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The semiclassical � expansion of the one-particle density matrix for a two-dimensional Fermi gas is calculated
within the Wigner transform method of B. Grammaticos and A. Voros [Ann. Phys. (N.Y.) 123, 359 (1979)],
originally developed in the context of nuclear physics. The method of Grammaticos and Voros has the virtue
of preserving both the Hermiticity and idempotency of the density matrix to all orders in the � expansion. As
a topical application, we use our semiclassical expansion to go beyond the local-density approximation for the
construction of the total dipole-dipole interaction energy functional of a two-dimensional, spin-polarized dipolar
Fermi gas. We find a finite, second-order gradient correction to the Hartree-Fock energy, which takes the form
ε(∇ρ)2/

√
ρ, with ε being small (|ε| � 1) and negative. We test the quality of the corrected energy by comparing

it with the exact results available for harmonic confinement. Even for small particle numbers, the gradient
correction to the dipole-dipole energy provides a significant improvement over the local-density approximation.
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I. INTRODUCTION

Density-functional theory (DFT) [1] is by far the most
common and powerful numerical approach for the solution
of the quantum many-body problem of N interacting fermions
and constitutes the cornerstone of research in diverse fields
such as condensed-matter and nuclear physics, quantum
chemistry, and materials science. Specifically, the Hohenberg-
Kohn-Sham (HKS) DFT [1] states that the ground-state
properties of an N -body interacting Fermi system may be
mapped to a noninteracting system of independent fermions
moving in an effective one-body potential veff(r), sometimes
referred to as the Kohn-Sham potential vKS(r). The HKS
total-energy functional is then given by [here, we focus on
strictly two-dimensional (2D) systems]

E[ρ] = T0[ρ] + Eint[ρ] +
∫

d2rvext(r)ρ(r). (1)

In Eq. (1), T0[ρ] is the kinetic energy (KE) of a noninteracting
Fermi gas, Eint[ρ] accounts for both classical and quantum
interactions, and the last term is the energy functional
associated with the external potential vext(r).

The noninteracing KE functional is treated exactly in the
HKS formalism and by definition is given by (in this paper,
we deal with fermions with spin degeneracy g = 1,2)

T0[ρ] = g

N/g∑
i=1

∫
d2rφ∗

i (r)

(
− �

2

2m
∇2

)
φi(r), (2)

where the summation is over fully occupied orbitals {φi(r)}.
The variational minimization of E[ρ] with respect to the
density then leads to the following set of single-particle
Schrödinger-like equation for the orbitals {φi(r)}:

− �
2

2m
∇2φi(r) + veff(r)φi(r) = εiφi(r) (i = 1, . . . ,N), (3)

where the effective potential mentioned above is given by

veff(r) = δEint[ρ]

δρ
+ vext(r). (4)

Therefore, in the HKS scheme, one must self-consistently
solve for N Schrödinger-like equations, which at self-
consistency leads to the spatial density

ρ(r) = g

N/g∑
i=1

φ∗
i (r)φi(r), (5)

with the normalization∫
d2rρ(r) = N, (6)

also determining the Fermi energy EF .
The interaction energy functional Eint[ρ] is generally not

known, so some approximation must be made for Eint[ρ]
in order to completely specify the HKS functional, Eq. (1).
Despite its conceptual appeal, any practical implementation
of the HKS theory, as defined above, must be weighed
against the numerically expensive self-consistent solution to
N single-particle Schrödinger-like equations, Eq. (3).

Ideally, one would like to keep in the original spirit of DFT,
in which there is no need for the calculation of single-particle
orbitals of any kind. In principle, this so-called orbital-free
DFT can be accomplished within the HKS scheme if one can
construct an explicit density functional for the exact, nonin-
teracting KE T0[ρ] for an arbitrary inhomogeneous system.
To date, such a functional has not been found, implying that
if one would like to avoid calculating single-particle orbitals,
an additional layer of approximation must be made; that is, in
an orbital-free DFT, two functionals, T0[ρ] and Eint[ρ], must
be approximated. Nevertheless, if the approximation to T0[ρ]
is accurate, the computational cost savings for investigating
N � 1 systems is extremely compelling and is often the only
practical numerical option [e.g., in materials science, where
N ∼ O(1023)].
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Toward the goal of obtaining an expression for the KE
functional T0[ρ] explicitly in terms of the spatial density, one
may introduce the one-body density matrix (ODM), which is
formally defined in terms of the normalized many-body wave
function [1] ψ , viz.,

ρ1(r; r′) = N

∫
d2r2 · · · d2rNψ∗

× (r,r2, . . . ,rN )ψ(r′,r2, . . . ,rN ). (7)

Note that by definition, the spatial density is given by the
diagonal element of the ODM, viz., ρ(r) = ρ1(r; r), along with
the fact that the ODM is Hermitian, ρ1(r; r′) = [ρ1(r′; r)]∗.
It will prove advantageous later to introduce the center-of-
mass and relative coordinates, R = (r + r′)/2 and s = r − r′,
respectively. We also define

ρ̄1(R; s) ≡ ρ1(R + s/2; R − s/2), (8)

in which case Hermiticity takes the form ρ̄1(R; s) =
[ρ̄1(R; −s)]∗ The noninteracting KE functional is then ob-
tained from

T0[ρ] = − �
2

2m

∫
d2R

[∇2
s ρ̄1(R; s)

]
s=0. (9)

Unsurprisingly, there is no known explicit expression for the
ODM for an arbitrary inhomogeneous system, implying that
approximations to the ODM are unavoidable. It is evident that
the quality of any approximation to the noninteracting KE
functional is inextricably connected with the approximation
applied to the ODM.

The crudest expression for ρ̄1(R; s) is the so-called local-
density approximation (LDA) in which the form of the ODM
of a spatially uniform 2D system is assumed to be locally valid
for an inhomogeneous system [2,3], viz.,

ρ̄1(R; s) = g
kF (R)2

2π

J1[kF (R)|s|]
kF (R)|s| , (10)

where kF (R) = √
4πρ(R)/g is the local Fermi wave vector

and Jn(x) is a cylindrical Bessel function of the nth order [4].
It is immediately seen that Eq. (10) is Hermitian. Note that in,
e.g., the Kirzhnits commutator formalism [1], the fact that one
begins with a representation in r and r′ means that the resulting
Kirzhnits LDA for the ODM is not Hermitian. Specifically, in
the Kirzhnits approach, one obtains

ρ1(r; r′) = g
kF (r)2

2π

J1[kF (r)|s|]
kF (r)|s| , (11)

which clearly does not possess the correct r and r′ symmetry.
However, upon the appropriate symmetrization, one is led to
an expression identical to Eq. (10).

Inserting Eq. (10) into Eq. (9) leads to the LDA for the
noninteracting kinetic-energy functional, viz.,

T0[ρ] = π

g

�
2

m

∫
d2Rρ(R)2, (12)

which is obviously an explicit functional of the spatial density.
Presumably, going beyond the LDA for the ODM will lead to
a more accurate noninteracting KE functional. We will come
back to this point later in the paper.

The interaction energy functional Eint[ρ] may also be
determined solely in terms of the ODM if one adopts the
common Hartree-Fock approximation (HFA), which does not
take into account correlations, viz.,

Eint[ρ] =
∫ ∫

d2rd2r ′ 1
2

(
ρ1(r,r)ρ1(r′,r′)

− 1

g
ρ1(r,r′)ρ1(r′,r)

)
vint(r,r′), (13)

where vint(r,r′) is the two-body interaction potential (e.g.,
a 1/|r − r′| Coulomb potential). The first term in Eq. (13)
corresponds to the classical Hartree energy, while the second
term represents the quantum-mechanical exchange energy. We
then see that the ODM is fundamental for obtaining not only
the noninteracting KE functional but also (at least within
the HFA) the interaction energy functional. Unfortunately, to
our knowledge, the only inhomogeneous systems for which
an exact analytical expression for the ODM is available
are the so-called Bardeen model [5], the three-dimensional
harmonic oscillator (HO) with smeared occupancy [6], and
the multidimensional HO [3,7]. The point to be taken here is
that if one wishes to find explicit functionals for T0[ρ] and
Eint[ρ], approximations to the ODM must be employed since
ρ1(r; r′) is not known exactly for an arbitrary inhomogeneous
system.

To this end, in Sec. II, we briefly review the Grammaticos-
Voros (GV) semiclassical (SC) � expansion for the ODM [8]
and subsequently apply it to develop a Hermitian, idempotent,
� expansion for the 2D density matrix of an arbitrary
inhomogeneous 2D Fermi gas. While an analogous calculation
of this kind (i.e., using the GV approach) has been recently
performed by Bencheikh and Räsänen [9] in three dimensions
(3D), we feel that a presentation of the 2D analysis is
a worthwhile endeavor. First, from a pedagogical point of
view, the calculations involved in obtaining the SC 2D ODM
are somewhat unwieldy, so providing the details of such
calculations will be useful to other researchers wishing to
apply or extend our results. In addition, providing an explicit
expression for the SC 2D ODM is of academic interest since
its presentation utilizing the GV approach is currently not
available in the literature. Finally, the fundamental role of
the ODM in applications of DFT to degenerate Fermi gases
suggests that our work will also be of practical importance in
diverse areas of research [e.g., instabilities in 2D dipolar Fermi
gases, Wigner crystallization in 2D electronic and dipolar
Fermi gases, physics of metal clusters, etc.].

Following this development, we will apply our results to
construct a beyond-the-LDA expression for the total Hartree-
Fock (HF) dipole-dipole interaction energy for a 2D spin-
polarized dipolar Fermi gas. Our paper closes with a summary
and suggestions for future work.

II. SEMICLASSICAL h-BAR EXPANSION
OF THE DENSITY MATRIX

We begin by considering a 2D system of noninteracting
fermions under the influence of some one-body potential,

Ĥ = − �
2

2m
∇2 + V (r), (14)

075423-2



MANIFESTLY HERMITIAN SEMICLASSICAL EXPANSION . . . PHYSICAL REVIEW B 94, 075423 (2016)

along with the associated one-particle density operator

ρ̂ = �(EF − Ĥ ), (15)

where EF is the Fermi energy and � is the Heaviside function.
We develop our semiclassical expansion by working with

the Wigner transform of ρ1(r; r′), as originally developed by
GV [8] and recently applied to the 3D ODM by Bencheikh
and Räsänen [9], viz.,

ρ̄sc
1 (R; s) = 1

(2π�)2

∫
d2pρsc

w (R,p)eip·s/�, (16)

where p is the momentum conjugate to s and ρw(R,p) denotes
the Wigner transform of ρ1(r; r′). Note that in the GV ap-
proach, one immediately works in the R and s representation,
which then leads to a transparent expression from which one
can deduce the Hermiticity of the ODM.

At the heart of the method is to expand ρw(R,p) =
[θ (EF − Ĥ )]w around the identity operator times the classical
Hamiltonian Hcl,

Hcl = p2

2m
+ V (R). (17)

To second order in �, one finds the dimensionally independent
expression for ρsc

w (R,p), which reads [8,9]

ρsc
w (R,p) = �(EF − Hcl) − 1

2
ϕ2δ

′(Hcl − EF )

− 1

6
ϕ3δ

′′(Hcl − EF ) + O(�4), (18)

ϕ2 = − �
2

4m
∇2

RV + O(�4), (19)

and

ϕ3 = − �
2

4m

[
(∇RV )2 + 1

m
(p · ∇R)2V

]
+ O(�4), (20)

where primes refer to derivatives with respect to Hcl [10]. The
semiclassical � expansion of the ODM is then obtained by
inserting Eq. (18), along with the expressions for ϕ2 and ϕ3,
into Eq. (16), viz.,

ρ̄sc
1 (R; s) = (A + B + C + D), (21)

where we recall that ρ̄1(R; s) ≡ ρ1(R + 1
2 s; R − 1

2 s) and

A = g

(2π�)2

∫
d2peip·s/��(EF − Hcl), (22)

B = g

(2π�)2

�
2

8m
∇2

RV

∫
d2peip·s/�δ′(Hcl − EF ), (23)

C = g

(2π�)2

�
2

24m
(∇RV )2

∫
d2peip·s/�δ′′(Hcl − EF ), (24)

D = g

(2π�)2

�
2

24m2

∫
d2peip·s/�(p · ∇R)2V δ′′(Hcl − EF ).

(25)

The analytical evaluation of the above integrals requires the
following identities (below, pF = �kF ),

δ(Hcl − EF ) = m

pF

δ(p − pF ), (26)

dδ(Hcl − EF )

dHcl
= m2

pF p

dδ(p − pF )

dp
, (27)

and

d2δ(Hcl − EF )

dH 2
cl

= m3

pF

[
1

p2

d2δ(p − pF )

dp2
− 1

p3

dδ(p − pF )

dp

]
.

(28)

Each of the integrals, A,B,C,D, is explicitly worked out
in Appendixes A–D. Here, we will simply write down our
final result for the semiclassical � expansion of the ODM [to
O(�2)] [11],

ρ̄sc
1 (R; s) = g

{
k2
F

2π

J1(z)

z
− 1

48π
zJ1(z)

∇2
Rk2

F

k2
F

+ 1

96π

z2J0(z)

k2
F

[
∇R

(
∇Rk2

F · s
s

)
· s
s

]

+ 1

192π
z2J2(z)

(∇Rk2
F

)2

k4
F

}
, (29)

where z = kF |s| and kF (R) =
√

2m(EF − V (R)/�2 is the lo-
cal Fermi wave vector. The first term in ρ̄sc

1 (R; s) agrees exactly
with Eq. (10) and highlights that the lowest-order contribution
to Eq. (29) corresponds to the LDA, or, equivalently, the
Thomas-Fermi approximation. As promised, the GV ODM
is manifestly Hermitian and takes a very different form than
the Kirzhnits ODM recently derived by Putaja et al. [12,13].

A. The spatial and kinetic-energy densities

The semiclassical spatial density is immediately obtained
by taking the diagonal element of Eq. (29). However, all terms
but the first vanish in taking the s → 0 limit (i.e., R → r), and
one obtains

ρsc(R) = g
[kF (R)]2

4π
, (30)

which is just the LDA applied to the uniform gas. This result is
special to two dimensions since in one and three dimensions,
nonvanishing gradient corrections are present [13–16].

The KE density may be found by inserting Eq. (29) into
Eq. (9), but upon taking the s → 0 limit, all but the LDA term
will vanish, leaving

T0[ρ] = π

g

�
2

m

∫
d2Rρ(R)2. (31)

Again, the GV expansion of the ODM has not changed the
fact that there are no gradient corrections to the noninteracting
KE functional for an inhomogeneous 2D Fermi gas; that
is, the KE functional is the Thomas-Fermi functional for
a 2D noninteracting Fermi gas which is again unique to
2D systems [13–16]. Gradient corrections to the 2D KE
functional can be motivated within the so-called average
density approximation, but this requires the KE functional
to be inherently nonlocal [17].
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B. Consistency criterion of the Euler equation and idempotency

Coming first to the consistency criterion established by
Gross and Proetto [18], it has already been shown in Ref. [13]
that the Thomas-Fermi KE density functional satisfies the
Euler equation that minimizes the total-energy functional,
Eq. (1),

δT0[ρ]

δρ
+ veff(r) = EF . (32)

Owing to the fact that in the GV formulation, only the Thomas-
Fermi term survives, consistency is guaranteed.

The idempotency of the GV semiclassical ODM has already
been proved in arbitrary dimensions in Ref. [9]. It follows that
our 2D ODM, Eq. (29), is also idempotent, which is in fact a
strong constraint to place on any approximate density matrix.

III. APPLICATION: 2D SPIN-POLARIZED
DIPOLAR FERMI GAS

In this section, we will use our semiclassical expansion
for the ODM, Eq. (29), to go beyond the LDA for the total
dipole-dipole interaction energy functional of a spin-polarized
(all moments aligned parallel with the z axis), inhomogeneous
2D dipolar Fermi gas. We restrict ourselves to the HFA, where
the total dipolar interaction energy is given by

Eint = 1

2

∫
d2r

∫
d2r ′[ρ1(r; r)ρ1(r′; r′)

− ρ1(r; r′)ρ1(r′; r)]Vdd (r − r′) (33)

and

Vdd (r − r′) = μ0d
2

4π

1

|r − r′|3 (34)

is the interaction potential between two magnetic dipoles
restricted to locations r and r′ in the 2D xy plane and d is
the magnetic moment of an atom. The individual terms in
Eq. (33) are the direct and exchange energies, and while they
are separately divergent for a 1/r3 potential in two dimensions,
their sum is finite owing to the Pauli exclusion principle [19].
As discussed at length in Ref. [19], it is convenient to work with
a regularized dipolar interaction, which leads to the following
expression for the total interaction energy within the HFA
(details of this calculation have already been presented in
Ref. [19]):

Eint = μ0d
2

8π

∫
d2s

1

s3
[f (0)−f (s)]−μ0d

2

4

∫
d2q

(2π )2
q|ρ̃(q)|2

≡ E
(1)
dd + E

(2)
dd , (35)

where ρ̃(q) is the 2D Fourier transform of the density and

f (0) − f (s) =
∫

d2R{[ρ̄1(R; 0)]2 − [ρ̄1(R; s)]2}. (36)

It is important to emphasize here that E(1)
dd and E

(2)
dd are not to be

interpreted as the direct and exchange energies, respectively.
Note that E

(2)
dd is the nonlocal contribution to the HF energy

and, as written, is exact. On the other hand, in order to get an
explicit expression for E

(1)
dd in terms of the density, we need to

invoke some level of approximation to f (0) − f (s).

To this end, we define the radial distribution function for
the inhomogeneous system as

g(R; s) = 1 − [ρ̄1(R; s)]2

[ρ̄1(R; 0)]2
, (37)

so that we may write

E
(1)
dd = μ0d

2

8π

∫
d2R

∫
d2s

1

s3
[ρ(R)]2g(R; s). (38)

Now, taking only the leading-order term from our semiclassical
expansion of the ODM, Eq. (29) (g = 1), we immediately
obtain

E
(1),LDA
dd = μ0d

2

4

∫
d2R[ρ(R)]2kF (R)

×
∫ ∞

0
dz

1

z2

[
1 −

(
2J1(z)

z

)2
]

= μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2 128

45π

= μ0d
2 64

45
√

π

∫
d2R[ρ(R)]5/2, (39)

which is in perfect agreement with Eq. (27) in Ref. [19].
We may now go beyond the LDA for E

(1)
dd by taking in turn

all of the �
2 corrections to the ODM in Eq. (29). To begin, we

note that to O(�2)

|ρ̄sc
1 (R; s)|2 = k4

F

4π2

(
J1(z)

z

)2

+ zJ1(z)J2(z)

192π2

(∇Rk2
F

)2

k2
F

− [J1(z)]2

48π2

(∇2
Rk2

F

)

+ zJ1(z)J0(z)

96π2

[
∇R

(
∇Rk2

F · s
s

)
· s
s

]
, (40)

from which we obtain

gsc(R; s) = 1 −
[
ρ̄sc

1 (R; s)
]2

[ρ(R)]2
=

[
1 −

(
2J1(z)

z

)2
]

− zJ1(z)J2(z)

48π

(∇Rρ)2

ρ3
+ 1

48π2

∇2
Rk2

F

ρ2
[J1(z)]2

− zJ1(z)J0(z)

96π2

1

ρ2

[
∇R

(
∇Rk2

F · s
s

)
· s
s

]
. (41)

We may now write

E
(1),+
dd = μ0d

2

8π

∫
d2R

∫
d2s

1

s3
[ρ(R)]2gsc(R; s)

= μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2

∫ ∞

0
dz

1

z2

×
{[

1 −
(

2J1(z)

z

)2]
− zJ1(z)J2(z)

48π

(∇Rρ)2

ρ3

+ 1

48π2

∇2
Rk2

F

ρ2
[J1(z)]2

}
− μ0d

2

8π

∫
d2R

×
∫

d2s
1

s3

zJz(z)J0(z)

96π2

[
∇R

(
∇Rk2

F · s
s

)]
. (42)
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The first term in square brackets in Eq. (42) has already been
shown to yield the LDA to E

(1)
dd , viz., Eq. (39). Let us consider

now the second term, defined by

I2 = −μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2

∫ ∞

0
dz

1

z

J1(z)J2(z)

48π

(∇Rρ)2

ρ3

= −μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2 1

72π2

(∇Rρ)2

ρ3
, (43)

where Mathematica has been used to evaluate the z integral.
The third integral to be evaluated is

I3 = μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2 1

48π2

∇2
Rk2

F

ρ2

∫ ∞

0
dz

1

z2
[J1(z)]2

= μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2 1

36π3

∇2
Rk2

F

ρ2

= μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2 1

9π2

∇2
Rρ

ρ2

= −μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2 1

18π2

(∇Rρ)2

ρ3
. (44)

In going to the last line in Eq. (44), we have assumed that the
spatial density vanishes at infinity, viz., ρ(R → ∞) = 0.

The last integral in Eq. (42) is more involved, so we leave
the details to Appendix E. The result of this calculation is
given by

I4 = −μ0d
2

8π

∫
d2R

∫
d2s

1

s3

zJz(z)J0(z)

96π2

×
[
∇R

(
∇Rk2

F · s
s

)
· s
s

]

= μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2

(
1

48π2

(∇Rρ)2

ρ3

)
. (45)

Summing all of the contributions finally leads to

E
(1),+
dd = μ0d

2

√
π

2

∫
d2R[ρ(R)]5/2

[
128

45π
− 1

72π2

(∇Rρ)2

ρ3

− 1

18π2

(∇Rρ)2

ρ3
+ 1

48π2

(∇Rρ)2

ρ3

]

= μ0d
2

√
π

2

∫
d2R[ρ(R)]5/2

[
128

45π
− 7

144π2

(∇Rρ)2

ρ3

]
.

(46)

It is a little surprising that the second-order correction to E
(1),+
dd

tends to lower the energy, but we need to remember that E
(1)
dd

is part of the total dipole-dipole energy, in which case, the
expected sign of the correction may not fit in with our intuition.
Moreover, the coefficient in front of the correction term is
∼−0.005, which suggests that it is a small contribution relative
to the first LDA term.

One way to quantify the improvement of the gradient
correction is to consider the relative percentage error (RPE)
between the approximate value of E

(1)
dd and the exact value, viz.,

RPE ≡
∣∣E(1),approx

dd − E
(1),ex
dd

∣∣
E

(1),ex
dd

× 100, (47)

where, in Eq. (47), E
(1),approx
dd is either E

(1),LDA
dd or E

(1),+
dd

TABLE I. A comparison of the LDA (second column), gradient-
corrected (third column), and exact (fourth column) expressions for
E

(1)
dd . The last two columns correspond to the RPE defined in Eq. (47).

Energies are in units of μ0d
2/a3

ho, as discussed in the text.

N E
(1),LDA
dd E

(1),+
dd E

(1),ex
dd RPELDA RPE+

55 54.5725 54.4547 54.4003 0.3 0.1
105 168.937 168.739 168.654 0.2 0.05
231 670.718 670.350 670.199 0.08 0.02
496 2553.50 2552.83 2552.48 0.04 0.01

It has already been shown in Ref. [19] that the exact
expression E

(1),ex
dd for a spin-polarized, harmonically confined

2D Fermi gas is given by (here, energies are scaled by μ0d
2/a3

ho
and lengths by aho = √

�/mω0, where ω0 is the trap frequency)

E
(1),ex
dd = 1

4π

1√
2

M∑
n=0

(n + 1)�(n + 3/2)

�(n + 1)

×
{

4

3
n3F2

(
−3

2
,
1

2
,−n; 2,−1

2
− n; 1

)

+ 3F2

(
−1

2
,
1

2
,−n; 2,−1

2
− n; 1

)}
, (48)

where we have assumed M + 1 closed shells and the particle
number is given by N = 1

2 (M + 1)(M + 2). Note that, here, by
exact, we mean that the exact ODM for the harmonic oscillator,
Eq. (49), has been used to evaluate Eq. (33). We also have the
exact ODM, which reads [3,20]

ρ̄ex
1 (R; s) = 1

π

M∑
n=0

(−1)nLn(2R2)L1
M−n(s2/2)e−(R2+s2/4),

(49)
from which the exact density is given by taking s = 0 in
Eq. (49), viz.,

ρ̄ex
1 (R; 0) = ρex(R) = 1

π

M∑
n=0

(−1)n(M − n + 1)Ln(2R2)e−R2
,

(50)

where 3F2[a,b,c; d,e; z] is a generalized hypergeometric
function and Lα

n(z) is a generalized Laguerre polynomial [4].
Inserting Eq. (50) into Eq. (39) gives the second column
in Table I, while inserting Eq. (50) into Eq. (46) yields the
third column. We have focused our attention on N ∼ 50–500
particles since it is in this regime that we expect the most
significant deviations from the exact results. It is clear from
Table I that the negative correction serves to bring E

(1),+
dd and

E
(1),ex
dd into much closer agreement. The RPEs for E

(1),LDA
dd and

E
(1),+
dd are displayed in the fifth and sixth columns of Table I,

respectively. We note that for N = 55, the gradient correction
already reduces the RPE by a factor of 3, highlighting that
while the correction is small, it significantly improves the
agreement with the exact result given by Eq. (48). In this
sense, the negative sign of the gradient correction in Eq. (46)
is justified a posteriori.
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FIG. 1. Solid, dashed, and dotted curves correspond to the radial distribution functions, gex(R; s), gsc(R; s), and gLDA(R; s), respectively.

(a) Evaluated for R = 0 and (b) evaluated for R = 1
2 RTF, where the Thomas-Fermi radius is given by RTF/aho =

√
2
√

2N with N = 55
particles. As defined by Eq. (37), g(R; s) is dimensionless. The insets in both panels depict a zoomed-in, extended range for the radial
distribution functions. The axes of the insets are as in the main figure.

The energies presented in Table I provide a global compar-
ison in the sense that they are integrated quantities. Another
useful test to understand why the gradient corrections to the
ODM, Eq. (29), provide such an improvement to the HF
energy is to consider a pointwise comparison (i.e., a local
comparison) of the radial distribution functions described by
the exact [gex(R; s)], gradient-corrected [gsc(R; s)], and LDA
[gLDA(R; s)] expressions. In Fig. 1 we present two panels
which display the exact (solid curve), gradient-corrected
(dashed curve), and LDA (dotted curve) radial distribution
functions. Figure 1(a) is evaluated at R = 0, where the largest
discrepancy between the distributions is present. It is clear
that the inclusion of gradient corrections brings gsc(R; s) into
closer agreement with gex(R; s) for s/aho < 1. In Fig. 1(b),
we evaluate the radial distributions at R/RTF = 1

2 , where we
observe that all three distributions are in very good agreement
for s/aho < 1. The insets in both panels show a zoomed-in,
extended range for the distribution functions. It is evident that
for s/aho > 1, both gsc(R; s) and gLDA(R; s) overestimate and
underestimate the exact distribution in an oscillatory fashion.
Since E

(1)
dd involves the integration over R and s, the oscillatory

underestimation and overestimation of the distributions tend
to average out, with the net result being that both E

(1),+
dd and

E
(1),LDA
dd remain close to the exact value E

(1),ex
dd .

IV. SUMMARY

We have applied the semiclassical � expansion of Gram-
maticos and Voros to construct a manifestly Hermitian,
idempotent, one-body density matrix for a two-dimensional

Fermi gas to second-order in �. While our density matrix also
satisfies the consistency criterion of the Euler equation, it does
not remedy the fact that in two dimensions, the noninteracting
kinetic-energy functional has vanishing gradient corrections
to all orders in �.

As an interesting application, we have provided a detailed
calculation for the second-order correction to the Hartree-Fock
energy of a spin-polarized, two-dimensional dipolar Fermi
gas. We find a small, but finite, negative gradient correction
to the local-density approximation. To test the quality of the
correction, we have performed numerical comparisons with
the known exact results for a harmonically confined, spin-
polarized, two-dimensional Fermi gas. We find that including
the gradient correction yields superlative agreement with the
exact dipole-dipole interaction energy, at least for the case of
harmonic confinement.

There are several areas of research where the results of
this paper may be useful. One could use our beyond-local-
density approximation for the total dipole-dipole interaction
energy in a density-functional theory application for the
equilibrium, collective properties, and density instabilities of
a spin-polarized two-dimensional dipolar Fermi gas. We also
see potential applications of our one-body density matrix
for developing gradient-corrected interaction energy density
functionals in inhomogeneous, two-dimensional degenerate
electronic systems, which could be used in, e.g., density-
functional theory studies of two-dimensional quantum dots.
Finally, it would be of interest to consider our semiclassical
expansion to higher order in �, so that we may ascertain if
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such corrections remain finite and, if so, determine whether
the semiclassical expansion is convergent or asymptotic.
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APPENDIX A

In the following we shall evaluate Eq. (22).

A = g

(2π�)2

∫ pF

0
dpp

∫ 2π

0
dφeips cos(φ)/�

= g

2πs2

∫ z

0
duuJ0(u), (A1)

where we have put u = ps/� and z = kF s. The resulting
integral can be performed using Mathematica and gives

A = g
k2
F

2π

J1(z)

z
. (A2)

APPENDIX B

The evaluation of Eq. (23) proceeds as follows:

B = g

(2π�)2

�
2

8m
∇2

RV

∫ ∞

0
dppδ′(Hcl − EF )

∫ 2π

0
dφeips cos(φ)/�

=g
2π

(2π�)2

�
2

8m
∇2

RV

∫ ∞

0
dppδ′(Hcl − EF )J0

(ps

�

)
. (B1)

Using Eq. (27), we can write

B = g
m

16πpF

∇2
RV

∫ ∞

0
dp

dδ(p − pF )

dp
J0

(ps

�

)

= g
m

16π�2k2
F

∇2
RV (R)zJ1(z), (B2)

where we have used dJ0(x)
dx

= −J1(x). Finally, we may use

∇2
RV (R) = − �

2

2m
∇2

Rk2
F to write

B = −g
1

32π

∇2
Rk2

F

k2
F

zJ1(z). (B3)

APPENDIX C

The evaluation of Eq. (24) may be performed if we write

C = g
1

48πm

(∇2
RV

)2
∫ ∞

0
dppδ′′(Hcl − EF )J0

(ps

�

)
. (C1)

Upon substituting Eq. (28), we obtain

C = g
m2

48πpF

(∇2
RV

)2
∫ ∞

0
dp

[
1

p

d2δ(p − pF )

dp2
− 1

p2

dδ(p − pF

dp

]
J0

(ps

�

)

= g
m2

48πpF

(∇2
RV

)2
{

d2

dp2

[
1

p
J0

(ps

�

)]
+ d

dp

[
1

p2
J0

(ps

�

)]}
p=pF

. (C2)

Recalling that z = pF s/� = kF s, we can write

C = g
m2

48πpF

(∇2
RV

)2 s3

�3

{
d2

du2

[
J0(u)

u

]
+ d

du

[
J0(u)

u2

]}
u=z

= g
m2

48π�4k4
F

(∇RV )2z3

{
d2

dz2

[
J0(z)

z

]
+ d

dz

[
J0(z)

z2

]}
. (C3)

Performing the derivatives with respect to z gives, after simplification (we have used Mathematica),

d2

dz2

[
J0(u)

z

]
+ d

dz

[
J0(z)

z2

]
= J2(z)

z
. (C4)

Substituting Eq. (C4) into Eq. (C3), we get

C = g
m2

48π�4k4
F

(∇RV )2z2J2(z) = g
1

192π
z2J2(z)

(∇Rk2
F

)2

k4
F

, (C5)

where, in going to the last line in Eq. (C5), we have made use of ∇RV = − �
2

2m
(∇Rk2

F ).
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APPENDIX D

Equation (25) is the most difficult to evaluate and requires some care. Let us first rewrite Eq. (25) in the following form:

D = g

(2π�)2

�
2

24m2

2∑
i=1

2∑
j=1

[
∂2V

∂Xi∂Xj

] ∫
d2ppipje

ip·s/�δ′′(Hcl − EF ). (D1)

Next, we make use of the identity

pipje
ip·s/� = −�

2 ∂2eip·s/�

∂si∂sj

, (D2)

which allows us to write

D = −g
�

2

96π2m2

2∑
i=1

2∑
j=1

[
∂2V

∂Xi∂Xj

∂2

∂si∂sj

] ∫
d2peip·s/�δ′′(Hcl − EF )

= −g
�

2

48πm2

2∑
i=1

2∑
j=1

[
∂2V

∂Xi∂Xj

∂2

∂si∂sj

] ∫ ∞

0
dppδ′′(Hcl − EF )J0

(ps

�

)

= −g
�

2m

48πpF

2∑
i=1

2∑
j=1

[
∂2V

∂Xi∂Xj

∂2

∂si∂sj

] ∫ ∞

0
dp

[
1

p

d2δ(p − pF )

dp2
− 1

p2

dδ(p − pF

dp

]
J0

(ps

�

)
, (D3)

and proceeding as we did for the evaluation of C, we arrive at

D = −g
m

48π�2k4
F

2∑
i=1

2∑
j=1

[
∂2V

∂Xi∂Xj

∂2

∂si∂sj

]
z2J2(z). (D4)

Let us now define

U ≡ ∂2

∂si∂sj

[z2J2(z)]. (D5)

Once again, using z = pF s/�, we obtain

U = pF

�

∂

∂si

[
sj

s

∂[z2J2(z)]

∂z

]
= pF

�

[
δij

s

∂(z2J2)

∂z
− sisi

s3

∂(z2J2)

∂z
+ sj

s

∂2(z2J2)

∂z2

∂z

∂si

]

= pF

�

[
δij

s

∂(z2J2)

∂z
− sisi

s3

∂(z2J2)

∂z
+ pF

�

sisj

s2

∂2(z2J2)

∂z2

]
. (D6)

Finally, making use of the readily derived identity

∂2(z2J2)

∂z2
= zJ1(z) + z2J0(z), (D7)

we obtain after some straightforward simplification

U = k2
F

[
δij zJ1(z) + sisj

s2
z2J0(z)

]
. (D8)

Using our expression for U , Eq. (D8), in Eq. (D4), we finally arrive at

D = −g
m

48π�2k2
F

2∑
i=1

2∑
j=1

∂2V

∂Xi∂Xj

[
δij zJ1(z) + sisj

s2
z2J0(z)

]

= −g
m

48π�2k2
F

2∑
i=1

2∑
j=1

∂2V

∂Xi∂Xj

δij zJ1(z) − g
m

48π�2k2
F

2∑
i=1

2∑
j=1

∂2V

∂Xi∂Xj

[ sisj

s2
z2J0(z)

]

= −g
m

48π�2k2
F

(∇2
RV

)
zJ1(z) − g

m

48π�2k2
F

[
∇R

(
∇RV · s

s

)
· s
s

]
z2J0(z)

= g
1

96π

∇2
Rk2

F

k2
F

zJ1(z) + g
1

96π

z2J0(z)

k2
F

[
∇R

(
∇Rk2

F · s
s

)
· s
s

]
. (D9)

Adding the terms A + B + C + D gives Eq. (29).
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APPENDIX E

We wish to evaluate the following integral:

I =
∫

d2R

∫
d2s

1

s3

zJz(z)J0(z)

96π2

[
∇R

(
∇Rk2

F · s
s

)
· s
s

]
.

(E1)

Let us start by presenting what will prove to be a useful
expression,

∇R = z

2k2
F

(∇Rk2
F

) d

dz
, (E2)

which along the ith direction reads

∂

∂Xi

= z

2k2
F

(
∂k2

F

∂Xi

)
d

dz
. (E3)

Now, we write Eq. (E1) as

I = 1

96π2

2∑
i=1

2∑
j=1

∫
d2s

sisj

s5

∫
d2R

{
∂2k2

F

∂Xi∂Xj

[zJ1(z)J0(z)]

}

= − 1

96π2

2∑
i=1

2∑
j=1

∫
d2s

sisj

s5

∫
d2R

{
∂k2

F

∂Xj

∂[zJ1(z)J0(z)]

∂Xi

}
.

(E4)

Utilizing Eq. (E3) in Eq. (E4), one obtains

I = − 1

192π2

2∑
i=1

2∑
j=1

∫
d2R

1

k2
F

[
∂k2

F

∂Xj

∂k2
F

∂Xi

]

×
∫ ∞

0
ds

z

s4

d

dz
{[zJ1(z)J0(z)]}

∫ 2π

0
dφsisj

= − 1

192π

∫
d2R

(∇Rk2
F

)2

kF

∫ ∞

0
dz

1

z

d

dz
[(zJ1(z)J0(z))],

(E5)

where we have used∫ 2π

0
dφsisj = πs2δij . (E6)

The z integral in Eq. (E5) can be computed using Mathematica
and evaluates to 2/π , from which we obtain

I = − 1

96π2

∫
d2R

(∇Rk2
F

)2

kF

= − 1

12
√

π

∫
d2R[ρ(R)]5/2 (∇Rρ)2

ρ3
. (E7)

Upon taking into account the −μ0d
2/8π factor in Eq. (45),

we finally arrive at

I4 =−μ0d
2

8π
I = μ0d

2

√
π

2

∫
d2R[ρ(R)]5/2

(
1

48π2

(∇Rρ)2

ρ3

)
.

(E8)
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