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All-strain based valley filter in graphene nanoribbons using snake states
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A pseudomagnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron
transport along this kink is governed by snake states that are characterized by a single propagation direction.
Those pseudomagnetic fields point towards opposite directions in the K and K ′ valleys, leading to valley polarized
snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only
on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define
the stress distribution along the graphene ribbon.
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I. INTRODUCTION

The advent of graphene [1,2] not only represented the
beginning of an era of atomically thin materials, with potential
technological applications in future electronic and photonic
devices, but also brought the possibility of observing several
interesting phenomena due to its unique band structure,
consisting of Dirac cones in points labeled as K and K ′ in its
first Brillouin zone. In fact, the existence of two inequivalent
cones is of special importance, since it enables a different
degree of freedom to be explored in valleytronic devices.

Several suggestions have been made to harvest valley
polarization in graphene: Rycerz et al. [3] demonstrated that
specific combinations of armchair and zigzag edges in a
monolayer graphene ribbon lead to efficient valley filtering.
Nonuniform substrate induced masses can also be used to
obtain valley polarization, as shown in Refs. [4,5]. As for
bilayer graphene, valley filtering can be obtained by specific
configurations of external potentials, [6] or boundaries with
monolayer graphene regions [7,8]. On the other hand, recent
studies have demonstrated that pseudomagnetic fields can be
induced in graphene by specific strain configurations and,
since these fields point towards opposite directions in different
Dirac cones [9], several suggestions of strain-based valley
filters have been proposed in the literature. Most of these
proposals involve combinations of the strain induced fields
with applied magnetic and electric fields [10–14]. Indeed,
strain-based valley filters are especially interesting, because of
graphene’s ability to withstand large mechanical stress. [15]
Very large pseudomagnetic fields have been experimentally
observed in, e.g., naturally formed bubbles in a monolayer
graphene system on a Pt substrate [16].

In this paper, we propose a very different valley filter
device made of a single graphene layer [17] that does not
depend on specific edge configurations [3], substrate induced
masses [4], or external magnetic fields [10,18]. Yet, it is all
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based on a particular kind of strain, induced in a monolayer
graphene nanoribbon, that provides a pseudomagnetic kink
barrier along the ribbon width. Such strain is expected to be
attainable by using flexible substrates in combination with,
e.g., appropriate piezos or contacts that deform when cooled
down [10,15,19]. The valley polarization originates from a
combination of (i) the unidirectional motion of snake states
along the pseudomagnetic kink, and (ii) the opposite direction
of the pseudomagnetic field felt in the K and K ′ valleys.
This combination leads to electrons moving in single orbits
propagating in opposite directions in the two different valleys.
In order to verify the efficiency of such valley filtering device,
we calculate the transmission probability of wave packets
through this structure within the tight-binding model. Our
results demonstrate that a valley polarization efficiency up
to 90% can be reached, provided specific conditions are met
by the system, as we will discuss in what follows [20].

II. THEORETICAL MODEL FOR THE STRAIN

Our system consists of a monolayer graphene nanoribbon
with width Wy ≈ 6387 Å and length Wx ≈ 2214 Å corre-
sponding to 1801 × 3000 carbon atoms, that is mechanically
strained in a specific configuration, as sketched in Fig. 1: along
a certain region of length β, the ribbon is distorted into two
circular arcs of radius R, in opposite directions. Such in-plane
circular bending is obtained by defining the displacement of
the atomic sites as [15]

ux(x,y) = (R + x) cos

[
2y

Wy

arcsin

(
Wy

2R

)]
− y, (1)

and

uy(x,y) = (R + x) sin

[
2y

Wy

arcsin

(
Wy

2R

)]
− R − x, (2)

where ux,y is the in-plane lattice distortion due to strain
and the radius has its sign reversed at the y = 0 axis, i.e.,
R = |R|(2θ (y) − 1), with θ (y) being the step function. A
sharp transition between strained and unstrained regions of
the ribbon would be clearly impossible, since it would lead
to unrealistically large atomic distances in the vicinity of
the transition region, specially for small R. Therefore, we
consider a smooth (Gaussian) variation of the curvature
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FIG. 1. (a) Sketch of the strained graphene ribbon. Strain is
defined by two circles of radius R (red dashed), which smoothly
decay to zero towards the input and output leads, and the width of
the strained region is defined by β. The color map indicates smaller
(brighter regions) and larger (darker regions) local displacements.
Central atoms (green dashed line along the x axis) are always
unstrained in this configuration. (b) Top: Contour plot of the induced
pseudomagnetic field profile for a representative strain configuration
characterized by the parameters (β, R0). Bottom: A cross view of
the pseudomagnetic field along the lines placed in y > 0 (purple
short-dashed) and y < 0 (blue long-dashed) regions of the system in
the top panel, for two different maximum radii R2

0 > R1
0 .

KR = 1/R = (1/R0)e(−j 2/β2), where j is the index of the
column to which a given atomic site belongs in the lattice [21],
the length is described by the dimensionless parameter β, while
R0 provides the maximum radius of the curve (namely, at the
central column of atoms, where xi,j = 0 in the absence of
strain).

In general, strain effects on the electronic properties of
graphene can be mapped into the analogous problem of an
electron under a pseudomagnetic field distribution [22] whose
magnitude and orientation may oscillate over the space, thus
making the production of a local nonzero pseudoflux challeng-
ing [23]. However, it has been recently demonstrated [9,15]
that an in-plane circular distortion, as the one proposed here,
deforms the Brillouin zone, shifting the Dirac cones with
respect to each other, just like when a uniform magnetic field
is applied perpendicular to the graphene plane, leading to
K → K + 2πA/�0, where �0 = e/h is the flux quantum.
Such lattice distortion changes the hopping energies and thus

induces an effective vector potential [24,25]

Ax + iAy = 1

evF

∑
δaij

δτij e−iK·δaij , (3)

where δaij is the vector distance between the adjacent atoms
i and j in the strained lattice, vF is the Fermi velocity,
δτij is the difference between the strained and unstrained
hopping energies, and the pseudomagnetic field is given by
Bps = ∇ × A. Moreover, the distortion in different directions
for y > 0 and y < 0 provides a pseudomagnetic kink barrier,
with pseudomagnetic field regions that change sign at y = 0.
A schematic example of the pseudomagnetic field distribution
induced by such strain configuration is presented in Fig. 1(b)
for a representative set of parameters (β, R0). We point out that
the sample considered in Fig. 1(b) is much smaller than the
one investigated throughout this paper, since calculating and
plotting a vector potential distribution along the 1801 × 3000
atomic sites of our actual sample requires high computational
costs. Therefore, the pseudomagnetic field in Fig. 1(b) is
discussed here only in a qualitative way. The pseudomagnetic
field is found to be zero at input and output leads, where
the lattice displacements vanish, and assume its minimum
and maximum values along the ribbon width around x = 0,
where the strain is maximum. Two additional kinks are also
consistently observed on the left and right sides of this main
central kink. They are however much smaller than the central
one and, thus, do not play an important role in the valley
filtering process, as we will demonstrate further on. In fact,
we observe that as we increase R0, these additional kinks
become even lower as compared to the main kink, so that their
importance for the transport properties of the actual sample
studied throughout the paper (with larger R0) is negligible.
This can be verified by comparing the bottom panels in
Fig. 1(b) for two different maximum radii R2

0 > R1
0 assuming

a fixed width for the strained region β.

III. SNAKE STATES ALONG A MAGNETIC FIELD KINK

Keeping with the analogy between this strain configuration
and a magnetic field kink, let us first calculate the energy
dispersion along the ribbon in the presence of such a magnetic
barrier. We assume an inhomogeneous magnetic field B = Bẑ

that depends only on the transversal coordinate, given by
B(y) = B[θ (y) − θ (−y)]. Low-energy electrons in graphene
exhibit a linear energy dispersion, so that they behave as mass-
less Dirac-Weyl fermions, thus obeying the Dirac equation

σ ·
(
−i∇ + e

�
A

)
	 = Ē	, (4)

with energy E = �vF Ē around the K valley (a similar
analysis [2] can be made for electrons in K ′).

Defining the vector potential in the Landau gauge, A =
Ā(y)êx , with Ā(y) = −B(y)y, the general solution for the
wave function with translational invariance in the x direction
is 	(x,y) = ψ(y)eikx . Therefore, we obtain from Eq. (4)(

0 k − ∂y + A(y)
k + ∂y + A(y) 0

)(
ψ1(y)
ψ2(y)

)

= Ē

(
ψ1(y)
ψ2(y)

)
, (5)
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where A = e
�
Ā. This leads us to decoupled equations for each

component: for instance, for the upper spinor component,{
∂2
y + e

�
B(y) −

[
k − e

�
B(y)y

]2
+ Ē2

}
ψ1(y) = 0. (6)

If we use the magnetic length lb = √
�/e|B| as the unit of

distance, we obtain{
∂2
y + sgn(B(y)) − [klb − sgn(B(y))y]2 + ε2

}
ψ1(y) = 0.

(7)

where ε = Ēlb = Elb/�vF .
The energy dispersion along the y direction is obtained

quasianalytically by solving this equation in terms of parabolic
cylinder functions [26], Dp(q). Notice the magnetic field B(y)
is piecewise constant, hence, one can separate solutions for
each region as

ψB>0(y) =
∑
±

a±

(
Dp(±q)

∓
√

2
iε

Dp+1(±q)

)
, (8)

ψB<0(y) =
∑
±

a±

(
Dp+1(±q)

±
√

2
iε

(p + 1)Dp(±q)

)
, (9)

where q = √
2[sgn(B)klb], and p = ε2

2 − 1.
The continuity of the wave function and its derivatives

at these regions provides boundary conditions that lead to
quantization of the energy of the system. Equations (8) and (9)
represent solutions for the first region of the system, but they
also can express solutions for the second region by replacing
the coefficients a± → c±.

In order that the wave functions are normalizable we
demand a+ = c− = 0. Then, the boundary condition at y = 0
gives the equation that generates the energy quantization
condition. Therefore, we obtain(

iε√
2
v2 −

√
2

iε
(p + 1)u2

)
= 0, (10)

where the functions are given by u = Dp(−√
2klb), and

v =
√

2
iε

Dp+1(−√
2klb). Notice that these results for the wave

function are very closely related to the one for a magnetic kink
profile in a normal two-dimensional (2D) semiconductor [27].

Numerical results for this system are illustrated in Fig. 2,
where we observe an asymmetry in the energy bands along the
kink with respect to the kx = 0 axis. Namely, the energy states
(predominantly) monotonically decrease with kx , implying a
negative velocity v = (1/�)dE/dk, that eventually converges
to zero as k = kx → +∞. It is straightforward to verify
that by inverting the sign of the magnetic field kink, this
figure is reflected with respect to the kx = 0 axis, and the
propagation velocities are then predominantly positive. The
physical interpretation of this result has its basis on the
existence of snake states [28,29] that propagate along the
kink, which can also be inferred from a simple classical
analysis of this problem, involving Lorentz force, cyclotron
orbits and the right-hand rule. Nevertheless, this result is of
special importance in the context of pseudomagnetic kinks
discussed here: since the strain-induced pseudomagnetic field
points towards opposite directions in the different Dirac cones

FIG. 2. Energy states for a Dirac particle in the presence of a
(pseudo)magnetic kink. Results for K and K ′ valleys are the same
for an external magnetic field, whereas for a pseudomagnetic field,
the K ′ spectrum (red dashed curves) differs from that from the K

valley (black solid curves).

K and K ′, electrons in each cone will propagate in opposite
directions in the pseudomagnetic kink proposed here, thus
yielding an efficient valley filtering process, as we will verify
with our numerical results afterwards.

IV. WAVE-PACKET PROPAGATION METHOD

In order to investigate the transport properties in our strained
graphene, we will use a wave-packet propagation method. A
comparison between this kind of method and those based
on Green’s-function formalism can be found in Ref. [30].
The advantage of using this approach is in the possibility of
observing the trajectories of the wave packet describing the
electron propagating across the scattering (strained) region,
which reveals important information about the physics behind
any unusual behavior of the current through the system, being
due to, e.g., intervalley scattering, skipping orbits, snake states,
etc., as we will demonstrate in the following section.

We use a Hamiltonian within the tight-binding model

HT B = −
∑
i,j

τij c
†
i cj + H.c., (11)

where the operator c
†
i (ci) creates (annihilates) an electron on

site i, and τij is the hopping energy between adjacent atoms
i and j (nearest neighbors), that depends on the distance δaij

between them according to [9]

τij → τij

(
1 + 2δaij

a0

)
. (12)

We consider an initial Gaussian wave packet

	(x,y) = N exp

[
− (x − x0)2 + (y − y0)2

2σ 2
+ikxx + ikyy

]
,

(13)

where N is a normalization factor and calculate its time
evolution using the split-operator method [18,21], in which the
time-evolution operator for the Hamiltonian H = Hi + Hj is
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split as

	t+t
ij = e−(i/2�)Hite−(i/�)Hj te−(i/2�)Hit	t

ij , (14)

where Hi(j ) is the term of the tight-binding Hamiltonian H that
corresponds to a horizontal (vertical) hopping between atomic
sites,

Hi |i,j 〉 = τ ′
ij |i,j + 1〉 + τ ′′

ij |i,j − 1〉, (15)

Hj |i,j 〉 = τij |i + 1,j 〉 + τij |i − 1,j 〉. (16)

Notice that for the horizontal term Hi , one has to differentiate
between hoppings to the right and left neighboring sites, since
in the honeycomb lattice, each site has only horizontal hops to
one side. Hence, τ ′

ij = τij ⇒ τ ′′
ij = 0 and τ ′′

ij = τij ⇒ τ ′
ij = 0.

The advantage of such splitting lies in the fact that these
operators can be represented by tridiagonal matrices, that are
easily handled by standard computational routines. The wave
function after a single time step t + t is then obtained in
three steps:

ηij = e−(i/2�)Hit	t
ij , (17)

ξij = e−(i/2�)Hj tηij , (18)

	t+t
ij = e−(i/2�)Hitξij . (19)

Each of these equations is rewritten using the Cayley form for
the exponentials, e.g.,(

1 + it

4�
Hi

)
ηij ≈

(
1 − it

4�
Hi

)
	t

ij , (20)

and the remaining tridiagonal matrix equation is then numeri-
cally solved by standard computational routines [31].

For our study, we used a wave packet width of σ = 300 Å
and its wave vector �k has a modulus of k = 0.06 Å−1,
unless otherwise explicitly stated in the text. Using the linear
spectrum approximation for low-energy electrons in graphene,
in which E = �vf k, the wave-packet energy is estimated to
be E = 343 meV. Besides, as we intend to demonstrate the
valley polarization of the wave packet, we place it in different
valleys in reciprocal space by shifting the wave vector towards
the two inequivalent Dirac points:

kx ← |k|, ky ← ± 4π

3
√

3a
, (21)

where the positive (negative) sign refers to a displacement
towards the K (K ′) point of the Brillouin zone, and a ≈ 1.42 Å
is the interatomic distance.

As the Gaussian wave packet propagates, we calculate
the probability of finding the electron before (P1), within
(P2), and after (P3) the strained region, as the integral of the
square modulus of the wave packet, taken within the intervals
−3,000 Å � x � −400 Å, −400 Å � x � 400 Å, and 400 Å
� x � 3,000 Å, respectively. Transmission probabilities are
assumed to be the converged value of P3 as t → ∞. Besides,
we keep track of the wave-packet trajectories by calculating
the average value of the position, (〈x〉, 〈y〉), at each time step.

The armchair edges of the ribbon do not support edge
states, therefore, modeling the electron propagating through

the system as a wave packet, whose tails do not reach
the ribbon edges, is justified. Moreover, any improvement
to come from other calculation methods, involving, e.g.,
plane waves, scattering matrices and the Landauer-Buttiker
formalism, would lead to rather quantitative corrections to
our results, while the qualitative behavior of the system and
the proof-of-concept of valley filtering with a pseudomagnetic
kink proposed here, which are the main goals of this work,
would still hold, since they are based on more fundamental
physical properties of the proposed structure, as we will discuss
in what follows.

V. RESULTS AND DISCUSSION

The existence of snake states in such a strained graphene
lattice, as due to the induced pseudomagnetic fields, is
confirmed by the trajectories drawn in Fig. 3 of the center
of mass of a k = 0.06 Å−1 wave packet propagated in time
through the system described by Fig. 1(a), assuming β → ∞
and R0 = 104 Å, as a test case. If this wave packet has
momentum around the Dirac cone K (black solid curves) and
propagates from left to right, starting at the bottom half of
the ribbon, its trajectory is deflected by the pseudomagnetic
Lorentz force towards the top half, where it is deflected
downwards again by the opposite pseudomagnetic field, thus
performing a snakelike trajectory. If this same packet has
momentum around the K ′ cone (red dashed curves), it is
deflected downwards and eventually repelled from the strained
region. If this packet starts from the top half instead, both
curves are just mirror-reflected with respect to the 〈y〉 = 0 axis
of Fig. 3, and the situation remains the same. Conversely, if the
wave packet propagates from right to left, it is the K ′ packet
that draws a snake trajectory, whereas the K packet is reflected.
One could think that wave packets deflected towards the edges
of the system (i.e., further away from its center) would be
reflected by the ribbon edges, perform skipping orbits, and
eventually pass through the strained region. However, since
the ribbon has armchair edges, reflected wave packets are
scattered to the other Dirac cone, where the pseudomagnetic

FIG. 3. Examples of calculated trajectories of electron wave
packets propagating with momenta around K (black solid curves)
and K ′ (red dashed curves) valleys, starting at (x,y) points (indicated
by blue solid dots) given by (1250 and 300 Å) and (−1250 and
−300 Å ), respectively. Arrows indicate the direction of propagation
along the trajectories.
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FIG. 4. Probability densities, as a function of time, of finding the
electron before (P1), within (P2), and after (P3) the β = 900 and
R0 = 10 000 Å strained region, for a wave packet with k = 0.06 Å−1

around the K point of the Brillouin zone. Results for P3 considering
a wave packet around K ′ are shown for comparison.

field is opposite, thus the skipping orbit follows the opposite
direction and the wave packet comes back anyway [17]. This
nonpropagating edge state is emphasized in Fig. 3 for a wave
packet that started at the bottom half (top half) of the ribbon and
around K ′ (K) Dirac valley. In this way, one completely avoids
the problem of having valley mixing of the snake and edge
states at the end of the ribbon, which would otherwise occur in
the case of propagating edge states, e.g., in the presence of an
external applied magnetic field. Valley mixing by scattering at
the contacts can also be further suppressed by using graphene
electrodes [32].

Notice, however, that the present proposal will not work
very efficiently for zigzag graphene nanoribbons, where such
intervalley edge scattering does not occur and skipping orbits
are allowed to propagate at the zigzag edges. Although this
represents a limitation of the proposed system, fabrication
techniques have been advancing fast, and armchair graphene
nanoribbons with very high edge quality have already been
experimentally demonstrated [33].

Results in Fig. 3, thus, allow us to conclude that electrons
in K (K ′) cones in such a strained armchair graphene ribbon
can only propagate towards the right (left). Analogously, if the
strain configuration is inverted, trajectories drawn by K and
K ′ packets are switched.

Such a picture of snake states strongly suggests a valley
filtering effect. In fact, if one now considers a system with
finite strain region β = 900 (in units of the interatomic distance
a0 = 1.42 Å ) and R0 = 10 000 Å, a wave packet with k =
0.06 Å−1 around the K cone passes through this region with
a high probability P3 ≈ 0.9, whereas the same packet in K ′
would have a much lower transmission probability P ′

3 ≈ 0.3
(see Fig. 4).

Let us now search for an optimization of the valley polar-
ization effect. The polarization, as defined by P = 1 − P3/P

′
3,

where P ′
3 is the transmission probability for a wave packet in

the K ′ cone, is shown in Fig. 5 for k = 0.06 Å−1, assuming
different parameters β and R0. For a fixed strain radius R0,
increasing the length of the strain region β increases the

FIG. 5. Valley polarization of the outgoing wave packet, with
k = 0.06 Å−1, as a function (a) of the width of the strained region β,
for different radii R0, and (b) as function of the strain radius R0, for
different β values.

polarization, as shown in Fig. 5(a). Besides, results in this panel
also suggest that decreasing R0 would always improve the
polarization; this would be reasonable, since smaller radii yield
stronger distortions in the lattice and, consequently, larger
pseudomagnetic fields. This is however not always the case:
Fig. 5(b) shows that even for β as large as 900 Å, decreasing
the strain radius will always lead to a maximum polarization
at an intermediate value R0 ≈ 5000 Å, so that the polarization
is reduced as the radius is further decreased. This is due to
the fact that the smooth connection between the unstrained
ribbon leads and the strained region might end up creating a
complicated pseudomagnetic field distribution, with regions
with fields pointing to opposite directions, which would harm
the polarization effect investigated here. This also explains the
negative polarization observed for small β in Fig. 5(a).

So far, all results were obtained for k = 0.06 Å−1, which
corresponds to a wave-packet energy E = 343 meV. It is
however important to check how the polarization depends
on the wave-packet energy. This is shown in Fig. 6, where
we verify that the valley filtering process proposed here has
an optimal range of energies. Indeed, if the energy is too
low, the pseudomagnetic Lorentz orbits would have a very
small radius, so that only portions of the wave packet that
are very close to the y = 0 line would pass through the
system as snake states, whereas the rest of the wave packet
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FIG. 6. Valley polarization of the outgoing wave packet as a
function of its energy, considering (a) β = 900 and different radii
R0, and (b) R0 = 6000 Å, for different values of β.

readily turns back. On the other hand, if the energy is too
high, orbit radii may end up being larger than the strained
region length, so that the snakelike propagation that leads to
valley polarization no longer occurs. Moreover, the Lorentz
orbit radius is inversely proportional to the pseudomagnetic
field intensity, therefore, increasing the strain by reducing R0

would also lead to Lorentz orbits with smaller radius. This
classical picture is consistent with our numerical findings: in
Fig. 6(a), the largest strain radius R0 = 12 000 Å provides
the fastest decay of polarization as the energy increases,
since it yields a lower strain-induced pseudomagnetic field
and, therefore, energies slightly higher than the optimal
E ≈ 125 meV already provide orbit radii larger than the
strained region length. Conversely, for energies lower than
E ≈ 125 meV, R0 = 12 000 Å provides the best polarization,
as its weaker pseudomagnetic field compensates for the low
energy and prevents the orbits radius of becoming too small.
Also, Fig. 6(b) shows that, for higher energies, where orbit
radii are larger, polarization is more efficient for larger length
β, and the energy for optimal polarization increases with this
parameter.

The valley filtering effect by pseudomagnetic kinks demon-
strated here is also expected to be robust against impurity

and defects scattering: as already discussed, electrons in each
valley have only one possible direction of propagation (see
Fig. 3), due to the monotonic behavior of all the energy states as
a function of momentum (see Fig. 2), which provides a single
direction for the group velocity in each valley. After scattering
by impurities or defects, the electron must end up in one (or a
combination) of the states in Fig. 2. If the electron is already
in the valley that allows its propagation through the system
(as a snake state), with positive velocity (i.e., monotonically
increasing energies as a function of momentum), any compo-
nent of the scattered electron wave function that ends up in the
other valley must be deflected backwards, since there is simply
no energy state in that valley with positive velocity as well.
Thus, provided the pseudomagnetic field kink distribution is
preserved, only electrons in one of the valleys are allowed to
reach the other end of the ribbon, even after scattering events.

VI. CONCLUSIONS

We have investigated the wave-packet propagation through
a graphene nanoribbon with armchair edges for a specific strain
distribution. The latter provides a pseudomagnetic barrier
kink along the ribbon. By following the trajectory of the
center of mass of the wave packet, calculated by solving
the time-dependent Schrödinger equation for the tight-binding
Hamiltonian, one observes snake states, which have a fixed
propagation direction, consistent with the pseudomagnetic
kink picture. However, one can analytically verify that, by
reversing the magnetic kink, the propagation direction of snake
states must be reversed.

Since the pseudomagnetic field points towards opposite
direction in the different Dirac cones, wave packets in the
different cones can only have fixed opposite directions of
propagation. This effect results in an efficient valley filtering
process, which does not require either lattice defects, edge
engineering, or any externally applied fields or potentials. Our
numerical results show significant valley polarization through
this system, which can be optimized by the parameters (β, R0)
that depend on the electron energy (i.e., the Fermi energy).

Notice that the in-plane circular deformation of a graphene
nanoribbon proposed here is just one particular way of
inducing a kink pseudomagnetic field barrier: any other strain
distribution that produces such a pseudomagnetic kink would
lead to similar valley filtering effect, which requires only
a graphene ribbon with armchair boundaries (to avoid edge
propagation) and a pseudomagnetic field that flips its direction
across a line parallel to them.
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R. Egger, Phys. Rev. B 77, 081404(R) (2008).

[27] J. Reijniers and F. M. Peeters, J. Phys.: Condens. Matter 12,
9771 (2000).
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