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Nonlinear response of graphene to a few-cycle terahertz laser pulse:
Role of doping and disorder
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The nonlinear response of graphene to a THz laser pulse is studied by solving the time-dependent Dirac
equation and the time-dependent Schrödinger equation within a tight-binding approximation applied to finite-
sized structures. We compare predictions of these two approximations for the harmonic spectrum with the recent
experiment by P. Bowlan et al. [Phys. Rev. B 89, 041408(R) (2014)]. We highlight the influence of short-range and
long-range disorder which can be accounted for within the tight-binding description on a microscopic level. We
find good agreement with the experiment. Most notably, the intensity of the second harmonic offers a quantitative
indicator for the amount of short-range disorder.
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I. INTRODUCTION

Investigation of the nonlinear response of condensed matter
to ultrashort few-cycle near-infrared laser pulses has become
one key topic in the field of ultrafast optical science [1–7].
Applications to nanostructures, surfaces, and solids hold
the promise that nonlinear effects such as high-harmonic
generation or directed emission of electrons [8] well known for
atomic and molecular targets are strongly enhanced for targets
at solid-state densities. Moreover, the response may allow for
all-optical probes of the electronic band structure [9,10] or
demagnetization at ultrashort time scales [11,12].

A tantalizing extension represents the response of two-
dimensional solids. Graphene, a novel 2D material, is also
expected to respond nonlinearly to driving by a strong laser
field [Fig. 1(a)]. Because of the much smaller energy scales, in
particular for the gap between valence and conduction bands,
the frequency of the driving field is in the terahertz (THz) rather
than the near-infrared region. The nonlinearity in graphene is
closely linked to the near-linear dispersion of electrons or holes
close to the Dirac point [13] (see Fig. 2). With the advances in
THz laser technology achieved in the last years, experimental
studies of different nonlinear effects in graphene became
feasible, for example, second-harmonic generation [14,15],
photon drag effect [16], four-wave mixing [15], as well
as the study of nonlinear carrier dynamics [17] and THz
generation [18]. The nonlinear low odd harmonic generation
in graphene was first studied experimentally by Paul et al. [19].
Both an epitaxially grown multilayer (∼20 layers) graphene
structure and a single graphene layer produced by chemical
vapor deposition (CVD) were investigated but no harmonic
generation by strong terahertz fields could be unambiguously
detected. However, more recently, Bowlan et al. [20] observed
for a ∼45 layer graphene sheet odd harmonics in response to
short THz pulses with 40 kV/cm field strength and 2 THz
frequency. The power spectrum of the detected far-field THz
response showed the first, third, and fifth harmonics with
relative strengths of 1, 3 × 10−3, and 5 × 10−4 and, moreover,
traces of second-harmonic generation (SHG).

*florian.libisch@tuwien.ac.at

Theoretically, the optical response in the THz regime was
investigated by solving the Boltzmann equation [21], the
time-dependent Dirac equation [22], and optical Bloch equa-
tions [23,24]. In the present paper, we aim for a microscopic
quantum-mechanical simulation of the electron dynamics
which allows for a quantitative treatment of short-range
scatterers (e.g., lattice defects) and long-range disorder. We
solve the time-dependent Schrödinger equation of an electron
in a finite-size graphene flake subject to a time-dependent
pulse by third-nearest-neighbor time-dependent tight-binding
(TDTB). We benchmark our approach against simulations of
pristine bulk graphene based on the time-dependent Dirac
equation (TDDE), and find qualitative and, overall, quanti-
tative agreement. The TDTB approach allows for inclusion of
different types of disorder, superlattice potentials due to the
substrate (for example, hBN [25]) as well as imperfections of
the band structure such as trigonal warping and electron-hole
asymmetry [26]. We analyze the influence of doping and
disorder and find good agreement with the experiment [20].
In particular, our method reproduces the observed traces of
SHG when short-range disorder is included, allowing for
a quantitative assessment of short-range scatterers from the
harmonic spectrum.

II. METHODS

In this paper we apply two alternative methods to calculate
the nonlinear response of graphene to a few-cycle THz
laser pulse by solving (i) the time-dependent Dirac equation
(TDDE) and (ii) the time-dependent Schrödinger equation
for graphene within the time-dependent tight-binding (TDTB)
approximation. Note that both methods fully account for the
nonlinear response of the charge carriers to the electromagnetic
field to all orders, and thus implicitly include field-induced
renormalization effects of the band structure [27].

The TDDE provides a good approximation of bulk graphene
and is very useful for a qualitative understanding of the
response. The Dirac equation, however, cannot easily account
for disorder and the resulting K-K ′ scattering. The advantage
of the tight-binding method is the opportunity to account for
disorder or substrate interactions on a microscopic level. Both
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FIG. 1. (a) Nonlinear response in graphene. Schematically, the in-
coming few-cycle THz laser pulse (black curve) accelerates electrons
in graphene, which emit radiation (red curve) at higher frequencies.
(b) Electric field (black dashed curve) and vector potential (black solid
curve) normalized to the field strength of a 2 THz linear polarized
laser pulse given by Eq. (1).

methods represent an independent-particle description, i.e.,
neglect carrier-carrier scattering. A typical time scale of the
ultrafast subcycle dynamics we consider is the cycle period of
the order of 500 fs. As carrier relaxation by electron-electron
scattering happens on a time scale of several hundreds of
femtoseconds [28,29], we expect distortion of the harmonic
generation by electron-electron scattering to be of minor

FIG. 2. (a) and (b) Electronic motion on the Dirac cone with
different initial momenta: (a) py = 0; (b) py �= 0.

importance compared to the effects of disorder scattering and
doping.

We test our theory for a few-cycle THz pulse linearly
polarized along the x axis [Fig. 1(b)]: Ax(t) ≡ A(t) =
Aenv(t) sin(2πνt). We model a ν = 2 THz pulse with a period
T = 500 fs and the envelope

Aenv(t) = A0

{
exp

(− (t−1.1T )2

(0.67T )2

)
, if t <= 1.1T ;

exp
(− (t−1.1T )2.7

(0.47T )2.7

)
, otherwise,

(1)

where the amplitude of the vector potential A0 = F0/2πν is
proportional to the laser field strength F0. The pulse shape is
chosen to resemble the experimental pulse used for observation
of nonlinear harmonics [20].

A. Time-dependent Dirac equation

Neglecting the hexagonal lattice structure of graphene
reduces the problem to the solution of the TDDE

i�
∂

∂t
�(t) = vF

(
0 pe−iθ �p + |e|A(t)

peiθ �p + |e|A(t) 0

)
�(t),

(2)

where vF is the Fermi velocity of Dirac fermions and θ �p =
arctan(py/px) is the directional angle of the momentum of
the initial state. Harmonic radiation results from the driven
motion of electrons and holes on the Dirac cone (Fig. 2). While
nonrelativistic electrons move with velocities following the
harmonic oscillations of the laser field, electrons in graphene
subject to a laser pulse move on the Dirac cone according
to Eq. (2) with velocities exhibiting nonlinear behavior.
To illustrate the counterintuitive notion that a near-linear
dispersion leads to strong nonlinear effects, let us consider
the motion of a relativistic particle driven by a laser pulse
linearly polarized in the x direction (Fig. 2). In the case
of zero initial momentum in the y direction, i.e., py = 0,
the interband response plays a dominant role as the electron
oscillates between the lower and the upper cones [Fig. 2(a)].
Moreover, since the particle moves with constant velocity,
there is no acceleration of the charge and, hence, no harmonic
generation. If, however, the particle has an initial momentum
py �= 0 [Fig. 2(b)], its movement is confined to the hyperbola
created by an off-center cut through the double cone. Now
both movement along one branch of the hyperbola (intraband),
as well as quantum tunneling between the two branches
(interband) contribute. The strong curvature near the tip of
the Dirac cone as well as the induced interband polarization
give rise to high-order harmonics.

The numerical solution of the TDDE was discussed in detail
by Ishikawa [22,30]. Briefly, Eq. (2) can be solved numerically
using the ansatz

�(t) = C+(t)�+(t) + C−(t)�−(t). (3)

Here “+” and “−” represent conduction and valence bands,
and the wave functions describing states within upper and
lower bands have the form

�±(t) = 1√
2
e[∓iφ(t)]

(
e−iθ �p(t)/2

±eiθ �p(t)/2

)
, (4)

075412-2



NONLINEAR RESPONSE OF GRAPHENE TO A FEW-CYCLE . . . PHYSICAL REVIEW B 94, 075412 (2016)

where θ �p(t) = arctan {py/[px + |e|A(t)]} is the directional an-
gle of the canonical momentum and the temporal phase φ(t) =
vF

∫ t

0

√
[px + |e|A(t ′)]2 + p2

y dt ′/�. The single-particle cur-
rent density induced by the laser field can be evaluated as

�j (t) = 〈�(t)| �̂j |�(t)〉 = vF 〈�(t)|(σx,σy)|�(t)〉, (5)

where �̂j denotes the current operator and σx,y are the Pauli
matrices. The current �j (t) consists of intraband and interband
contributions. The intraband current created by a particle
moving within one band can be analytically expressed as

(jx)intra = ±vF

px + |e|A(t)√
[px + |e|A(t)]2 + p2

y

. (6)

This relation directly follows from the classical equations of
motion of a relativistic particle with the dispersion relation

E±(t) = ±vF

√
{[px + |e|A(t)]2 + py} (7)

propagating on the lower [E−(t)] or the upper [E+(t)] cone
[see Figs. 2(a) and 2(b)]. The more complex interband
contribution requires a quantum-mechanical description.

The many-electron current is given by the ensemble average
over “quantum trajectories,” i.e., over an ensemble of solutions
of the TDDE or the TDTB equations, expressed in terms of
the reduced one-particle density ρ, as

〈 �J (t)〉 =
∑

n

〈�n(t)| �̂j |�n(t)〉Pn, (8)

where Pn are the occupation numbers, i.e., the eigenvalues of
the reduced one-body density matrix ρ prior to the pulse. In
the following Pn(t → −∞) is given by the Fermi-Dirac dis-
tribution function fFD(εn − μ) with the chemical potential μ.

It is instructive to analyze the contributions of individual
quantum trajectories |�n(t)〉, i.e., the solution of the TDDE
with the eigenstates of ρ, the natural orbitals, as initial states.
In the case of the TDDE the initial state is defined by the
initial momentum (n = �p). A valence electron in graphene
with an initial momentum �p = (px,0) driven by an external
laser field contributes a constant current [22] �j = (−vF ,0)
[red line in Fig. 3(a)], because in this case the massless
Dirac electron moves with constant velocity. When the applied
ponderomotive momentum |e|A0 exceeds in magnitude the
initial momentum, the response is governed by interband
dynamics. The valence electron in the lower cone passes
through the Dirac point and reaches the conduction band
(upper cone). If the electron would remain on the lower
cone (i.e., intraband dynamics), the current would change
sign [Eq. (6)] at the Dirac point [green curve in Fig. 3(a)].
The windowed Fourier transform (WFT) [31] of the wave
function �(t) [Fig. 3(b)] indicates the complete transfer from
the lower to the upper cone at the Dirac point, i.e., at E = 0,
which results in a constant current. The trajectory in energy
space smoothly alternates between the two cones [i.e., between
red and black dashed curves in Fig. 3(b) corresponding to
intraband trajectories].

A fundamentally different situation arises for py �= 0. For
low-lying initial states in the valence band with energy |E| =

FIG. 3. Left column: Time evolution of total (red solid curves)
and intraband (green dashed curves) currents evaluated within the
Dirac model using TDDE Eq. (2) and Eq. (6) for individual quantum
trajectories |� �p(t)〉 corresponding to initial states in the valence band
at t → −∞ with different initial momenta: (a) �p = (0.1,0)|e|A0; (c)
�p = (1.0,1.0)|e|A0; (e) �p = (0.1,0.02)|e|A0; (g) �p = (0.8,0.1)|e|A0.
The black solid curve in all plots represents the normalized vector
potential of the THz laser pulse. Right column: Windowed Fourier
transform of |� �p(t)〉 corresponding to the initial conditions of panels
(a), (c), (e), and (g) showing the energy evolution of the wave packet
(color scale: white-blue-yellow-red). Black dashed and red solid
curves correspond to the classical energy evolution [E±(t) in Eq. (7)]
for the electron motion in the valence [E−(t)] and the conduction
[E+(t)] bands, respectively.

vF | �p| larger than the maximal energy vF |e|A0 a particle can
gain from the pulse, the dynamics is reduced to the electron
motion within the valence band, described by the intraband
current [Eq. (6)]. The intraband response coincides with the
total response [Fig. 3(c)]. Consequently, the energy evolution
of the particle [i.e., the WFT of the wave function Fig. 3(d)]
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follows the intraband energy evolution within the lower band
only [black dashed curve in Fig. 3(d)].

For initial energies |En| � vF |e|A0 and nonzero py , the
response features a coherent superposition of interband and
intraband dynamics. The total current strongly deviates from
the pure intraband current [Figs. 3(e) and 3(g)] and displays
strong oscillations. The latter arises from the interband
polarization due to electron tunneling between the valence
and conduction bands. The strength of this Landau-Zener
type tunneling process depends exponentially on the energy
gap between the two cones at the py = constant conical
intersection [see Fig. 2(b)] [32]. Part of the wave packet then
propagates on the upper band E+(t) while the other portion
of the wave packet still follows the classical trajectory E−(t)
in the lower band [Figs. 3(f) and 3(h)]. The superposition of
two parts of the wave packet results in a beating of current
with frequency 2φ̇(t) since the two parts of the wave packet
acquire phases of opposite sign eiφ(t) and e−iφ(t) while moving
on the valence and the conduction cones. The oscillations are
time-dependent and their frequency �(t) = 2φ̇(t) = [E+(t) −
E−(t)]/� = 2E(t)/� is given by the energy difference between
the two pathways. The highest oscillation frequency is realized
when the two paths reach their maximal separation in energy.
Such oscillations are absent in the pure intraband response [see
Figs. 3(e) and 3(g)].

The foregoing description can be extended to the case
where, e.g., graphene-substrate interactions lead to a band gap
opening Eg at the Dirac point resulting in Dirac fermions with
a finite mass m. In this more general case the time-dependent
Dirac equation reads

i�
∂

∂t
� = vF

(
mvF pe−iθ �p + |e|A(t)

peiθ �p + |e|A(t) −mvF

)
�. (9)

The band gap Eg = 2mv2
F is, e.g., for graphene on hexagonal

boron nitride of the order of 40 meV [33]. The numerical
solution of this equation proceeds analogously to the massless
TDDE discussed above.

B. Time-dependent tight binding

As an alternative strategy we employ the time-dependent
Schrödinger equation using a third-nearest-neighbor tight-
binding (TDTB) Hamiltonian for the graphene lattice

i�
∂

∂t
�(t) = HTB�(t) (10)

applied to finite-size graphene flakes. We first validate this
approximation by confirming that for sufficiently large flake
sizes and low-energy excitations close to the Dirac point, the
TDDE results for bulk graphene can be reproduced by TDTB.
Beyond the TDDE dynamics, TDTB allows for including
realistic effects in graphene such as trigonal warping for
higher-lying excitations and the presence of disorder due to
localized defects or charge puddles on a microscopic level.

We solve the Schrödinger equation [Eq. (10)] numerically
using the short iterative Lanczos propagator (SIL) [34]. The
laser pulse is included through its vector potential using
the Peierls phase factor [35]. This choice corresponds to the
coupling to the electromagnetic field in velocity gauge. This
gauge preserves the lattice periodicity and has been proven

to be advantageous for describing the strong field and high
frequency response in atoms, molecules, and solids [36,37].
However, it may lead to divergences in the near-static limit
(ω → 0) of the response [37,38]. For the TDTB approximation
applied to a finite-size graphene flake each quantum trajectory
corresponds to the evolution of an eigenstate of the flake �n(t)
in a laser field. The single-electron current of the nth eigenstate
is then determined by the probability current:

jn
x (t) = − i�

2m

{(
�n(t)∗

∂

∂t
�n(t) − �n(t)

∂

∂t
�n(t)∗

)}

+|e|A(t)

2m
|�n(t)|2. (11)

We first calculate the eigenstates of a rectangular graphene
flake with dimensions Wx × Wy = 250 × 25 nm2 with peri-
odic boundary conditions in the x direction, i.e., along the pulse
polarization direction. We screen the zigzag edges parallel to
the x axis using a Berry-Mondragon potential to suppress edge
effects [39]. For each eigenstate with energy εn we assign a
wave number in the x direction kn

x by evaluating the Fourier
transform of the corresponding eigenfunction and searching
for the maximal value of kx . Plotting εn(kn

x ) [Fig. 4(a)]
closely resembles the band structure of the infinitely extended
nanoribbon of width Wy , including the two inequivalent K

and K ′ Dirac cones. The spectrum of the flake features clear
signatures of size quantization in the y direction [Fig. 4(a)]. In
particular, a band gap of Eg = 80 meV emerges. Obviously,
unlike the TDDE, where the initial single-electron wave
function can have any momentum of the continuous Dirac
spectrum, the eigenstates of the flake allow for probing
the electron dynamics only at discrete momenta. The size
quantization effects can be reduced by increasing the flake size
at additional computational cost. Figures 4(c)–4(e) display, on
a single-particle current level, the similarities and differences
between solutions of the TDTB [top panels in Figs. 4(c)–4(e)]
and the TDDE with an identical band gap of Eg = 80 meV
[bottom panels in Figs. 4(c)–4(e)]. For the initial states
ψn(t → −∞) in the vicinity of the Dirac point [states marked
by 1 and 2 in Fig. 4(a)], the laser-induced tunneling between
the bands creates an interband polarization, which we observe
as high-frequency oscillations in the current [see Figs. 4(c)
and 4(d) and traces marked by 1 and 2 in Fig. 4(b)]. For
an initial state ψn(t → −∞) corresponding to an eigenstate
of the flake far away from the Dirac point [marked by 3 in
Fig. 4(a)], we observe a suppression of the interband response,
and the dynamics is governed by the intraband motion [see
Fig. 4(e) and trace marked by 3 in Fig. 4(b)]. Overall, the
response as calculated by the TDDE and by the TDTB methods
resemble each over. Residual differences result primarily from
signatures of size-quantization effects for the flake.

III. SIMULATIONS

A. Ideal graphene

The physical observable in the experiment [20] was
the far-field response of graphene, which clearly revealed
the presence of higher harmonics in the power spectrum. In the
far-field approximation the electromagnetic field generated by
the moving charges in graphene due to the interaction with
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FIG. 4. (a) Spectrum of a Wx × Wy = 250 × 25 nm2 flake with periodic boundary conditions in x direction and screened zigzag boundaries
parallel to the x axis (blue dots). Red, green, and black triangles (also marked by 1, 2, and 3) denote the initial eigenstates |�n〉 for which
we show the single-electron current in (b) calculated within TDTB (similarly marked by 1, 2, and 3). (c)–(e) Top panels show the same
single-electron currents as in (b) for initial states (1)–(3). Bottom panels display single-electron currents evaluated by solving the TDDE with
a finite gap Eg = 80 meV for equivalent initial states (1)–(3).

the laser pulse is determined by the dipole acceleration of

the charge carriers �̈d(t). The squared Fourier transform of the
dipole acceleration yields the power spectrum:

P (ω) ∝ | �̈d(ω)|2 = |ω �̇d(ω)|2. (12)

Since both current and first derivative of the dipole moment
are proportional to the velocity, we can equivalently write

P (ω) ∝ |ω〈 �J (ω)〉|2. (13)

Here 〈 �J (ω)〉 is a Fourier transform of the total current [30] for
an ensemble of occupied initial states

〈 �JTDDE(t)〉 = gsgv

(2π�)2

∫
d2p 〈ψ �p(t)| �̂j |ψ �p(t)〉

·fFD(vF | �p| − μ), (14a)
or

〈 �JTDTB(t)〉 = gs

∑
n

〈ψn(t)| �̂j |ψn(t)〉fFD(εn − μ), (14b)

where gs = 2 and gv = 2 denote spin- and valley-degeneracy.
We treat electrons in the valence band with energies 0 � E �
−0.33 eV at time t → −∞ to capture all the states reaching the
Dirac point for the pulse strengths we examine. We focus on the
far-field response parallel to the polarization axis of the laser;
i.e., we evaluate �Jx and calculate the power spectrum P (ω)
resulting from this component of the total current. The y com-
ponent of the current is zero for a symmetric distribution of py .

Assuming first an undoped sample with μ = 0, i.e., the
Fermi level coincides with the Dirac point, the power spectrum
of the graphene response (see Fig. 5) displays the formation
of the third and the fifth harmonics with increasing laser

intensity starting from a field of F0 ≈ 20 kV/cm. Here we
have evaluated the total graphene response using four different
methods: by solving (i) the TDTB [Eq. (10)] for the finite-sized
flake; (ii) the TDDE [Eq. (2)]; (iii) the TDDE with a small
band gap of Eg = 80 meV [Eq. (9)]; and by evaluating (iv) the
intraband response only as given by Eq. (6) within the Dirac
model. For strong laser fields (F0 = 40 kV/cm) the power
spectrum calculated within the TDDE is very similar to the
response due to the intraband current alone. However, at low
field strengths (F0 = 20 kV/cm), the solution of the TDDE
features stronger nonlinearities due to the additional interband
interferences. The results from TDTB closely resemble those
of the TDDE, both for a gapless Dirac cone and for massive
fermions with a gap chosen to coincide with that of the TDTB
simulation (Eg = 80 meV). Also the yields for the third and the
fifth harmonics [Fig. 5(c)] predicted by the different methods
agree with each other. Comparison with the experimental data
shows, overall, qualitative agreement while some deviations
are noticeable. In particular, the fifth harmonic is clearly
underestimated and a second-harmonic component is present
in the data but entirely absent in our simulations for an ideal
graphene sheet [Fig. 5(c)].

B. Influence of doping and disorder

All the calculations above were performed for zero doping
(μ = 0) with occupied states up to the Dirac point. In the
experiment, however, finite doping of the sample leads to
nonzero μ. The influence of doping on the harmonic intensities
can be large. The response near the Dirac point is very
sensitive to interband polarizations, which may lower the
harmonic intensities. By changing μ these high-frequency
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FIG. 5. Power spectrum of the total response of ideal graphene in the absence of doping and disorder at (a), (b) F0 = 20 kV/cm and (c),
(d) F0 = 40 kV/cm laser field strengths evaluated with different methods: in (a), (c) TDTB (red solid curves) and TDDE (red dashed curves);
in (b), (d) TDDE with a small energy gap Eg = 80 meV (green solid curves) and the intraband response (green dashed curves). Each spectrum
is normalized to the intensity of the first harmonic in the experiment at the laser field F0 = 40 kV/cm [20]. The black curve in (a) represents
the power spectrum of the laser pulse. (e), (f) Spectral intensities of the first (1ν), third (3ν), and fifth (5ν) harmonics as a function of laser field
strength evaluated with different methods. Black curve in (c) and black triangles in (e) represent the measured response of graphene [20].

interband-induced oscillations in the current can be reduced
and a stronger intraband signal with higher odd harmonics
can be observed. The influence of doping was theoretically
considered in [21] within the kinetic Boltzmann equation.
Al-Naib et al. [24] examined the maximization problem of the
emitted third harmonic as a function of Fermi energy for the
intraband response. Here, we probe the response of graphene
within both the TDDE and the TDTB approximations at the
experimental field strength of F0 = 40 kV/cm for different
values of μ.

A shift of 50 meV in the Fermi level has a dramatic influence
on the harmonic spectra of the total current [see Figs. 6(a)
and 6(c)]. In particular, we observe an increase of the 5th
harmonic by approximately one order of magnitude in both
the TDDE and the TDTB, making the harmonic intensity
comparable with experiment. This strongly suggests a nonzero
doping of the graphene samples used in [20]. Indeed, Bowlan
et al. [20] estimated a doping level of μ = 24 meV by fitting
the measured signal to the Drude model. This doping level,
however, leads to a very similar response to that of an undoped
graphene in the Dirac picture. The relative magnitudes of the
3rd and 5th harmonics in our calculations agree well with the
experiment when a doping of μ = 50 meV is assumed [see
Fig. 6(c)].

It should be noted that p- or n-type doping yields similar
results: for μ > 0 the occupied states extend to 0 < E � μ

on the upper cone while for μ < 0, the states on the lower
cone with μ � E < 0 are unoccupied. States with the same
momentum and the same absolute value of the energy but

belonging to upper and lower cones give rise to nearly identical
currents with opposite sign (within the Dirac model the
currents are exactly opposite) and, therefore, approximately
cancel each other. As a result, the current from the energy
window −μ < E < μ is nearly zero producing a negligible
response.

Accounting for a finite temperature up to 300 K by a
Fermi-Dirac distribution of undoped graphene smoothens the
strong fluctuations in the interband current near the Dirac point.
Consequently, the effect of a finite temperature on the response
of pristine, undoped graphene is similar to the effect of nonzero
doping [Fig. 6(b)] in the TDDE. However, including a finite
temperature for a doped sample with μ �= 0 hardly changes
the spectrum or the intensities of low harmonics compared to
T = 0 [Figs. 6(b) and 6(d)].

The presence of second-harmonic generation (SHG) in the
experiment [20] points to an additional effect not accounted
for so far. SHG should only appear if inversion symmetry is
broken which can be easily included in the TDTB but not in
the TDDE simulation. The second-order response to a linearly
polarized laser field is

j (2)
x ∼ σ (2)ExE

∗
x , (15)

where σ (2) is the optical conductivity tensor describing the
second-order nonlinearity. This equation describes the so-
called linear photogalvanic effect [13,40]. In pristine graphene,
i.e., in the absence of local symmetry breaking, the quadratic
form ExE

∗
x is invariant under parity transformation, while the

current changes its sign. Therefore, the SHG is zero unless
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FIG. 6. (a)–(d) Power spectrum of the total response of graphene
at different doping levels μ for F0 = 40 kV/cm laser field strength
evaluated within (a), (b) the TDDE and (c), (d) the TDTB approxi-
mations. Simulations for different temperatures: (a), (c) at T = 0 K
and (b), (d) at T = 300 K. (e) Spectral intensities of the first (1ν),
third (3ν), and fifth (5ν) harmonics as a function of laser field
strength evaluated with TDDE and TDTB for doping of μ = 50 meV,
compared to experiment (triangles, [20]).

the inversion symmetry is broken which leads to increased
backscattering of electrons and hence to a portion of the current
flowing opposite to the field direction. Major candidates
for local symmetry breaking in real crystals are vacancies
or adsorbates [41] representing short-range disorder on the
length scale of the lattice constant ac = 2.46 Å and charge
puddles [42] representing long-range disorder with potential
variations extending over distances large compared to ac.

Disorder is treated by including a disorder potential Vdisorder

as on-site potential into the tight-binding Hamiltonian HTB

[Eq. (10)]. The resulting current follows now from an addi-
tional ensemble average over different stochastic realizations

of the disorder landscape, i.e.,

〈 �J disorder
TDTB (t)

〉 = gs

M

∑
n

M∑
m=1

〈
�(m)

n (t)
∣∣ �̂j ∣∣�(m)

n (t)
〉
Pn, (16)

where |�(m)
n (t)〉 denotes the quantum trajectory for the mth

disorder realization (we consider an ensemble of M = 5
realizations) for each initially occupied state n. Such a quantum
trajectory Monte Carlo (QTMC) approach [43] allows us to
include dephasing by elastic disorder scattering on a micro-
scopic level through appropriate choices of Vdisorder, eschewing
phenomenological scattering time approximations [23,24]. For
the present simulations we have neglected electron-electron
and electron-phonon scattering in view of the involved time
and energy scales: optical phonons with frequencies of the
order of 45 THz and energies of ≈200 meV (larger than the
electron energies considered here) are expected to be only
weakly populated even at 300 K [44]. Acoustic phonons in
graphene only weakly couple to electronic transport, resulting
in a time scale of a hundred ps, which is much longer than the
observed decay times. Consequently, short-range and long-
range disorder are expected to dominate over electron-phonon
coupling [24]. To first order, quasielastic electron-electron
scattering results in the accumulation of random scattering
phases, similar to the case of transport in a disordered
landscape we consider. Theoretical estimates for electron-
electron scattering [45] predict approximately fifty scattering
events per picosecond at 1.2 eV, only a fraction of which will
be strongly inelastic. Since the electron-electron scattering
cross section scales with the density of states—which is
lower by an order of magnitude in the energy range we
consider—strongly inelastic electron-electron scattering can
be neglected for the present pulse duration and pulse strength.
Recent work on the dynamic response of multilayer samples
finds effective time scales for interlayer coupling of the order of
10–100 ps [46], larger than the pulse duration considered here.
Radiative coupling effects [44] should be small due to the small
cross section for graphene-photon interactions. As first-order
effect we would expect a small decrease in the harmonic
response due to destructive interference of the response from
different layers. Note that intraband absorption [47] can be
neglected in the energy range we consider, as the small energy
transfer of a single photon does not require additional phonon
coupling to fulfill momentum conservation. The validity of
these considerations is further corroborated by the excellent
agreement of theory and experiment [Fig. 6(e)]. We note
that electron-electron or electron-phonon coupling could be
accounted for by the QTMC method as well following Eq. (16)
provided that appropriate amplitudes for stochastic quantum
jumps representing scattering processes are available [43].

We first examine the effect of randomly distributed single
vacancies in undoped (μ = 0) graphene driven by a laser with
a realistic field strength of 40 kV/cm (Fig. 7). The influence
of other short-range defects is expected to be qualitatively
similar. We observe a dramatic change of current for individual
quantum trajectories, jm

n (t), calculated for a flake with single
vacancies as compared to the disorder-free case. Within
each half-cycle of the pulse, the current decreases due to
electron backscattering at the vacancies. The total current
[Fig. 7(a)] displays a pronounced decrease of its amplitude
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FIG. 7. (a) The total current evaluated within the TDTB approx-
imation for varying density of single vacancies. The black dashed
curve is the normalized vector potential of the 2 THz laser pulse with
F0 = 40 kV/cm field strength. (b)–(e) Comparison between currents
jn
x (t) of individual quantum trajectories calculated within the TDTB

approximation for a Wx × Wy = 250 × 25 nm2 flake with periodic
boundary conditions in x direction and screened zigzag boundaries
parallel to the x axis. Black dashed curves represent jn

x (t) of an ideal
flake and red solid curves represent the corresponding current jn

x (t) for
a flake with (b), (c) randomly distributed single vacancies with density
nv = 1012 cm−2; and (d), (e) a smoothly varying random potential
with correlation length lcor = 25 nm and amplitude V

(0)
disorder = 50 meV.

Energy of the initial state in (b), (d) is En = −38 meV and in (c), (e)
is En = −119 meV.

with increasing amount of disorder due to the enhancement
of electron backscattering. Furthermore, in the presence of
disorder the response gets out of phase with the vector potential
while the current is in phase with �A for pristine graphene. With
increasing disorder density, the current is ahead of the vector
potential with increasing phase shift between them. The reason
is the decreasing scattering time with increasing disorder. If
the scattering time falls below the period of the laser field
oscillations (≈500 fs), the disorder backscattering flips the
direction of the current before the pulse achieves its maximal
vector potential. Including energy loss is expected to lead to a
similar phase shift of the current [21].

FIG. 8. Power spectrum of the response of undoped graphene
flakes to a THz laser pulse with field strength of 40 kV/cm calculated
within the TDTB approximation for (a), (b) short- and (c), (d) long-
range disorder. (b) and (d) represent zoom-ins of the corresponding
spectra in (a) and (c) near the second-order nonlinearity. Black dashed
curves are the power spectrum of the measured response [20].

The power spectrum [Eq. (13)] of the total response of
the graphene flake in the presence of short-range scatter-
ers [Fig. 8(a)] clearly shows SHG. The intensity of the
second-order nonlinearity increases approximately linearly
with increasing number of vacancies. By contrast, long-range
disorder does not cause the appearance of any significant
second-order harmonic component [Fig. 8(b)]. We model long-
range disorder as smooth random modulations of the on-site
energies with amplitude V

(0)
disorder = 50 meV and a correlation

length lcor = 25 nm large compared to the lattice constant ac

(lcor/ac � 100). This potential describes, for example, charge
puddles in graphene on SiO2 [42]. Estimating a mean-free path
for our long-range disorder using a fit to averaged transmission
coefficients [48] yields mean-free paths of the order of
several micrometers, in line with the reduced backscattering
due to pseudospin conservation in graphene. For short-range
scattering at vacancies we find much shorter mean-free paths of
the order of 100 nm for a vacancy density nv = 3 × 1012/cm2,
consistent with the stronger influence of short-range scatterers.
Note that for the long-range disorder lcor is still much smaller
than the classical quiver amplitude x0 = |e|A0/mω = 180 nm
at F0 = 40 kV/cm; i.e., the trajectory fully samples the
disorder potential variation. However, long-range disorder
does not allow for K-K ′ (intervalley) scattering, and the
intravalley backscattering is weak due to the conservation of
chirality for electrons in graphene. Therefore, the second-order
response is strongly suppressed as compared to short-range
disorder. The latter induces strong intervalley backscattering
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FIG. 9. Power spectrum of the response of graphene flakes
with randomly distributed single vacancies with density nv = 3 ×
1012 cm−2 calculated within the TDTB approximation for different
doping levels and temperature for F0 = 40 kV/cm laser field strength.
The response at the doping level of μ = 50 meV and T = 300 K (not
shown) hardly differs from that at T = 0 K presented in the figure.

of electrons [49]. In contrast to single vacancies, long-range
disorder does not significantly reduce the current for indi-
vidual quantum trajectories [Figs. 7(b)–7(e)]. Their envelope
still follows that of the currents of the disorder-free case
[Figs. 7(d) and 7(e)]. Notably, the interband polarization
manifesting itself as oscillations of the current decreases in
comparison with the disorder-free case presumably due to
the disorder-induced dephasing, i.e., dephasing between the
two electron paths moving within the conduction and valence
bands.

Allowing for doping by changing the Fermi energy to
μ = 50 meV only affects higher order harmonics leaving the
intensity of the second-order nonlinearity unchanged (Fig. 9).
As we have observed for a disorder-free case (Fig. 6), the
harmonics are only slightly modified by finite-temperature
effects (T = 300 K).

IV. CONCLUSIONS

We have presented a comparative study of the nonlinear
response of graphene driven by strong few-cycle THz laser
pulses employing (i) the time-dependent Dirac equation for
low-energy excitations in bulk graphene and (ii) the time-
dependent third-order tight-binding (TDTB) approximation
for finite-size graphene flakes. While we find, overall, reason-
ably good agreement between these complementary methods,
the TDTB method allows us to include the effect of disorder
scattering on a microscopic level. Taking into account doping
changes the nonlinear harmonic intensity due to a decreasing
influence of the interband response near the Dirac point. Our
analysis demonstrates that short-range disorder allows for
second-order harmonic generation (SHG) in graphene due to
K-K ′ scattering. By contrast, long-range disorder does not
lead to SHG. The present approach, thus, provides a tool for
studying the influence of lattice distortions, vacancies, adatoms
in graphene, as well as charge puddles and moiré effects due
to a substrate on the nonlinear response of graphene. Our
calculations agree well with a recent experiment where the
second, third, and fifth harmonics were observed in multilayer
epitaxial graphene [20].
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