameters (notations of Slater and Koster [85]) for
InSb in an orthogonal sp3d5s∗ model. � is the spin-orbit coupling.
(a) and (c) denote the anion (Sb) and the cation (In), respectively.
Lattice parameter: a = 6.4793 Å.

Parameters for InSb (eV)

Es(a) −5.55828
Es(c) 0.52753
Ep(a) 2.74743 Ep(c) 4.54895
Ed (a) 11.51822 Ed (c) 11.51822
Es∗ (a) 18.43176 Es∗ (c) 18.43176
�(a) 0.44950 �(c) 0.12300
Vssσ (ac) −1.12227 Vs∗s∗σ (ac) −4.30235
Vss∗σ (ac) −1.88189 Vss∗σ (ca) −2.00420
Vspσ (ac) 2.50841 Vspσ (ca) 2.65119
Vs∗pσ (ac) 2.73800 Vs∗pσ (ca) 2.34710
Vsdσ (ac) −2.45802 Vsdσ (ca) −2.77740
Vs∗dσ (ac) −0.73710 Vs∗dσ (ca) −0.81440
Vppσ (ac) 3.48365 Vppπ (ac) −1.23018
Vpdσ (ac) −1.65148 Vpdσ (ca) −1.73100
Vpdπ (ac) 1.56926 Vpdπ (ca) 1.65149
Vddσ (ac) −1.30520 Vddπ (ac) 2.07840
Vddδ −1.41180

Parameters for In-H and Sb-H (eV)
EH 3.91350
Vssσ −34.34193 Vspσ 45.13511

gives α = 1.17 nm−1. If we take V = 1.35 eV and Es =
0.789 eV as given in Fig. 8(c) by the position of the Dirac cone
at the K point, we have m∗ = 0.093m0 where m0 is the electron
mass. This result is close to the common values (≈0.1m0) used
in literature for the electron effective mass in AlSb [41,81–83],
and close to the effective mass (0.109 m0) at � derived from
the tight-binding parametrization that we use in the present
work [41]. Thus, the obtained electronic structure really de-
rives from the coupling of two artificial graphene monolayers.

VIII. CONCLUSION

In conclusion, we have theoretically investigated the elec-
tronic band structure of superlattices, which could be realized

FIG. 10. Band structure of InSb calculated in TB using the
parameters of Table I. The zero of energy corresponds to the top
of the valence band.

FIG. 11. Brillouin zones of all studied structures. (a) Triangular
lattice Brillouin zone with its high symmetry points that corresponds
to honeycomb, kagome, distorted, and detuned honeycomb superlat-
tices. (b) Square lattice Brillouin zone with its high symmetry points
that corresponds to square and Lieb superlattices.

by lithographic techniques in ultrathin films of III-V and II-VI
semiconductors. By designing artificial lattices, it is possible
to create 2D materials characterized by band structures, which
were previously studied on the basis of effective tight-binding
models. Dirac cones, nontrivial flat bands, and band crossing
points can be found not only in artificial graphene but also
in more exotic lattices, such as kagome, Lieb, and distorted
honeycomb, demonstrating the possibility to play with the
geometry and the topology. The performed study on AA
bilayer graphene, which is unstable in its atomic form, opens
a road towards designing artificial structures that present
interesting features but are unfortunately unstable in their real
atomic form. In a more general view, we hope that this work
will motivate the experimental realization of quantum systems,
which have only been studied so far using model Hamiltonians.
This is clearly challenging, for example, regarding the effects
of disorder, but within reach using present technological means
for the lattice dimensions that we have considered.
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APPENDIX A: TIGHT-BINDING PARAMETERS FOR InSb

The electronic structure of InSb is calculated as described
in Ref. [43] for Si and Ref. [86] for III-V materials. Only
first-nearest-neighbor interactions are considered between two
orbitals located on different atoms (hopping integrals). The

TABLE II. Effective tight-binding parameters for the distorted
honeycomb. Ec, Ee, and Ev are the on-site energies of the center, edge,
and vertex atoms, respectively. tv−e is the hopping energy between a
vertex and an edge atom and tc−e is the hopping energy between a
center and an edge one.

Parameters for the effective model (eV)

Ec 0.810 Ev 0.794 tv−e −0.0130
Ee 0.807 tc−e −0.0040
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FIG. 12. From a distorted honeycomb to a detuned one. (a) Unit cell of the distorted honeycomb presented in Sec. V B and (b) its equivalent
detuned honeycomb with two different hopping energies: tv−e (solid lines) and tc−e (dashed lines). The letters c, e, and v stand for center, edge,
and vertex site respectively. (c) The band structure obtained with the effective tight-binding Hamiltonian.

atomistic tight-binding Hamiltonian is written as functions of
parameters fitted in order to reproduce the band structure for
the bulk system obtained with the ab initio calculations of
Ref. [87]. We have considered a basis of sp3d5s∗ (s∗ is a
second s orbital) orbitals. The basis set is doubled in order
to take into account spin-orbit coupling. The TB parameters
are given in Table I, and the corresponding band structure is
shown in Fig. 10. The TB parameters are obtained numerically
using a conjugate gradient method, allowing us to get accurate
positions of the bands at the main points of the Brillouin
zone over a wide energy range (shown in Fig. 10), as well
as correct effective masses at band edges. The terms E in
Table I represent the on-site energies of orbitals, Es being
for example the s orbital energy in the solid. The terms V

in Table I completely define the hopping matrix terms in the
two-center approximation [85]. The In-H and Sb-H parameters
are defined so the surface states are pushed far from the band
edges. By convention, the zero of energy is taken at the top of
the valence band.

APPENDIX B: BRILLOUIN ZONES AND
FOLLOWED PATHS

We briefly present in this appendix the Brillouin zones
of each studied structure (Fig. 11). For all structures with
triangular superlattice symmetry, the followed path is K → �

→ M → K . For square superlattice symmetry, the followed
path is X → � → M → X.

APPENDIX C: EFFECTIVE TIGHT-BINDING
HAMILTONIAN FOR THE DISTORTED

HONEYCOMB LATTICE

It is possible to consider the distorted honeycomb presented
in Sec. V B as a detuned honeycomb, but with a detuning
different than the one presented in Sec. V D. Figure 12 shows
the distortion that transform the unit cell of the distorted
honeycomb into a honeycomb. Thus, we can recover the band
structure of the distorted honeycomb by using a modified
honeycomb effective tight-binding Hamiltonian.

We consider an effective Hamiltonian with simple s orbitals
per site and a hopping energy t . Due to the distortion, the
center, edge, and vertex nanocrystals have different shapes.
This can be modeled in the effective Hamiltonian by slightly
different on-site energies Ec, Ee, Ev , respectively. Moreover,
the distortion increases the distance between the central and
edge atoms. This change can be modeled by considering two
different hopping energies: a vertex-edge term (tv−e) and a
center-edge one (tc−e).

Figure 12(c) shows the obtained band structure with the
parameters presented in Table II. The band structure is close to
the distorted honeycomb one [Fig. 6(b)]. The main difference
is in the bandwidths of the π -π∗ manifolds. This comes from
the fact that we do not consider sp coupling terms and also
that the envelope wave functions in the distorted honeycomb
are not pure s states. Nevertheless, a very simple model is able
to reproduce the main features of a complex band structure.

APPENDIX D: EFFECTIVE TIGHT-BINDING
PARAMETERS FOR KAGOME, LIEB AND AA STACKED

HONEYCOMB LATTICE

In this appendix, we report the fitted values for the effective
tight binding in the case of kagome, Lieb, and AA stacked
graphene lattice (see Sec. V and Sec. VII). Table III shows
those values.

TABLE III. Effective tight-binding parameters for kagome, Lieb,
and AA stacked graphene. t is the first-nearest-neighbor coupling
term and γ is the interlayer coupling. In the case of kagome and AA
stacked graphene, Es is the s effective orbital on-site energy. In the
case of the Lieb lattice, Es is the mean on-site energy between edge
and vertex sites and 2� is the difference between them.

Parameters for the effective model (meV)

Lattice Es t γ �

kagome 696.93 2.03
Lieb 705.96 5.13 7.13
AA graphene 800.05 2.48 4.13
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