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Phonon-assisted heat transfer between vacuum-separated surfaces
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With increasing interest in nanotechnology, the question arises of how heat is exchanged between materials
separated by only a few nanometers of vacuum. Here, we present calculations of the contribution of phonons
to heat transfer mediated by van der Waals forces and compare the results to other mechanisms such as
coupling through near field fluctuations. Our results show a more dramatic decay with separation than previous
work.
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I. INTRODUCTION

Several recent papers have proposed that phonons may
contribute to the transfer of heat between two closely spaced
materials [1–4], but estimates differ in how large an effect is
to be expected. Here, we make an investigation based on a
realistic phonon spectrum and a careful calculation of the van
der Waals forces that can transfer phonons from one surface
to another across the vacuum.

It has long been recognized that when two materials are in
close proximity in vacuo, their exchange of heat is no longer
dictated by thermal radiation [5–8]. For a more complete set
of references to earlier work, see Refs. [7,9]. Once closer
than the typical wavelength of radiation, other near field
mechanisms come into play. These are the same thermal
fluctuations that give rise to Johnson noise in resistors: Their
fluctuations are on a length scale reaching down to atomic
level, but they are confined to the vicinity of the surface.
Depending on the conductivity of the material, near field heat
transfer can be by far the dominant term for surfaces in close
proximity.

On the other hand, most of the heat content of a solid lies in
the phonon spectrum, and more recent papers [1–4] raise the
possibility that phonons may tunnel across the vacuum from
one surface to another, mediated by van der Waals forces.
Budaev and Bogy [2] were one of the first to investigate
this possibility and gave estimates that suggested the phonon
contribution could be large. However, more recently Ezzahri
and Joulain [3] gave much smaller estimates of phonon heat
transfer. In this paper, we present a model of the phonons and
the van der Waals transfer mechanism, which depends much
more strongly on separation than indicated in previous reports.
We also suggest another mechanism for phonon tunneling
based on electrostatic potential differences between surfaces,
and we compare phonon heat transfer with the near field
mechanism.

II. PHONONS IN SOLIDS

We shall assume an isotropic material that sustains longitu-
dinal and transverse phonons. The longitudinal phonons have
displacements parallel to the direction of propagation.

uL = k−1
L [kLx, ky, 0] exp(ikLxx + ikyy − iωt) (1)

and transverse phonons displacements perpendicular to that
direction. There are two transverse phonons.

uT 1 = k−1
T [ky, − kT x, 0] exp(ikT x,x + ikyy − iωt),

uT 2 = k−1
T [0, 0, kT ] exp(ikT x,x + ikyy − iωt) (2)

We shall assume a surface for which the normal is the x

axis. Since we also assume an isotropic medium, we can work
in the xy plane without loss of generality.

When we consider interaction of these phonons with a
surface, only the p-polarized transverse wave, uT 1, produces
disturbances of the surface, and therefore it is only this wave
that will transmit energy across a gap to a second surface. This
wave is sometimes also referred to as a “vertical transverse
wave.”

The dynamics of the phonons are determined by the strain
tensor,

uik = 1

2

[
∂ui

∂xk

+ ∂uk

∂xi

]
(3)

and by the stress tensor,

σik = ρc2
Lδik

∑
�

u�� + 2ρc2
T

(
uik − δik

∑
�

u��

)
(4)

where cL is the velocity of longitudinal phonons, and cT is
the velocity of transverse phonons. Details can be found in
Landau and Lifshitz [10].

Continuum theory relates the acceleration of an infinitesi-
mal region of the medium to the gradient of the stress,

ρüx = ∂σxx

∂x
= −c2

Lk2
Lx exp (ikLxx − iωt) (5)

in the case of longitudinal phonons and

ρüy = ∂σyx

∂x
= −c2

T k2
T x exp (ikT xx − iωt) (6)

in the case of transverse phonons.
In reality, solids are composed of discrete unit cells that

result in a cutoff to the wave vectors and a dispersion of
frequency with wave vector, which can be quite complex but
is typically of the form

ωL,T (k) = ωc,L,T sin ak (7)

where for a simple cubic lattice of atoms, a would be the
lattice spacing, and the critical frequency would be given by
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FIG. 1. Typical dispersion of phonon frequencies with wave
vector.

the relevant velocity,

lim
k→0

dωL,T

dk
= cL,T = ωc,L,T a (8)

In a finite solid containing L3 atoms, the first Brillouin zone
contains L3 phonons for each of the three modes. In our model,
we replace the first Brillouin zone with a sphere of the same
volume in reciprocal space. The radius is given by

4π

3
k3
c =

[
2π

a

]3

(9)

This leaves us with an isotropic continuum model, but one
that captures the essential features of phonons in the solid
state. Qualitative dispersion relations are shown in Fig. 1.
The transverse wave typically has a larger wave vector at
a given frequency and hence a lower cutoff frequency than
the longitudinal phonon. However, we shall approximate the
dispersion by linearizing, e.g., Eq. (7), as small values of the
wave vector will dominate heat transfer.

III. VAN DER WAALS FORCES BETWEEN SURFACES

The van der Waals force originates from quantum fluctua-
tions in electron density. It is a weak but relatively long range
force that comes into its own at distances beyond the range of
ordinary chemical bonds and is important for issues such as
friction and wetting of surfaces. More esoterically, it enables
geckos to walk on ceilings. It is well described by Israelachvili
[11].

The van der Waals force acts on density fluctuations so
that phonons with zero or negligible density fluctuations in
the bulk have no bulk contributions to the force. However,
all phonons (except for the transverse phonons at normal
incidence) have a surface displacement, which does couple.
This statement is true of the transverse phonons, which do not
compress the material in the bulk, and is approximately true
of the longitudinal phonons.

Suppose that surface 1 has a periodic displacement of

u1x = δ1x exp(ikyy − iωt) (10)

d

medium 1 medium 2

1x 2x

x

y

FIG. 2. Infinitesimal displacements of medium 1 and medium 2
alter the density profile at each surface. Thus, a periodic force is
transmitted across the vacuum via the van der Waals interaction.

where δ1x is an infinitesimal amplitude. From the translational
symmetry of the surfaces, the force acting on surface 2 must
have the form

Fx21 exp(ikyy − iωt) (11)

We consider the real and imaginary parts of the displace-
ment separately, recombining them later. Here is the real part
of the displacement:

uc
1x = δ1x cos(kyy − ωt) (12)

To find the force acting on surface 2, we make a test
displacement of surface 2 as follows,

uc
2x = δ2x cos(kyy − ωt) (13)

This displacement changes the density at the surface by an
infinitesimal amount,

	ρ1 = ρδ1x cos(kyy − ωt)δ(x)

	ρ2 = −ρδ2x cos(kyy − ωt)δ(x − d) (14)

where ρ is the density of the medium (see Fig. 2). Note the
change of sign: A positive displacement on the first surface
increases the density by pushing out into the vacuum, whereas
a positive displacement on the second surface reduces the
density by pushing material away from the vacuum.

The van der Waals potential energy in the presence of
displacements is given by

φ = φ0 + φ1 + φ2 = −C

∫∫
R0

d3r1 d3r2

|r1 − r2|6

−C

∫∫
R1

d3r1 d3r2

|r1 − r2|6
− C

∫∫
R2

d3r1 d3r2

|r1 − r2|6
(15)

where φ0 is the potential interaction between two undisturbed
surfaces separated by distance d and represents the constant
van der Waals attraction between the surfaces. It plays no role
in transmitting phonons. On the other hand, φ1 is the interaction
between the perturbation on surface 1 and a planar undisturbed
surface 2 plus the corresponding term where surface 2 is
disturbed. The term r1 is a coordinate within the first surface
(Fig. 2), and r2 is a coordinate within the second surface. Since
the integrand oscillates about zero in y, the net contribution
to the integral is zero to first order but has a second-order
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contribution of

φ1 = −πC

8d4
L2

(
δ2

1x + δ2
2x

)
(16)

which gives rise to forces per unit area of

Fc
x11 = πCδ1x

2d4
cos(kyy1), F c

x22 = πCδ2x

2d4
cos(kyy1) (17)

The constant C is proportional to the Hamaker constant,
A [11],

C = Aπ−2 (18)

We are left with φ2, which is the interaction between the
periodic displacements on each surface.

φ2 = +C

∫∫
R2

uc
1x(r1)uc

2x(r2)d2r1d
2r2

|r1 − r2|6
(19)

where we have assumed that the displacements normal to the
surface are infinitesimal.

Substituting for u1x,u2x ,

φ2 = +Cδ1xδ2x

∫∫
R2

cos[kyy1 − ωt] cos[kyy2−ωt]

|r1−r2|6
d2r1d

2r2

= +Cδ1xδ2x

2

∫∫
R2

cos[ky(y1 − y2)]

|r1 − r2|6
d2r1d

2r2 (20)

Introducing new variables,

R = r1 + r2

2
, r = r1 − r2 − d (21)

gives

φ2 = Cδ1xδ2xL
2

2

∫∫
R2

cos[kyy]

|r + d|2 d2r

= Cδ1xδ2xL
2

2
Re

∫∫
R2

exp[ikyy]

|r + d|2 d2r (22)

where L2 is the surface area of the interface and results from
integrating over R. This integral can be evaluated in terms of
a modified Bessel function [12].

φ2 = CL2πδ1xδ2x

8d2
k2
yK2(kyd) (23)

This result has been exploited in the context of 4He
scattering from a liquid 4He surface, where the experiment
was dominated by the excitation of ripplons on the 4He surface
[13,14].

We can now retrieve the force per unit area acting on the
second surface, due to a displacement of surface 1,

Fc
x21 = −L−2 ∂φ2

∂δ2x

= −Cπδ1x

4d2
k2
yK2(kyd) (24)

If the displacements are infinitesimal, no shear force is
transmitted across the vacuum,

Fy21e(ikyy−iωt) = 0 (25)

A parallel argument holds for the imaginary component of
the force, so that we identify

Fx21e(ikyy−iωt) = −Cπδ1x

4d2
k2
yK2(kyd)e(ikyy−iωt)

Fy21e(ikyy−iωt) = 0 (26)

The forces exerted on surface 1 due to a displacement of
surface 2 follow from symmetry,

Fx12e(ikyy−iωt) = −Cπδ2x

4d2
k2
yK2(kyd)e(ikyy−iωt)

Fy12e(ikyy−iωt) = 0 (27)

Note that in the limit d → 0, we retrieve the same functional
form used in the “spring model” of previous work [2,3],

lim
d→0

[φ1 + φ2]

= lim
d→0

CL2

[
− π

8d4

(
δ2

1x + δ2
2x

) + πδ1xδ2x

8d2
k2
yK2(kyd)

]

= −πCL2

8d4

[
δ2

1x + δ2
2x − 2δ1xδ2x

] = −πCL2

8d4
[δ1x − δ2x]2

(28)

In this limit, the forces are a function only of the local
separation of the surfaces. However, this limit is valid only at
unrealistically small values of d.

IV. PHONON TRANSMISSION BETWEEN
FREE SURFACES

We shall assume an isotropic material that sustains lon-
gitudinal and transverse phonons as defined in Eqs. (1)–(4).
We wish to calculate the transmission coefficient for phonons
incident on surface 1 separated by vacuum from surface 2 by
a distance d (see Fig. 3).

First consider the case of an incident longitudinal phonon:
Displacements are given by

uin1L = k−1
L [+kLx, + ky] exp(+ikLx,x + ikyy − iωt)

uout1L = RLLk−1
L [−kLx, + ky] exp(−ikLx,x + ikyy − iωt)

uout1 T = RT Lk−1
T [+ky + kT x,] exp(−ikT x,x + ikyy − iωt)

uout2L = TLLk−1
L [+kLx, + ky] exp(+ikLx,x + ikyy − iωt)

uout12 T = TT Lk−1
T [−ky + kT x,] exp(+ikT x,x + ikyy − iωt)

(29)

where RLL,RT L are the reflection coefficients into longitudinal
and transverse phonons, respectively, and TLL,TT L are the
coefficients for transmission into the second medium.

To calculate the forces acting between the surfaces, we need
to know the total amplitudes of the surface displacements,
which are given by

utot1Lx = (1 − RLL)k−1
L kLx + RT Lk−1

T ky

utot2Lx = TLLk−1
L kLx + TT Lk−1

T ky (30)
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solid

vacuum

incident wave

two reflected waves

x

y

T
L

L

two transmitted waves

L T

d

medium 1 medium 2

FIG. 3. An incident phonon (longitudinal in this instance) gives
rise to two reflected phonons and two transmitted phonons of different
polarizations. We assume that both surfaces are composed of the same
isotropic homogeneous material.

Similarly, for an incident transverse phonon,

uin1T = k−1
T [−ky + kT x,] exp(+ikT x,x + ikyy − iωt)

uout1L = RLT k−1
L [−kLx, + ky] exp(−ikLx,x + ikyy − iωt)

uout1T = RT T k−1
T [+ky + kT x,] exp(−ikT x,x + ikyy − iωt)

uout2L = TLT k−1
L [+kLx, + ky] exp(+ikLx,x + ikyy − iωt)

uout2T = TT T k−1
T [−ky + kT x,] exp(+ikT x,x + ikyy − iωt)

(31)

From the formulae derived in the previous section, we can
calculate the forces and match to the stress. The resulting
expressions are somewhat complex and are given by the
following formulae.

TLL = 2UV

(V − W + X)2 − U 2
, TT L = STLL

(32)

RLL = −U 2 − V 2 + (W − X)2

(V − W + X)2 − U 2
, RT L = S[−1 + RLL]

and for the transverse incident phonons,

TLT = −QU

X2 + U 2 − (V − W )2 , TT T = STLT ,

RLT = −Q[X − V + W ]

X2 + U 2 − (V − W )2 , RT T = SRLT + 1 (33)

where,

Q = −4iρc2
T kT xkyk

−1
T ,

S = 2kLxkykT(
k2
y − k2

T x

)
kL

,

U = Cπ

4d2
k2
yK2(kyd)k−1

L kLx

k2
y + k2

T x

k2
y − k2

T x

,

V = iρc2
T k−1

L

(
k2
T x − k2

y

)
,

W = iρc2
T k−1

L

4k2
ykT xkLx(

k2
y − k2

T x

) ,

X = Cπ

2d4
k−1
L kLx

k2
y + k2

T x

k2
y − k2

T x

(34)

=

FIG. 4. Top: Fraction of longitundinal incident power transmitted
between two slabs of gold plotted as a function of frequency in
log10(radians per second). The spacing between the slabs is 0.5, 1.0,
2.0, and 10.0 nm, reading the curves from right to left. Bottom: As
for top, but for transverse incident waves. The angle of incidence is
π/4 radians.

Figure 4 shows the total power transmission coefficients for
both longitudinal and transverse waves across a gap between
two gold slabs. The parameters are as follows:

C = 34.76×π−210−20J,

cL = 3240 ms−1

cT = 1200 ms−1

ρ = 1.9280×104 kgm−3

a = 4.08×10−10 m (35)

where ρ is the density of gold, and a is the lattice constant.
The value of C is taken from the Hamaker constant found in
Pinchuk and Jiang [15].

For the most part, only a small fraction of the power
is transmitted. This is because of the very large impedance
mismatch across the gap due to the weak van der Waals force.
However, for low frequencies, the transmission coefficient is
near to unity. This comes about because, for a given amplitude
of a phonon, the stress tensor is proportional to frequency,
decreasing as the frequency is lowered. When the stress tensor
is comparable to the van der Waals force acting across the gap,
transmission will be high. Since the van der Waals force in this
regime varies roughly as d−4, where d is the slab separation,
we expect the frequency of onset of maximum transmission to
scale as d−4. Figure 4 bears out this statement.

Figure 5 shows a contour plot of the transmitted power as
a function of angle of incidence and frequency. Clearly, there
is little variation with angle. We conclude that below a critical
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FIG. 5. Top contour plot of the fraction of longitudinal incident
power transmitted between two slabs of gold showing frequency in
log10(radians per second) on the vertical axis and angle of incidence in
radians on the horizontal axis. Bottom: As for top, but for transverse
incident waves. The spacing between the gold slabs in 1 nm.

frequency, the gap is highly transparent. The transition is broad
in frequency, extending over one or two orders of magnitude
about the central frequency. The transverse incident wave
does not disturb the surface at normal incidence; therefore,
transmission is zero, only rising at larger angles of incidence.

Note that high transmission occurs only at very low frequen-
cies. Even for d = 0.5 nm, the transition is about 1010rad s−1.
To put this in the current context, a thermal spectrum at
T = 0.076 K would peak around this frequency. Therefore,
when temperatures of around 300 K are considered, the picture
is very different, with frequencies around 4×1013rad s−1 being
the relevant ones.

The high transparency at low frequencies has little impact
on heat transmission, as we shall see in the next section.
However, it may be relevant if near field heat conduction is
being employed to cool a sample without mechanical contact.
In fact, Fig. 4 shows that for low frequencies, there is very
good mechanical contact, in so far as low-frequency noise is
easily transmitted, and furthermore the lowest frequencies will
be well transmitted even when the surfaces are quite far apart.

V. HEAT CONDUCTION ACROSS AN INTERFACE

We wish to use the transmission coefficients to calculate
the heat transmitted across an interface. Each phonon state in
the first medium will have an energy density of

�ω

[
1

2
+ 1

exp(�ω/kBT ) − 1

]
L−3 (36)

where � is Planck’s constant, ω is the frequency of the phonon,
kB is Boltzmann’s constant, T is the temperature in degrees
Kelvin, and L is the dimension of the system. Since the zero
point energy plays no role in heat transfer, we shall neglect it
from this point onwards.

We shall assume that the L×L×L box in which the phonons
are confined obeys periodic boundary conditions so that the
density of states in k space is (L/2π )3. The heat flux per unit
area in the direction of the surface is

Q̇(T ) = L−3
∑

kLx>0,
kLy ,kLy

�ωL

exp(�ωL/kBT ) − 1

c2
LkLx

ωL

+ �ωT

exp(�ωT /kBT ) − 1

c2
T kT x

ωT

(37)

where the factor

c2
LkLx

ω
= cL sin θ (38)

is the component of the phonon’s velocity along the x axis. We
assume linear dispersion so that the group and phase velocities
coincide,

ωL = cLkL, ωT = cT kT (39)

Although there are two transverse polarized waves, only
the p-polarized transverse wave can cross a gap into a second
solid.

If we now bring up a second surface, the probability of
energy transmission into that second surface is GLandGT for
the longitudinal and transverse phonon, respectively, and the
heat flux is

Q̇(T ) = L−3
∑

kLx>0,
kLy ,kLy

�ωLGL

exp(�ωL/kBT ) − 1

c2
LkLx

ωL

+ �ωT GT

exp(�ωT /kBT ) − 1

c2
T kT x

ωT

(40)

which we can rewrite in terms of integrals,

Q̇(T ) =
∫ ⎡

⎢⎢⎣
�ωLGLcL

exp(�ωL/kBT ) − 1

+ �ωT GT cT

exp(�ωT /kBT ) − 1

⎤
⎥⎥⎦ sin 2θ

8π2
k2dk (41)

and we have recognized that the integrand is independent of
the azimuthal orientation of the wave vector.
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The fractions of these incident waves that are transmitted to
the second surface are given by the transmission and reflection
coefficients calculated in the previous section. We define

GL = |TLL|2 Re kLxc
2
L + |TT L|2 Re kT xc

2
T

Re kLxc
2
L

,

GT = |TLT |2 Re kLxc
2
L + |TT T |2 Re kT xc

2
T

Re kT xc
2
T

(42)

as the contributions of longitudinal and transverse waves,
respectively. The factor |TLL|2 gives the intensity of the
transmitted phonon field, and the power flow normal
to the surface results from multiplying by the velocity normal
to the surface,

cL cos θL = cL

kLx

kL

= c2
L

kLx

ω
(43)

The common factor of ω cancels in Eq. (42).
Figure 6 shows the longitudinal and transverse contribu-

tions to the integral given in Eq. (41) for two gold slabs using
the same parameters displayed in Eq. (34) and separated by
1 nm. Although the temperature is taken to be 300 K, with a
typical frequency of

ω = kBT

�
≈ 4×1013rads−1 (44)

it is apparent from Fig. 6 that the major contributions to the
integral come from much lower frequencies. This is due to
the very steep dependence on frequency for the transmission
coefficients as noted in section III. On the other hand, the high
transmission at low frequencies does not contribute much to
heat transfer. The integrand is trapped in a steep valley between
the maximum density of states and the low-frequency rise in
transmission.

Figure 7 shows the integrated heat flux from a gold surface
at 300 K into a second surface for various separations together
with a horizontal line showing the black body radiation. The
phonon contribution declines very rapidly with increasing
separation. The variation is not a simple power law as d−8

found in previous work, but accelerates at large distances.
The very strong dependence on separation dominates heat

flow from phonons: Even large variations of other parameters
can be nullified by a slight change in separation. Note that
the weak black body flux is only equaled at a 1 nm separation.
Although phonon flux rises dramatically beyond this point, the
region is difficult for experiments and is where other forces
begin to intrude.

TABLE I. Comparison of heat flux in watts per square meter for
the spring model [2,3] and our model.

Spacing: 0.1 nm 1.0 nm 10 nm

Our model 6.20 × 1010 8.80 × 102 7.00 × 10−7

Spring model 6.46 × 1010 5.35 × 103 5.03 × 10−5

× −

× −

× −

× −

× −

× −

× −

× −

× −

× −

FIG. 6. Contour plots of the contributions to heat flow between
two gold slabs at a temperature of 300 K, separated by 1 nm, as
calculated in Eq. (41). Top: Longitudinal incident wave contributions;
bottom: transverse incident wave contributions, showing frequency in
log10(radians per second) on the vertical axis and angle of incidence
in radians on the horizontal axis.

− − − −

−

=

Au

black body

FIG. 7. log10 of the heat flux in watts per square meter between
two gold slabs, at a temperature of 300 K, plotted against log10 of
their separation in meters. The horizontal line represents black body
radiation.
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−

=
black body

Au

FIG. 8. log10 of the heat flux between two gold slabs, at a
separation of 1 nm, plotted against log10 of the temperature. The
steeper of the two lines represents black body radiation.

Our formula for the force exerted by a phonon on the
opposite surface is given in Eq. (27) and if we take the limit,

lim
d→0

Fx12e(ikyy−iωt) = −Cπδ2x

2d4
e(ikyy−iωt) (45)

we retrieve the spring model with the d−4 scaling used in
previous work [2,3], which in turn leads to a d−8 variation
of the heat transfer with distance. We show the differences in
Table I, which shows that when the surfaces are close, a d−4

force works well, but this soon breaks down at larger distances.
Figure 8 gives a different take on the results, showing log10

of the heat flux plotted against log10 of the temperature. The
phonon contribution scales as T , in contrast to the T 4 scale of
black body radiation. This is due to phonon transmission being
heavily biased towards low frequencies, so that the temperature
dependence in Eq. (41) reduces to the low-frequency limit. The
curves cross at around 300 K, and the different scaling leads
to phonons dominating at low temperatures.

VI. ELECTROSTATIC FORCES BETWEEN SURFACES

The van der Waals force is not the only long-range force
acting between surfaces. If two surfaces are at different
potentials, the capacitive charge will result in a force. This
could arise from an externally imposed potential difference, or
a work function difference if the two surfaces were composed
of different metals. Even if the surfaces were both of gold, the
microcrystalline structure of the surfaces would result in static
potential differences between different areas, giving rise to a
similar interaction to the van der Waals force, which is due to
fluctuating dipoles. As an estimate of these effects, we consider
the simplest case of a constant voltage difference between the
two surfaces.

Two parallel conducting surfaces held at different voltages
will support an electrostatic field acting between them, which
in turn will exert an attractive force. If one of these surfaces
experiences a periodic disturbance, such as a phonon might
create, then the other surface will experience a periodic force
that will transfer phononic energy from one surface to another.

Suppose surface 1 is held at voltage V1, and surface 2 is held
at voltage V2. If the surfaces are separated by d, the voltage
profile between the surfaces will have the form

V (x) = V1 + (V2 − V1)x/d (46)

and the field is

E = −∂V /∂x = −(V2 − V1)/d (47)

Suppose that surface 1 has a periodic displacement of

u1x = δ1x exp(ikyy − iωt) (48)

where δ1x is a real number supplied by the amplitudes of
incident and reflected waves in medium 1. We require that
the potential takes the value V1 on this corrugated surface.
Introducing perturbations of the same periodicity into the
potential gives

V (x) = V1 + (V2 − V1)x/d

+[v−e−kyx + v+e+kyx]e+ikyy−iωt (49)

The additional terms obey Laplace’s equation, as any
electrostatic field must do, and by adjusting v−,v+, we can
also satisfy the boundary conditions. First, we require that
surface 2 is at a constant potential V2

v−e−kyd + v+e+kyd = 0 (50)

and next that surface 1 is at a constant potential of V1,

V1 = V [δ1x exp(ikyy − iωt)]

= V1 + (V2 − V1)[δ1xe
ikyy−iωt ]d−1

+
[
v−e−ky[δ1x exp(ikyy−iωt)]

+v+e+ky[δ1x exp(ikyy−iωt)]

]
e+ikyy−iωt (51)

We assume that phonon frequencies are low, so that
magnetic fields do not play a role; i.e., we make the quasistatic
approximation. If we assume that the phonon displacements,
δ1x , are very small, then

V1 = V [δ1xe
ikyy−iωt ]

≈ V1 + (V2 − V1)[δ1xe
ikyy−iωt ]d−1

+ [v− + v+]e+ikyy−iωt (52)

Hence,

0 = (V2 − V1)δ1x/d + [v− + v+] (53)

Using Eq. (50) and Eq. (53),

v− = − e+kyd

e+kyd − e−kyd

δ1x

d
(V2 − V1)

v+ = −v−e−2kyd = + e−kyd

e+kyd − e−kyd

δ1x

d
(V2 − V1) (54)

The electric field normal to surface 2 is

Ex(d) = −∂V

∂x
(x = d)

= −(V2 − V1)/d + 2kyv−e−kyd+ikyy−iωt (55)

and hence from Maxwell’s stress tensor,

Fx21 = 1

2
ε0

(V2 − V1)2

d2

[
1 − 2δ1xky

sinh(kyd)
e+ikyy−iωt

]
(56)

Note the asymptotic scaling as d−3 compared to d−4 for the
van der Waals case.

The electrostatic contributions to phonon heat transfer are
shown in Fig. 9 for a 1 V potential difference between the gold
slabs. Otherwise, the parameters are the same as in Figs. 7
and 8. Note the different dependence on separation shown
in the top figure, with the flux tailing off much more slowly
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FIG. 9. Compare with Figs. 7 and 8, but with electrostatic forces
substituted for the van der Waals force. A voltage difference of 1 V
between the slabs of gold was assumed.

compared to the case of van der Waals forces. In the lower
figure, the temperature dependence shows the same scaling
proportional to T as did the van der Waals case, again due
to the low-frequency biasing from the phonon transmission
coefficient.

Overall, the magnitude of the forces is not very different
from the van der Waals case. This means that distinguishing
the two experimentally will be difficult, as indeed was the
case when experiments tried to measure van der Waals forces
directly.

VII. COMPARISON WITH NEAR FIELD HEAT
FLUX AND CONCLUSIONS

In previous work [6], heat transfer through fluctuations in
the near field was studied. If the gap between the two surfaces
is much less than the relevant wavelengths at the temperature
of the bodies, then the heat flux is given by

Q̇(T ,d) = 4

π2

∫ ∞

0

∫ ∞

0
dωkydky

�ω

exp (�ω/kBT ) − 1

×
[

(Im Rp)2e−2kyd∣∣1 − R2
pe−2kyd

∣∣2 + (Im Rs)2e−2kyd∣∣1 − R2
s e

−2kyd
∣∣2

]
(57)

where we have assumed all distances are small compared to
the free space wavelength of radiation at temperature T , and
hence they work in the electrostatic approximation. This is
an excellent approximation for all length scales considered in
this paper. Rp and Rs are the surface reflectivities for s- and
p-polarized fields respectively.

Rp = εkx − k′
x

εkx + k′
x

, Rs = μkx − k′
x

μkx + k′
x

= kx − k′
x

kx + k′
x

(58)

and,

kx = i

√
k2
y − ω2/c2

0 , k
′
x = i

√
k2
y − εω2/c2

0 (59)

− − − −

−

1.5 2.0 2.5 3.0
Log10 T

−5

5

10

Log10 flux d = 1 nm
C p-wave

Au phonon

Au s-wave

Au p-wave

black body

FIG. 10. Comparison of the heat flux due to several processes.
Top: Flux plotted at T = 300 K against log10 of the spacing between
the two slabs. The red curve is for the near field mechanism in
amorphous carbon, the black curve is for the van der Waals phonon
mechanism, the green curve is for the near field p-wave mechanism in
gold, the orange curve is for the near field s-wave mechanism in gold,
and the blue curve is for black body radiation. Bottom: The same as
above, but plotted against log10 of the temperature at a constant space
of d = 1nm.

where kx,k
′
x are components of the wave vectors in vacuo and

in the medium, respectively. For highly conducting materials
such as gold, the s-polarized contribution dominates. It oper-
ates through magneto-inductive coupling of electrical currents
in opposing surfaces. For more resistive materials such as
amorphous carbon, the p-polarized contribution dominates.

Figure 10 compares various mechanisms: the phonon
tunneling mechanism for gold, the near field mechanisms for
gold and amorphous carbon, and black body radiation. We
assumed the following form for the dielectric function of gold,

εAu = 1 − ω2
p

ω2 + iων
(60)

where for gold, following Chapuis et al. [16],

ωp = 1.71×1016, ν = 4.05×1013 (61)

and for amorphous carbon,

εC = 1 + iσ

ε0ω
(62)

where a typical conductivity is given by,

σ = 2×103 (63)
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The most striking contrast between phonon tunneling via
van der Waals forces and near field tunneling consists of huge
differences between the conductivities of various materials.
This is well illustrated by Fig. 10, where amorphous carbon and
gold have near field heat transfer values that differ by several
orders of magnitude. This same observation also applies to
the far field radiation, which is massively reduced for a highly
reflecting surface such as gold.

In contrast, the van der Waals mechanism is much more
consistent. As Israelachvili observed, the Hamaker constant,
which controls these forces, differs from one material to
another by less than a factor of ten. Therefore, although we
have chosen gold as an example of phonon heat transfer, results
for other materials will not be qualitatively different.

Another striking difference is the dependence of these
forces on distance and on temperature. The near field p-
polarized flux scales as d−2 and so rapidly outpaces the van der
Waals–driven phonon contributions with increasing distance.
However, as has been observed previously, the s-polarized
contribution is almost independent of d, provided that

d <

√
�ε0c

2
0

σkBT
(64)

If this condition holds, the cutoff for integration over the
wave vector in Eq. (57) is imposed by the expression for
Im Rs(ky), which happens at

ky ≈
√

σkBT

�ε0c
2
0

(65)

so there is no dependence on distance. For gold at 300 K, the
critical distance is around 2 × 10−8m.

The phonon contributions fall off very rapidly with d in our
model, even more rapidly than the d−8 scaling found in the
spring model of phonons [2,3]. Even the electrostatic-mediated
phonon contributions scale as d−6, but all are eventually beaten
by the near field flux. This drastic dependence on d means that
phonon flux is very short range indeed and hard to distinguish
from the covalent forces arising when two surfaces touch.

Materials such as amorphous carbon produce the most
powerful heat transfer at distances beyond the range of
chemical bonding but still provide significant heat flow.
In amorphous carbon, the impedance is well matched to
maximizing the flow of heat, as discussed in an earlier
paper [6].

The temperature dependence of the phonon flux scales as
T , in contrast to the near field p-flux and black body flux, both
of which scale as T 4.

VIII. TRANSPORT BY RAYLEIGH MODES

The Rayleigh modes are surface states bound just below
the transverse modes in frequency. They are populated by
scattering of energy out of the extended modes, and they
transfer energy to an opposing surface by tunneling across the
gap. The ratio of these two rates determines the contribution to
heat transport. We shall use the splitting of the Rayleigh modes
as they hybridize across the surface to calculate the tunneling
rate.

We model the modes on either side of the surface as two
coupled harmonic oscillators

ω2

[
a1

a2

]
−

[
�2(ω,T )

0

]

=
[
ω2

kR
− iωkR

δ ωkR
γ

ωkR
γ ∗ ω2

kR
− iωkR

δ

][
a1

a2

]
(66)

where a1, a2 are the amplitudes of the mode on surface
1 and surface 2, respectively, ωkR

is the frequency of the
unperturbed mode with wave vector kR, and δ is the broadening
of the modes due to coupling to the extended modes and is
responsible both for feeding heat into the mode on surface 1
and removing heat from the mode on surface 2. If δ = 0, as
assumed in our calculations in previous sections, no heat gets
into the Rayleigh modes, and their contribution to heat flow is
eliminated. The value of δ will vary from sample to sample, but
estimates of broadening of the extended modes give a typical
value of 1 meV in the middle of the spectrum, tending to zero
at zero frequency [17]. We shall assume

δ(ky) ≈ 1.97×102×ky rad s−1 (67)

which is consistent with this estimate.
�2(ω,T ) represents a heat source (assumed to be the

extended modes) and ensures thermal equilibrium of the
uncoupled first surface if we choose

|�2(ω,T )|2 = ω2
0δ

2π

1

exp(�ω/kBT ) − 1
(68)

We shall assume that in the absence of coupling, the second
surface is at T = 0.

Here, γ couples the modes on the two surfaces and results
in a splitting of the modes,

ω2 = ω2
kR

− iωkR
± ωkR

|γ | (69)

and hence |γ | can be found from our previous formalism:
The denominators in Eq. (33) are zero at the Rayleigh mode
frequencies.

From Eq. (66) and we calculate

|a2|2 = |�2(ω,T )|2
4

∣∣∣∣∣ 2ωkR
|γ |(

ω2 − ω2
kR

+iωkR
δ
)2 − ω2

kR
|γ |2

∣∣∣∣∣
2

(70)

Upon integrating over all frequencies ω, we end up with an
expression for the flow of heat into the second surface, being
proportional to the broadening, to be given by:

Q̇R =
∫ ∞

0

�ωkR

exp
(
�ωkR

/kBT
) − 1

δ|γ |2kRdkR

16π (|γ |2 + δ2)
(71)

For realistic distances of separation |γ | � δ,

Q̇R ≈
∫ ∞

0

�ωkR

exp
(
�ωkR

/kBT
) − 1

|γ |2
δ

kRdkR

16π
(72)

In this limit, increasing δ decreases the heat flow, and since
we assume an otherwise perfect surface and substrate, our
estimate is likely to be too large.

Performing the integration gives the graph shown in Fig. 11.

075414-9



J. B. PENDRY, K. SASIHITHLU, AND R. V. CRASTER PHYSICAL REVIEW B 94, 075414 (2016)

- 9.0 - 8.0
Log10d

0.10

T = 300 K

Q  /QR

0.0

FIG. 11. Heat flux due to the Rayleigh modes calculated for gold
at T = 300 K and divided by the other near field contributions shown
in Fig. 10.

We conclude that, at least for our example of gold, the
contribution of Rayleigh modes to heat flow is just a few
percent of the total contribution.
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