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Microscopic model for the magnetic-field-driven breakdown of the dissipationless state
in the integer and fractional quantum Hall effect
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Intra-Landau-level thermal activation, from localized states in the tail to delocalized states above the mobility
edge in the same Landau level, explains the Bc(T ) (half width of the dissipationless state) phase diagram for
a number of different quantum Hall samples with widely ranging carrier density, mobility, and disorder. Good
agreement is achieved over two to three orders of magnitude in temperature and magnetic field for a wide range
of filling factors. The Landau-level width is found to be independent of magnetic field. The mobility edge moves
in the case of changing Landau-level overlap to maintain a sample dependent critical density of states at that
energy. An analysis of filling factor ν = 2/3 shows that the composite fermion Landau levels have exactly the
same width as their electron counterparts. An important ingredient of the model is the Lorentzian broadening
with long tails which provide localized states deep in the gap which are essential in order to reproduce the robust
high-temperature Bc(T ) phase observed in experiment.
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I. INTRODUCTION

The integer quantum Hall effect [1,2] (QHE) can in
principle be understood within the framework of a single-
particle picture. The quantized plateaux in the Hall resistance
Rxy together with the zero resistance state in the longitudinal
resistance Rxx occur whenever the Fermi energy lies in a gap
in the density of states. When a two-dimensional electron
gas (2DEG) is placed in a perpendicular magnetic field, the
movement of the Fermi energy through the quantized Landau
levels is driven by the eB/h degeneracy of a spin Landau level.
For a two-dimensional carrier density ns , the filling factor is
defined as ν = nsh/eB. At even filling factors Ef lies in a
cyclotron gap while for odd filling factors it lies in a spin
gap. This picture only gives rise to quantum Hall states of
nonzero width in the presence of disorder broadened Landau
levels, with localized states in the tails, beyond a sharp mobility
edge. As we move away from an exact integer filling factor,
the dissipationless resistance is quenched once the increasing
(decreasing) eB/h degeneracy drives the Fermi energy into
the delocalized states near the Landau-level center.

Thus, understanding the nature of the disorder is important
if we are to fully understand the quantum Hall effect, with
important implications for metrology. Disorder acts subtly;
it simultaneously strengthens the integer QHE (wider plateau,
larger critical current), while competing with or even annihilat-
ing the fractional QHE. For example, the competition between
the disorder induced energy cost of reversing spins, and the
exchange energy gain, controls the opening of the many-body
spin gap at odd filling factors [3,4]. Indeed, the shape of the
disorder broadened, Landau levels remains controversial. In
an exquisitely difficult experiment, a detailed analysis of the
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sawtooth form of the extremely small oscillations in the 2DEG
magnetization versus magnetic field, essentially the weight of
the higher harmonic terms in a Liftshitz-Kosevich approach,
suggested that the Landau-level broadening is Lorentzian [5].
However, subsequent work led to diverging conclusions [6,7].
The presence of disorder is also naturally required to explain
the fractional QHE [8–12] within the composite fermion
framework, in which the fractional filling factors for electrons
map to integer filling factors on noninteracting composite
fermions, quantized into Landau levels by an effective quan-
tizing magnetic field B∗ = B − B1/2 [13].

It has been shown that the width in magnetic field (�B) of
the maxima in Rxx , the so-called plateau to plateau transitions
in Rxy , follows a universal scaling law with �B ∝ T κ

where κ = 0.42 is universal [14,15]. The scaling law was
derived using renormalization group theory (RGT), which is
generally applied to problems (phase transitions) which are
too complicated to solve from first principles. The universality
is the expected signature of a quantum phase transition [16].
However, the experimental universal value of κ = 0.42 turned
out to be controversial, with some later work establishing a
universal value of κ = 0.58 which was tentatively attributed
to a non-Fermi-liquid-like behavior [17–30].

In a different approach, Rigal and co-workers reported that
the phase diagram for the (half) width of the dissipationless
state, in the longitudinal resistance Rxx , versus magnetic field
of a quantum Hall sample bears a remarkable resemblance
to the phase diagram for the critical magnetic field of a high-
temperature superconductor with vortex melting [31]. This can
be seen in Fig. 1 where we replot the Bc(T ) phase diagram
with the data taken from Ref. [31]. As discussed by Rigal
et al., all even integer filling factors show a low-temperature
Gorter-Casimir-like phase with, perhaps surprisingly, the same
(extrapolated) critical temperature T LT

c � 1.5 K. In the high-
temperature phase the critical temperature T HT

c for even
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FIG. 1. (a) Critical magnetic field (half width of the dissipation-
less region) versus temperature for integer quantum Hall filling factors
ν = 4,6,8,10,12 for sample 1649B. The data are taken from Ref. [31].
The solid curves are the calculated critical magnetic field due to
thermal activation of carriers to delocalized states above the mobility
edge in the disorder broadened Landau level. (b) A log-log plot of
the same data and calculations.

filling factors scales approximately as the cyclotron gap. The
low-temperature values of the critical magnetic field scale as
Bc(ν) = Bc0(1/ν2 − 1/ν2

0 ) consistent with Landau levels with
a constant (filling factor independent) ratio of the number of
localized to delocalized states within a Landau level. Here ν0

is the filling factor above which the conduction is no longer
dissipationless at T = 0 K. The 1/ν2 scaling arises from the
Landau-level degeneracy eBf /hν (magnetic field B = Bf /ν

where Bf is the magnetic field at which ν = 1 occurs), and the
fact that for every magnetic flux quanta added (or removed),
ν electrons disappear (or appear) in the Landau level at the
Fermi energy (since there are ν occupied Landau levels below
or at Ef which gain or lose an electron).

In this paper, we show that the Bc(T ) phase diagram of
Rigal et al. can be exactly explained by a simple model
involving thermal activation from localized states in the tails,
to the delocalized state near the center, of a disorder broadened
Landau level at the Fermi energy. This work is then extended,
to a number of different 2DEG samples with very different
carrier densities and mobilities, for both even, odd, and
fractional filling factors. Our results strongly suggest that
Landau-level broadening is Lorentzian. The long Lorentzian
tails are a fundamental requirement to explain the robust
high-temperature Bc(T ) phase. In other words, it is essential
to have a significant number of states, deep in the gap, into

which the Fermi level can be pushed in order to suppress
thermal activation at the high critical temperatures observed
in experiment. We will see that Gaussian broadening simply
fails to meet this stringent requirement.

We stress that the Lorentzian line shape is found for all the
samples investigated, including a high mobility–low disorder
2DEG which shows well developed fractional quantum Hall
states. The model can equally well explain the Bc(T ) phase
diagram for even, odd and fractional filling factors, with a self-
consistent limited parameters set, for each sample, explaining
the data at all filling factors. From the data set and model,
a global and coherent picture emerges, in which the mobility
edge, normally assumed to be fixed, can move under conditions
of changing Landau-level overlap. This occurs for example, in
the case of (i) the emergence of a single-particle spin gap in
the Landau level at the Fermi energy for even filling factors,
(ii) the emergence of a many body spin gap at odd filling
factors, and (iii) in the case of the overlap of localized states in
the tails of Landau levels at low magnetic fields. This can all be
understood within the framework of conduction via variable
range hopping [32–38] in the Landau-level tails. Overlapping
the localized states of different Landau levels increases the
density of states at the Fermi energy, increasing the probability
of variable range hopping, i.e., causes the mobility edge to
shift further away from the center of the Landau level. Thus,
what is required to have a robust quantum Hall sample is large
disorder, in order to have a large Landau-level broadening,
with an even larger gap to avoid at all cost the overlap of the
localized tails. This probably goes a long way to explain the
current interest in graphene for metrology [39–41].

The rest of the paper is arranged as follows: In Sec. II
the intra-Landau-level thermal activation model using Fermi-
Dirac statistics is presented and demonstrated to work well for
the previously published Bc(T ) phase diagram in Ref. [31].
This result is then extended to other samples. In Sec. III a
brief description of the experimental techniques and sample
characteristics are presented. Results, for three very different
2DEG samples, are presented in Sec. IV. The thermal activa-
tion model is shown to work for even, odd, and fractional filling
factors in widely different samples. For certain samples, in
which the Landau-level overlap is changing, a clear signature
of the movement of the mobility edge is observed. In Sec. V
the implications of this work for scaling theory are discussed.
Finally, global conclusions are drawn and the implications and
outlook for future work are drawn in Sec. VI.

II. INTRA-LANDAU-LEVEL THERMAL ACTIVATION
TO THE MOBILITY EDGE

We propose a simple microscopic model, based on thermal
activation within the partially occupied Landau level at the
Fermi energy, which can explain both the low- and high-
temperature phases in the Bc versus T phase diagram for
all filling factors. A Lorentzian broadening of the Landau
level is used, with the assumption that states in the tails
are localized and do not contribute to transport, while states
in the center, above a sharp mobility edge, are delocalized.
For a given integer filling factor, at the critical temperature
the Fermi level lies in the center of the gap and the zero
resistance state is destroyed due to a thermally activated
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FIG. 2. Schematic showing intra-Landau-level thermal activation
with a Lorentzian broadening. As sketched the single-particle Zeeman
energy is much smaller than the broadening so that spin splitting can
be neglected. The required movement of Ef with temperature, in
order to maintain the dissipationless state, is indicated by the vertical
arrows. In the experiment the Fermi energy is moved by changing the
magnetic field (filling factor).

(critical) population νc of delocalized states just above the
mobility edge. This explains why the high-temperature phase
has a critical temperature T HT

c (ν) which scales approximately
with the cyclotron gap for even filling factors. With decreasing
temperature, it is possible to push the Fermi energy up, closer
to the mobility edge, before the critical occupation νc is
obtained (see Fig. 2). At T = 0, to a good approximation,
the Fermi energy coincides with the mobility edge. Thus,
the low-temperature value of Bc is simply controlled by the
fraction of delocalized states in the Landau level. An important
ingredient of this model is the line shape used to describe
the disorder broadening of the Landau level. The robustness
of the Bc versus T phase diagram in Ref. [31] results from
the Lorentzian Landau-level broadening, with its extremely
long tails which provide a wide range of possible Fermi
energies, and hence a wide range of temperature over which
the dissipationless regime is maintained. Other line shapes
(e.g., Gaussian) have short tails and are unable to reproduce
the robust high-temperature phase. An important part of this
work is extending this result to a range of samples with very
different mobilities and disorder.

The spin Landau levels are described using two Lorentzians,

gn↑↓(E) = 1

π�
[
1 + (E−Xn↑↓

�

)2] ,

where

Xn↑↓ =
(

n + 1

2

)
�ωc ± 1

2
g∗μBB.

Each Lorentzian is centered at Xn↑↓ with a full width at half
maximum of 2�. The Lorentzians, as written, are normalized
so that the integral over all energies

∫
gn↑↓(E)dE = 1 and

all calculations are performed using filling factor rather than
carrier density.

For a given position of the Fermi energy Ef , the filling
factor can be obtained using

ν(T ,Ef ) =
∫ ∞

−∞

∞∑
n=0

[gn↑(E) + gn↓(E)]f (E)dE, (1)

where f (E) = 1/{1 + exp[(E − Ef )/KT ]} is the Fermi-
Dirac distribution function. The integral is computed numeri-
cally and to speed up the calculation we consider only Landau
levels in the direct vicinity of the Fermi energy (i.e., the Landau
levels immediately above and below Ef ). Other Landau levels
are assumed to be either full or empty. Knowing the filling
factor we can calculate the magnetic field which corresponds
to the current position of the Fermi energy, B = Bf /ν where
Bf = nsh/e is the magnetic field at which filling factor ν = 1
occurs in a sample with carrier density ns .

In this simple model, the dissipationless resistance state
ceases to exist when the thermally activated population of
delocalized states above the mobility edge exceeds a critical
value [which depends on the value of the critical resistance
Rc used to determine the half width (Bc) of the dissipationless
state]. At low temperatures, this thermal activation occurs from
electrons occupying states below the mobility edge in the same
Landau level. This explains why the low-temperature phase
has the same critical temperature (T LT

c � 1.5 K) for all filling
factors, i.e., it does not depend on the size of the cyclotron
gap. With increasing temperature, the Fermi energy is pushed
further and further down into the tail of the Landau level,
in order to maintain the occupation of the delocalized states
below the critical value. Thus, the width in temperature of the
low-temperature phase is very sensitive to the size (�) of the
Landau-level broadening. At T = 0, the resistance lifts off,
when the mobility edge coincides with the Fermi energy, so
that Bc(T = 0) depends only on the number of localized states
below the mobility edge, i.e., �/�dl .

Thermal broadening is included phenomenologically by
writing

�(T ) =
√

�(0)2 + (αKT )2,

�dl(T ) = �dl(0)
√

1 + [αKT/�(0)]2,

where α ∼ 1 is a dimensionless parameter. Note that the ratio
�dl/� is independent of the temperature.

For a given even integer filling factor (ν = 2n), temperature
and position of Ef , the population of delocalized states above
the mobility edge in the Landau level directly above the Fermi
energy is given by

δν(T ,Ef ) =
∫ Xn↑+�dl

Xn↑−�dl

gn↑(E)f (E)dE

+
∫ Xn↓+�dl

Xn↓−�dl

gn↓(E)f (E)dE. (2)

The critical temperature in the high-temperature phase,
which scales as the cyclotron energy, corresponds to the
situation where Ef lies exactly at midgap and the resistance
starts to lift off due to thermal activation across the gap. While
the critical population of delocalized states could be taken as
a fitting parameter, it makes more sense to use experiment
to fix this value; for each filling factor we use the observed
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critical temperature of the high-temperature phase, to calculate
the (critical) population, δνc, of delocalized state above the
mobility edge, when Ef lies in the center of the cyclotron gap.

Assuming that the obtained value of δνc, for a given filling
factor, does not depend on the temperature, we calculate
iteratively for each temperature the required position of
Ef using Eq. (2) to have the critical occupation δνc of
the delocalized states. A valid solution is found if Ef lies
somewhere between midgap and the center of the Landau
level. Then, using the value of Ef we calculate using Eq. (1)
the filling factor and hence the magnetic field. We calculate
the cyclotron energy �ωc = �eB/m∗ and the Zeeman energy
gμBB using the magnetic field B = Bf /ν corresponding to
the even integer filling factor. Within this approximation, the
problem is symmetric with respect to moving away from
integer filling factor to lower or higher fields, i.e., the partial
filling factor ε (when δν = δνc) of electrons in the previously
empty, of holes in the previously full Landau level is the
same. In other words the filling factors found are ν + ε and
ν − ε corresponding to magnetic fields B1 = Bf /(ν + ε) and
B2 = Bf /(ν − ε) with Bc = (B2 − B1)/2. A second iteration,
using this time the previous values of B1 and B2 to calculate
the cyclotron and Zeeman energies only changes Bc by a few
mT and was thus judged to be unnecessary. The approximation
works well because (i) B1 and B2 are generally not too different
from Bf /ν (ν is an even integer) and (ii) the corrections to
B1 and B2 actually tend to cancel. The cyclotron energy is
calculated using the accepted effective mass in GaAs, corrected
for nonparabolicity in the higher density samples [42]. To
calculate the Zeeman energy we use the accepted value of the
Landé g factor in bulk GaAs g∗ = −0.44 which is different
from 2 due to spin-orbit coupling [43].

In the model we have three fitting parameters: (i) the
Landau-level broadening � which is adjusted to have the
correct width of the low-temperature phase, (ii) the position
of the mobility edge (number of localized states) which is
controlled by �dl , essentially the ratio �dl/� determines the
value of Bc(T → 0), and (iii) the thermal broadening param-
eter α which improves the agreement at high temperatures.
The experimental value of T HT

c used to define δνc ensures
that Bc → 0 at the correct temperature. The solid lines in
Fig. 1 are calculated using � = 3.0 K, �dl = 0.9�, α = 1,
m∗ = 0.072me, and g∗ = −0.44. As can be seen in the log-log
plot in Fig. 1(b), this single parameter set provides a good fit to
all even filling factors, over nearly three orders of magnitude in
temperature and almost two orders of magnitude in magnetic
field.

Similar calculations using a Gaussian line shape reveal the
importance of the long Lorentzian tails for the robustness of
the high-temperature part of the Bc(T ) phase diagram. As
an example in Fig. 3(a) we show calculations for a Lorentzian
broadening performed with the same conditions and parameter
set as for ν = 4 for sample 1649B (which fit the data perfectly).
For calculations using the Gaussian broadened Landau level,
the width of the Landau level is precisely determined by the
width of the low-temperature part of the Bc(T ) phase diagram
where Bc is rapidly falling, and the width of the delocalized
states (position of the mobility edge �dl) is determined by
the value of Bc(T → 0). For T > 1 K the predicted values of
Bc are significantly lower than required and for T > 4 K the

FIG. 3. (a) Calculated Bc(T ) for Lorentzian and Gaussian broad-
ened Landau levels. For the Lorentzian we have used the parameters
and conditions of ν = 4 in sample 1649B. The width of the Gaussian
is precisely determined by the width of the Bc(T ) for T < 1 K and
completely fails to reproduce the data for T > 1 K. The inset shows
a log-log plot of the same curves. (b) The Lorentzian and Gaussian
Landau levels drawn according to the parameters used in the fits.
Vertical broken lines indicate the approximate position of the mobility
edge. Note spin splitting is not resolved for either line shape.

predicted Bc falls below the experimental limit at which we
can measure, i.e., the high-temperature phase is predicted to
be washed out. The short Gaussian tails do not have sufficient
states with energies well below the mobility edge in order
that Bc survives up to the temperature at which activation
across the cyclotron gap finally kills the dissipationless state.
The Gaussian and Lorentzian Landau levels are sketched in
Fig. 3(b) with the broadening used in the calculations. The
position of the mobility edge is indicated by the vertical broken
lines. Note that the parameters given for the Landau-level
broadening (�) is half of the full width at half maximum
(FWHM).

For the moment we have focused uniquely on the simplest
case of even integer filling factors; when the Fermi energy lies
in the cyclotron gap, the system is spin unpolarized, so that the
spin gap is given by the single-particle Zeeman energy g∗μBB

and many-body effects can safely be neglected. However, it is
trivial to extend the thermal activation model to odd filling
factors, where the Fermi energy lies in the spin gap. This
gap can be reproduced using an effective g factor g∗

eff 
 g∗
due to the many-body enhancement of the spin gap in the
spirit of the Ando model [44]. Equally, the model can be
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extended to fractional states, within the composite fermion
framework [13]. A crucial test of the thermal activation model
will be its ability to explain the Bc(T ) phase diagram for even,
odd, and fractional filling factors in different samples with
widely different characteristics. Such an investigation will be
presented in the the following sections.

III. EXPERIMENTAL TECHNIQUES

For the electrical transport measurements the sample was
placed in the mixing chamber of a top loading dilution
refrigerator equipped with a 16-T superconducting magnet.
The sample and wires are immersed directly in the He3/He4

mixture. During the top loading, the sample is cooled slowly
over a number of hours. In contrast to previous measurements
all data were taken during the same cool down in the dilution
refrigerator. Temperatures in the range 10 mK–4.2 K were
obtained with the sample in liquid. For higher temperatures up
to �12 K the mixture was removed with the exception of a few
mbars of exchange gas. The temperature was controlled either
using a heater mounted directly in the mixing chamber a few
cm from the sample, and/or by controlling the amount of He
exchange gas in the inner vacuum chamber of the refrigerator.
This was achieved via the temperature of a sorb pump (small
piece of activated charcoal) placed in the vacuum chamber.

Hall bars were fabricated using standard photolithography
techniques with an aspect ratio of 3:1, e.g., a Hall bar width of
250 μm with 750 μm between the voltage contacts. A constant
low current of 10–20 nA at 10.66 Hz was applied using a
100-M� series resistor and the oscillator output of an SR830
lockin amplifier. Low-pass preamplifiers, based on the INA111
Burr Brown low noise operational amplifier, were placed as
close to the sample probe as feasible to keep cable lengths
below 50 cm for the unamplified signal. The longitudinal
resistance Rxx was measured using phase sensitive detection.
The sample temperature was monitored using RuO2 (T <

4.2 K) and Cernox (T > 4.2 K) thermometers placed close
to the sample. The thermometers were also measured using
preamplifiers and phase-sensitive detection using 1 nA (RuO2)
and 10 nA (Cernox) current at 18.15 Hz.

The Rxx versus magnetic field (0–16 T) were measured
with a sweep speed of 0.25 T/min, slow enough to avoid
(i) heating the refrigerator and (ii) shifting the high-field
quantum Hall data due to the 300-ms time constant of
the lock-in amplifier. For the Dingle plots, particulary for
the high mobility–high-density samples, very slow sweeps
were performed (0.005–0.05 T/min) to avoid damping the
amplitude of the fast oscillations. We also corrected the data
for the −27-mT remnant magnetic field of our superconducting
coil which was determined from the characteristic zero-field
weak localization cusp in Rxx . The critical magnetic field was
determined, as in Ref. [31], by defining an arbitrary critical
resistance Rc = 10 �, chosen to be above the noise level in
our system. For a current of 20 nA this corresponds to a voltage
of 200 nV across the voltage contacts of the sample.

All the GaAs/AlGaAs 2DEGs investigated were grown by
molecular beam epitaxy using solid sources and modulation
doping. Sample 1649A is another piece of the same wafer
as sample 1649B used in Ref. [31]. It has an 8.2-nm-
wide GaAs quantum well. Sample 1707 is a standard high

FIG. 4. Dingle plot of the amplitude of the oscillation
�Rxx/Rxx(0) vs inverse magnetic field for the three samples investi-
gated. The solid lines are linear fits used to extract the Landau-level
broadening.

mobility GaAs/AlGaAs heterojunction. Sample 1200 is a
13-nm-wide GaAs quantum well sandwiched between short
period GaAs/AlAs superlattices which act as the barriers.
The two short period superlattices each have 60 periods
of 4 monolayers (MLs) of AlAs and 8 MLs of GaAs.
Carriers are introduced into the central 13-nm GaAs quantum
well by a single Si δ-doping sheet with a concentration of
2.5 × 1012 cm2 placed in a GaAs layer of each short period
superlattice. Carriers also occupy donor states associated with
the X conduction-band minimum in the AlAs superlattice
barriers. At low temperatures they are frozen out and do not
contribute to transport. However, they are very efficient at
screening the potential fluctuations due to the δ doping giving
unusually large mobilities for a high density 2DEG [45,46].
The Landau-level broadening was determined from a Dingle
analysis of the low-field data at mK temperatures. The Dingle
plots of �Rxx/Rxx(0) versus 1/B are shown in Fig. 4. All
samples show a linear behavior over one to two orders of
magnitude in resistance. The solid lines are the linear fits used
to estimate the Landau-level broadening. A summary of all
sample parameters can be found in Table I. The mobilities have
been calculated from the measured T = 0 resistivity and the
carrier density using μ = 1/nseρ. To estimate the ratio τt/τq

of the transport and the single-particle (quantum) lifetime we
have used μ = eτt/m∗ and τq = �/2�D . Values of τt/τq of
20 are typical for high mobility 2DEGs due to the reduced
influence [factor of 1 − cos(θ )] of the small-angle scattering

TABLE I. Summary of the sample parameters; the carrier density
ns , the transport mobility μ = eτt/m∗, the Landau-level broadening
determined from the Dingle plot �D = �/2τq , and the ratio of the
transport and quantum lifetimes τt/τq . Note the FWHM of the Landau
levels is 2�D .

Sample ns (cm−2) μ (cm2/V s) �D (K) τt/τq

1649B 7.28 × 1011 1.0 × 105

1649A 7.28 × 1011 7.5 × 104 5.5 5
1707 1.54 × 1011 4.1 × 106 0.6 25
1200 7.49 × 1011 2.5 × 106 0.75 20

075411-5



A. POUX et al. PHYSICAL REVIEW B 94, 075411 (2016)

FIG. 5. The longitudinal resistance Rxx as a function of magnetic
field at low temperature for the three samples investigated. The
resistance in the low-field regions has been multiplied by the indicated
factors to make the data at high filling factors more visible.

on the transport lifetime. This is reduced to a factor of roughly
5 for the low mobility quantum well sample 1649.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 5 shows the low-temperature Rxx versus magnetic-
field traces between 0 and 16-T for the three samples
investigated. All samples show well defined integer quantum
Hall states. Their properties are summarized in Table I.

Sample 1649A is a low mobility–high-density 2DEG with
broad Landau levels with a high proportion of localized
states in the tails. It displays wide regions of dissipationless
conduction in the vicinity of integer filling factors. Sample
1707 is a low-density–high mobility 2DEG with narrow
Landau levels and few localized states in the Landau-level
tails. It displays relatively narrow regions of dissipationless
conduction in the vicinity of integer filling factors. 1707 is
a typical fractional quantum Hall sample which shows the
standard series of fractions around filling factor ν = 1/2 and
ν = 3/2, notably a well developed ν = 2/3 state with a wide
region of dissipationless conductance. Sample 1200 shows a
very similar high-field Rxx(B) trace as sample 1649 due to the
similar densities and proportion of localized states.

FIG. 6. Critical magnetic field vs temperature plotted as log-log
for sample 1649A for (a) various even filling factors and (b) various
odd filling factors. The solid lines are calculated using the thermal
activation model as described in the text.

In order to determine the Bc(T ) phase diagram we have
made an extremely detailed temperature dependence of Rxx (B)
for each sample. Below we present the results sample by
sample together with the fits to the thermal activation model.
Global conclusions, comparing the behavior of the three
samples in order to probe the validity of the assumptions
made in the thermal activation model, will be drawn in the
discussion section. We will see that a self-consistent picture
emerges, with clear evidence that the mobility edge actually
moves if spin splitting at even filling factors is suppressed, or
if the Landau-level broadening or overlap changes.

A. Sample 1649A—high density–large disorder–low mobility

Samples 1649A is another piece of the same wafer as
1649B [Bc(T ) data presented in Fig. 1]. We have completely
repeated the measurements to have a full data set for both
odd and even filling factors and to have an estimate of the
Landau-level width from a Dingle analysis (see Sec. III). In this
sample we have access to even filling factors ν = 2,4,6,8,10,
although the high-field extremity of ν = 2 is only in field range
for high temperatures (T > 1 K). We have well developed
dissipationless regions for odd filling factors ν = 3,5, with
inevitably filling factor ν = 1 out of the available field range.
The Bc(T ) phase diagram is plotted in Fig. 6 for both odd
and even filling factors. For even filling factors the phase
diagram is quasi-identical to that measured previously for
1649B, although the values of Bc found are slightly lower.

Fitting to the lowest even integer filling factor for which we
have data over the full temperature range (ν = 4), we obtain
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TABLE II. Summary of the parameters used in the thermal activation model; the effective mass m∗ in GaAs corrected for nonparabolicity
in the high density samples, the factor α used to include thermal broadening, the T = 0 width of the Landau levels �, the ratio of the width
of the localized and delocalized states �dl/� for even, odd, and fractional filling factors, the Landé g factor g∗ for GaAs, and the effective
g factor g∗

eff to describe the exchange enhanced spin gap at odd filling factors, and for fractional filling factors the composite Fermi effective
mass and g factor.

All Even Odd Fractional
Sample Bf (T) m∗(me) α � (K) �dl/� g∗ �dl/� |g∗

eff | �dl/� m∗
cf (me) g∗

cf

1649B 30.15 0.072 1.0 ± 0.1 3.0 ± 0.3 0.9 ± 0.1 −0.44
1649A 30.15 0.072 1.0 ± 0.1 3.4 ± 0.3 1.1 ± 0.1 −0.44 0.3 ± 0.05 2.4
1707 6.37 0.067 0.3 ± 0.05 0.23 ± 0.05 1.5 ± 0.1 −0.44 1.5 ± 0.1 2.5–7.5 0.9 ± 0.1 0.8 ± 0.1 −0.44
1200 31.00 0.072 1.25 ± 0.1 0.9 ± 0.1 1.3−0.58 −0.44 0.58 ± 0.05 5.0–7.0

� = 3.4 K, similar to the value found for 1649B, but slightly
smaller than the broadening, determined from the Dingle
analysis, of �D = 5.5 K suggesting a narrowing of the Landau
levels at high field. The value of Bc(T → 0) fixes �dl = 1.1�,
slightly larger than the value found for 1649B (0.9�) indicating
that 1649A has fewer localized states which leads to the
slightly lower values of Bc. An excellent fit to the ν = 4 data is
obtained using the same thermal broadening parameter α = 1
[solid line in Fig. 6(a)]. The cyclotron gap was calculated
using an effective mass m∗ = 0.072me slightly larger than the
band-edge mass in GaAs due to nonparabolicity [42]. The
thermal activation model is then used to calculate the Bc(T )
phase diagram for all the even integer filling factors with
no adjustable parameters. The agreement with experiment
is remarkable confirming our simple model in which the
Landau-level width is independent of magnetic field, with a
mobility edge which does not move (i.e., �dl/� is constant,
independent of the filling factor).

For odd filling factors we fit to the ν = 3 data, fixing all
parameters as for the even filling factors (see Table II), with the
exception of �dl = 0.3� and an effective g factor for the many-
body enhanced spin gap g∗

eff = 2.4. The fit is again excellent
[solid lines Fig. 6(b)] for both ν = 3 and 5. This demonstrates
that as for the even filling factors the Landau-level broadening
and the position of the mobility edge is independent of the
filling factor. �dl is approximately a factor of 4 smaller than
for the even integer case demonstrating that the opening of the
spin gap causes the mobility edge to shift significantly towards
the center of the Landau level creating many more localized
states in the tail of the Landau level. On the other hand �

is unchanged for odd and even filling factors showing that
the opening of the spin gap does not affect the Landau-level
broadening.

B. Sample 1707—low density–low disorder–large mobility

In sample 1707 we have access to even filling factor
ν = 2,4,6,8 and odd filling factors ν = 1,5,7. For some reason
in this sample the ν = 3 minimum in Rxx has an asymmetric
shape, lifting off prematurely on the high-field side and never
actually falls below the Rc = 10� cut-off used to determine
Bc. In addition, 1707 has several prominent fractions, of which
only ν = 2/3 is fully developed, with Rxx falling below the
Rc = 10� cutoff. Unfortunately, ν = 1/3 remains out of our
field range, even at higher temperatures. The Bc(T ) phase
diagram is plotted in Fig. 7 for both odd, even, and fractional

filling factors. Compared to 1649, the even integer filling
factors have relatively small values of Bc at low temperature
reflecting the lower magnetic field at which they occur (due to
the lower carrier density) and the greatly reduced disorder in
this sample.

FIG. 7. Critical magnetic field vs temperature plotted as log-log
for sample 1707 for (a) various even, (b) odd, and (c) fractional filling
factors. The solid lines are calculated using the thermal activation
model as described in the text. The inset shows a schematic of the
composite fermion Landau levels around ν = 1/2. In (a) we plot also
the data of ν = 2/3 which is the composite fermion filling factor
νcf = 2. The agreement with electron filling factor ν = 2 data is
remarkable.
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While we could adopt the same procedure as for sample
1649, fitting to ν = 2 to obtain the correct parameters, and
then generating curves for all the other filling factors without
any adjustable parameters, it turns out that this is not the best
approach. There is a suspicion that the even filling factors
are fragile in this sample, and the low-temperature values of
Bc may be lower than they should be for whatever reason,
e.g., despite the small current used the Hall electric field may
shift the mobility edge. In addition, the parameters obtained
by fitting to the ν = 2 data do not fit extremely well the other
filling factors; notably the predicted low-temperature values
of Bc are lower than the measured values.

Fitting to the ν = 1 data, we obtain a Landau-level broad-
ening � = 0.23 K, lower than the value obtained from a Dingle
analysis �D = 0.6 K suggesting again that the Landau-level
width at high field is considerably reduced compared to the
low-field value. We stress that the width of the low-temperature
phase of the Bc(T ) phase diagram is very sensitive to the width
of the Landau level so that � is determined quite precisely.
The experimental value of Bc(T → 0) is correctly reproduced
with �dl = 1.5� which is much larger than the value (0.3�)
obtained for odd filling factors in 1649A; the fraction of
localized states is much lower in sample 1707. Thermal
broadening effects are also very small with α = 0.3. As for
1649 the agreement between the predictions of the thermal
activation model and the ν = 1 data is excellent over nearly two
orders of magnitude in temperature and magnetic field. Using
the same parameter set, reasonable agreement is obtained for
filling factors ν = 5 and 7. The size of the many-body spin gap
has been calculated using a filling factor dependent effective
g factor g∗

eff = 2.5–7.5 to correctly reproduce the observed
temperature dependence of Bc(T ).

The predicted Bc(T ) for even filling factors is then calcu-
lated using exactly the same parameter set as for the odd filling
factors (see Table II). In this low-density sample, the cyclotron
gap was calculated using an effective mass m∗ = 0.067 which
is the band-edge mass in GaAs. The agreement between model
(solid lines) and the data is good with some deviation at
low temperatures with the measured values being too low,
especially for ν = 2. As for sample 1649A, odd and even filling
factors can be fitted with the same Landau-level broadening �.
However, in stark contrast, both sets of filling factors can be
fitted without moving the mobility edge, e.g., the same value of
�dl/�. This would be consistent with the small single-particle
spin gap being open, in the absence of exchange interactions, at
spin unpolarized even filling factors. This is reasonable since in
1707, the single-particle Zeeman energy Ez � 1 K (at ν = 2)
is much greater than the Landau-level width � = 0.23 K.

The idea that the experimental values of Bc(T ) are too low
at low temperatures is comforted by the data for ν = 2/3 which
corresponds to composite fermion filling factor νcf = 2 [13].
In this picture, the many-body fractional quantum Hall effect
of electrons is mapped to the integer quantum Hall effect of
non-interacting composite fermion quasiparticles. Composite
fermions are formed by attaching two fictitious magnetic-flux
quantum, antiparallel to the applied magnetic field, to each
electron. In a mean-field picture, composite fermions move
in an effective magnetic field B∗ = B − B1/2 where B1/2

is the magnetic field at electron filling factor ν = 1/2. The
low-temperature ν = 2/3 data, plotted in Fig. 7(a), lie above

the ν = 2 data, indicating that the composite fermion νcf = 2
state is more robust than its electron counterpart, and is in
excellent agreement with the prediction of the activation model
for electron filling factor ν = 2.

Finally, we apply the activation model to the ν = 2/3
fractional state [see Fig. 7(c)]. In the framework of the
composite fermion model we treat this state as an effective
νcf = 2 state. We can fit to the data with � = 0.23 confirming a
previous report, based on a Dingle analysis, that the composite
fermions and electrons have identical Landau-level broaden-
ing [47]. The value of Bc(T → 0) fixes �dl = 0.9�. Imposing
g∗ = −0.44 for the noninteracting composite fermions an
excellent fit is obtained with m∗

cf = 0.8me. Leadley et al.
reported that the composite fermion mass varies as a function
of the effective magnetic field B∗ [47]. In our sample ν = 2/3
occurs at B∗ � 3.2 T (the same magnetic field as ν = 2). The
literature value for composite fermion mass at B∗ is m∗

cf �
(0.7–1.0)me, in reasonable agreement with our value [47,48].
For electrons, in the activation model the effective mass
essentially controls the gap at even filling factors (corrections
due to the single-particle Zeeman energy are negligible). For
composite fermions the situation is complicated by the large
mass, which reduces the cyclotron gap, and by the effectively
larger single-particle Zeeman energy, which depends on the
total magnetic field (3Bf /2) rather than B∗ = Bf /2. For
our parameter set we have at νcf = 2, a cyclotron energy
�ωc � 5.4 K and a Zeeman energy Ez = 2.9 K. As �ωc > Ez

this implies that the ground state is spin unpolarized (the
spin up and down n = 0 composite fermion spin Landau
levels are occupied) and excitations involve a spin flip to the
n = 1 composite fermion Landau level. The situation with the
composite fermion Landau levels is shown schematically in
the inset of Fig. 7(c). The energy gap for the excitation is
� = �ωc − Ez, which depends on both the effective mass and
the composite fermion g factor.

C. Sample 1200—high density–large disorder–high mobility

Sample 1200 is a rather unusual 2DEG due essentially to
the superlattice barriers. It has a high carrier density together
with a high mobility, but also a rather large disorder in the
sense that it has narrow Landau levels but a large proportion
of localized states. This combination gives rise to a large
number of accessible odd (ν = 3–11) and even (ν = 4–12)
filling factors. Here we have limited the analysis of even filling
factors to states which have Bc(T → 0) > 50 mT. The Bc(T )
phase diagram is plotted in Fig. 8 for odd and even filling
factors. Both show robust dissipationless states with values of
Bc at low temperatures comparable to the highly disordered
sample 1649.

As for sample 1707, we start by fitting to the lowest odd
filling factor ν = 3. The width of the low-temperature phase is
best described with a Landau-level broadening of � = 0.9 K,
which in contrast to the other samples is actually larger than
the broadening �D = 0.75 K extracted from a Dingle analysis
of the low-field oscillations. The value of Bc(T → 0) fixes
the position of the mobility edge with �dl = 0.58�. We use a
cyclotron mass m∗ = 0.072me to correct for nonparabolicity,
a thermal broadening parameter α = 1.25, and the many-
body enhanced spin gap is calculated using an effective g
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FIG. 8. Critical magnetic field vs temperature plotted as log-log
for sample 1200 for (a) various even filling factors and (b) various
odd filling factors. The solid lines are calculated using the thermal
activation model as described in the text.

factor g∗
eff = 7.0. The agreement between the model (solid

line) and experiment is excellent. The curves for the other
filling factors can then be generated with g∗

eff = 7.0–5.0 as
the only adjustable parameter. As for the other samples the
data for all filling factors is well reproduced over two to
three orders of magnitude in magnetic field and temperature.
This demonstrates that for the odd filling factors the Landau
level broadening and the position of the mobility edge are
independent of filling factor. Note that this conclusion, which
can be drawn from the Bc(T → 0) data alone, is independent
of the value of g∗

eff used, which simply improves the fit at
intermediate temperatures.

To fit the even filling factors we start with an identical
parameter set as for the odd filling factors, with of course the
exception that the spin gap is calculated with the single-particle
g factor g∗ = −0.44. An excellent fit is obtained for ν = 4 and
ν = 6. For lower filling factors the Bc(T → 0) data can only be
reproduced by assuming that the mobility edge is shifting out-
wards into the tail of the Landau level. With this assumption,
reasonable fits are obtained using �dl = 0.58, 0.58, 0.9, 1.24,

and 1.3� for filling factors ν = 4, 6, 8, 10, 12 respectively.
The agreement is not as good as for the other samples;
while the values of Bc(T → 0) are perfectly reproduced, the
predicted values of Bc at intermediate temperatures is too large
indicating that the Landau-level broadening decreases at filling
factors above ν = 6. This discrepancy is also visible for the
higher odd filling factors. The decrease of � in this sample,
possibly linked to the changing ratio of the magnetic length
and the characteristic length scale of the disorder potential,

would necessarily cause the mobility edge to shift outwards,
as required to fit to the Bc(T → 0) data.

If the single-particle spin gap was open at ν = 4 and
ν = 6 before progressively closing for higher filling factors
this would also cause the mobility edge to shift out. This is
plausible as the single-particle Zeeman energy Ez � 1.2 K
at ν = 8 is comparable to the Landau-level broadening � =
0.9 K. However, if the Landau-level broadening is decreased
then the spin gap should remain open for the higher filling
factors.

D. Discussion—Validity and limits of the model

The picture which emerges from fitting the Bc(T ) phase
diagram for odd and even filling factors for the three samples
above can be summarized as follows. The Landau-level
broadening and the position of the mobility edge within the
Landau level are independent of the magnetic field (Landau-
level index) provided the overlap of the spin-up and spin-
down sublevels is not changing. Under such conditions the
simple intra-Landau-level thermal activation model provides
an accurate description of the Bc(T ) phase diagram for all
filling factors with a single parameter set. As the single-particle
Zeeman energy is small, paradoxically odd filling factors, with
their large exchange enhanced spin gaps, fulfill this condition
for all of the investigated samples. The behavior at even filling
factors, for which there is no enhanced spin gap, depends on
the size of the single-particle Zeeman energy compared to the
Landau-level broadening. In sample 1707 with it extremely
narrow Landau levels, to a first approximation the spin gap
remains fully open at even integer filling factors, and both odd
and even filling factors can be fitted with the same position
of the mobility edge. In sample 1649, the Landau levels are
broad and the spin gap remains closed at even filling factors.
Two different positions of the mobility edge are required for
even and odd filling factors. Finally, in sample 1200, while the
odd filling factors are well behaved and can be fitted with a
single position for the mobility edge, for even filling factors,
the spin gap is opening at lower filling factors and the mobility
edge shifts closer to the Landau level center, finally reaching
the same value as for odd filling factors.

At the critical magnetic field, breakdown occurs due to the
onset of variable range hopping in the tail of the Landau level.
At T = 0, the mobility edge corresponds to the critical density
of states at the Fermi level. In analogy to the quasielastic
inter-Landau-level scattering (QUILLS) model [49], in this
case in the absence of electric field and within the same Landau
level, we can estimate the number of states in the Landau level
which have sufficient wave function overlap for tunneling. To
have sufficient overlap, the states have to lie with a circle of
radius 2An, where An = (2n + 1)1/2�B is the classical turning
point of the simple harmonic oscillator, �B = (h/eB)1/2 is
the magnetic length, and n is the orbital quantum number.
The Landau-level degeneracy can be written as 2π/�2

B so that
the number of states which can participate at an energy E

(measured from the center of the Landau level) is given by

np(E) = λ
8π2(2n + 1)

π�(1 + E2/�2)
,
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FIG. 9. (a) Schematic of the density of states of a Landau level
with and without spin splitting. To maintain the same density of
states, the mobility edge has to move towards the center of the
Landau level when the spin degeneracy is lifted. (b) The solid line
shows the predicted position of the model edge when the spin gap is
closed versus the position of the mobility edge when the spin gap is
open. The symbols shows the experimental values for sample 1649A.
(c) Schematic showing two Landau levels (broken lines) strongly
overlapping at low magnetic field. The solid line shows the total
density of states while the grey areas show localized states (mobility
edge) for nonoverlapping Landau levels. To maintain the same density
of states (without overlap) the mobility edge has to shift towards
the tail of the Landau level, eventually causing the mobility gap to
collapse.

where λ = 1 if the Landau level is spin split or λ = 2 if the
spin gap is closed. The magnetic lengths in the Landau-level
degeneracy and An cancel leaving only the prefactor (2n +
1) which describes the increased delocalization of the higher
energy simple harmonic oscillator wave functions. Thus, in
contrast with the experimental observation that the mobility
edge remains fixed, the number of states close enough to tunnel
is predicted to depend on the Landau-level index (magnetic
field). In this picture, the mobility edge �dl corresponds to the
hopping threshold, when the critical number of states per unit
area at the same energy [nc = np(�dl)] which can tunnel is
achieved.

When the single-particle spin gap closes, λ → 2 and the
mobility edge will have to move to a new position further out
(�

′
dl) into the tail of the Lorentzian to maintain the critical

density [see schematic in Fig. 9(a)]. The relation between the
two values can be written as

�
′
dl =

√
�2 + 2�2

dl .

In Fig. 9(b) we plot (solid line) the predicted position of the
mobility edge �

′
dl when the spin gap is closed versus �dl .

The measured value for sample 1649A (symbol) is in good

FIG. 10. Value of the low-temperature resistance vs even filling
factor for the three samples investigated. The solid lines are linear
fits. The intercept with the horizontal axis can be used to estimate the
filling factor ν0 at which the dissipationless state disappears at T = 0.

agreement with the simple model. We cannot compare for the
other samples since either the spin gap remains open (1707)
or the mobility edge is moving continuously (1200).

Note also that comparing the values of �dl/� (see Table II)
for even filling factors gives the misleading impression that
all samples have a similar disorder. This is due to the spin
gap remaining open at even filling factors in sample 1707.
Comparing �dl/� for odd filling factors show that the width
of the delocalized states is three to five times larger for sample
1707. The dashed lines in Fig. 9(b) indicates the expected
value, for sample 1707, of �dl/� � 2.35 if the spin gap was
closed at even filling factors.

Finally, it is interesting to consider the predictions of
the activation model in the low-field limit for even filling
factors. In Fig. 10 the resistance at even filling factors
at low temperatures (T → 0) is plotted as a function of
filling factor. The dependence is approximately linear and the
intercept with the horizontal axis can be used to estimate
the filling factor at which the conductance ceases to be
dissipationless, ν0 = 14, 16, and 38 for samples 1649A, 1707,
and 1200 respectively. Assuming that �dl/� is independent
of filling factor, we would naively expect that at T = 0 the
dissipationless conductance would disappear at filling factor
ν0 when 2�dl = Eν=1

c /ν0 where Eν=1
c = �eBf /m∗ is the

cyclotron energy at ν = 1. This prediction is clearly wrong;
for example for sample 1649A, using the parameters from
Table II gives ν0 � 74 while the conductance is no longer
dissipationless for ν � 14. What is not included in the model
is the movement of the mobility edge as the adjacent Landau
levels start to overlap; the mobility edge has to shift out so
that the overlapping density of states at the mobility edge
maintains the same value of nc. The mobility gap finally
collapses, when the combined density of states at the center of
the cyclotron gap equals nc [see Fig. 9(c)]. The condition for
this can be written

ν0 = Eν=1
c

2
√

�2 + 2�2
dl

. (3)
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FIG. 11. Schematic of the spatial, disorder induced, potential
fluctuations in a Landau level. The potential fluctuations have a
characteristic length scale �D which controls the hopping distance
required to find another state at the same energy (i.e., at the Fermi
energy Ef ). If the Landau levels overlap this distance is roughly
halved.

This gives ν0 � 58 for sample 1649A which is still too large.
However, the above expression considers only states from
the Landau levels immediately above and below the Fermi
level which is not a good approximation. Taking into account
contributions from all Landau levels the condition can be
written as

2

π�
(
1 + �2

dl/�2
) =

∞∑
n=0

2

π�
[
1 + (Eν=1

c

2ν0�

)2
(ν0 − 1 − 2n)2

] .

The left-hand side is the density of states (in units of eB/h)
at the mobility edge of an isolated Landau level and the right-
hand side is the sum of the density of states in the middle of
the cyclotron gap (at the Fermi energy) for filling factor ν0. If
only the (identical) terms with n = ν0/2 and n = −1 + ν0/2
are retained, the expression can be rearranged to obtain the
simplified expression of Eq. (3). The infinite sum converges
rapidly and for our purposes it is more than enough to take into
account the first 200 Landau levels. Using the parameters from
Table II, the predicted values are ν0 � 38 (1649A), ν0 � 68
(1707), and ν0 � 132 (1200) which are all significantly larger
than the experimental values. This suggests that the overlap
of multiple Landau levels causes the mobility edge to move
out more rapidly than predicted by our simple model. All
Landau levels see the same potential fluctuations, so that within
a Landau level the minimum hop distance is given by the
characteristic length of the disorder potential �D . The overlap
between the high-energy tail of one Landau level, with the
low-energy tail of another, will halve the minimum hopping
distance to �D/2 [see Fig. 11]. This is not included in the simple
model; the reduced hopping distance will reduce the critical
density of states required for hopping and cause the mobility
edge to move rapidly outwards, precipitating the collapse of
the mobility gap at low fields.

V. IMPLICATIONS FOR SCALING THEORY

In the pioneering work of Pruisken, a scaling theory of
the plateau plateau (PP) or plateau insulator (PI) transitions
in the QHE regime was developed, using renormalization-
group theory (RGT), to describe the problem of a quantum
phase transition which is too complicated to be solved from
first principles [15]. The theory predicts a universal behavior,
characteristic of a quantum phase transition, in which the width
of the peak in Rxx scales as �B ∝ T κ where κ is universal. The
theory predicts no particular value for κ and experiment from
a log-log plot of 1/�B versus T , and initially concluded that
κ = 0.42 [14]. Subsequent work, including measurements on
the same sample used in Ref. [14], found a larger value of κ =
0.58 [26–30]. In the original experiment, Wei et al. defined the
peak width �B ∝ T κ , whereas later work defined the width
in terms of filling factor �ν ∝ T κ . As the filling factor is
inversely proportional to the magnetic field the temperature
dependence of �B and �ν can be somewhat different; it is
not obvious that if one follows a power law, the other will also
follow the same power law [27].

Looking at the Bc(T ) data for all the samples investigated,
it is clear that the lower filling factors have large regions,
often over almost an order of magnitude in magnetic field and
temperature, in which the dependence is linear. This suggests
that Bc(T ) has a power-law dependence. We note that where
the linear behavior persists to higher filling factors (see, e.g.,
inset of Fig. 1), the slope is always the same. In other words
it appears to be quite universal in the sense it is independent
of Landau-level index. In order to compare the Bc(T ) data, we
plot in Fig. 12(a), using a double log scale, Bc(T ) for the lowest
odd and even filling factor which show a linear dependence
for the different samples investigated. All the plotted filling
factors, both odd and even, have a linear region with identical
slopes, suggesting that the power-law dependence is universal,
independent of both the Landau-level index and the sample.
The solid lines are the predicted power-law dependence
Bc ∝ T κ with κ = 0.58. Clearly, the agreement is remarkable
given the identical slope observed for different filling factors
from different samples. There is one exception: while ν = 3
in sample 1200 has a large linear region with a slope close
to κ = 0.58, the even filling factors (e.g., ν = 4 which is not
plotted in Fig. 12 for clarity), have a smaller slope �0.29.
As our simple intra-Landau-level activation model correctly
reproduces the data for a number of different samples with
very different carrier densities and disorder, the question arises
as to where the apparent universality comes from and what are
the implications for the scaling theory which applies to the
width of the maxima in Rxx?

In order to answer this question, we must first establish a
link between �B (width of Rxx peak) of scaling theory and
Bc (half width of Rxx minimum). In the intra-Landau-level
activation model the problem is symmetric in filling factor
(see Sec. II); when moving away from integer filling factor
ν, the resistance ceases to be dissipationless at filling factors
ν ± ε, corresponding to magnetic fields B1 = Bf /(ν + ε) and
B2 = Bf /(ν − ε) with Bc = (B2 − B1)/2. Thus, we can write

Bc = Bf ε

ν2(1 − ε2/ν2)
,
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FIG. 12. (a) Log-log plot of Bc(T ) vs temperature for selected odd
and even filling factors, which show a distinct linear regime, for all
samples investigated. The solid lines show a power-law dependence
with Bc ∝ T −κ with κ = 0.58. (b) Log-log plot of the partial filling
factor ε vs temperature calculated with the thermal activation model.
The parameters used correspond to ν = 2 in sample 1707 and ν = 4 in
sample 1649B (see Table II). The calculations are made with (closed
symbols) and without (open symbols) thermal broadening. The solid
lines are a power-law behavior ε ∝ T −κ with κ = 0.58. The broken
lines are the expected ε(T ) = [1 − (T/T0)κ ]/2 from scaling theory
as described in the text.

which varies to a good approximation as 1/ν2 (in agreement
with experiment) with a small correction (1 − ε2/ν2)−1 ≈ 1
which deviates appreciably from 1 only for the lowest filling
factor. Thus, Bc � Bf ε/ν2. If we reason in terms of the filling
factor, there is no approximation involved with a width of
2ε. The temperature dependence of Bc then arises from the
temperature dependence of the partial filling factor ε(T ). If
Bc(T ) scales as T −κ this implies that ε ∝ T −κ [here we neglect
(1 − ε2/ν2)−1 ≈ 1].

In a similar way the peak in Rxx between integer filling
factors ν and ν − 1 has a width �B = Bf /(ν + ε − 1) −
Bf /(ν − ε). This can be rearranged to give

�B = Bf (1 − 2ε)

ν2 − ν − ε(1 − ε)
,

which provided ν2 
 ε(1 − ε) leads to �B ∝ (1 − 2ε).
Again, in terms of filling factor, there is no approximation
involved, with a width of 1 − 2ε. If �B is to scale as T κ this im-
plies that (within the framework of the activation model) (1 −
2ε) = (T/T0)κ . Thus, it is mathematically impossible that both
Bc(T ) and �B(T ) simultaneously have a power-law depen-
dence; the observation of a scaling behavior for Bc precludes
the observation of a scaling behavior for �B and vice versa.

In Fig. 12(b) we plot the temperature dependence of ε

calculated using the thermal activation model with param-
eters corresponding to ν = 2 in sample 1707 and ν = 4
in sample 1649B. The calculations have been made with
and without thermal broadening. The solid lines indicate
a power-law dependence ε ∝ T −κ with κ = 0.58. Without
thermal broadening (open symbols), the slope of ε(T ) (on
a log-log plot) changes continuously from horizontal at low
T , to vertical at high T . With such a behavior it is inevitable
that, at some point, the slope equals −0.58, at least over a
limited temperature range. Including thermal broadening in
the calculations (closed symbols) prolongs this behavior to
higher temperatures, creating a wider range of temperatures
over which ε ∝ T −κ with κ = 0.58. Thus, we conclude that
universality is explicitly absent from the intra-Landau-level
thermal activation model (the slope changes continuously as a
function of temperature), and the observed power-law behavior
is generated by a sample (but not filling factor) dependent ther-
mal broadening parameter. A power-law dependence of �B

would require (1 − 2ε) = (T/T0)κ which can be rearranged to
give ε = [1 − (T/T0)κ ]/2. The broken lines in Fig. 12(b) show
the required behavior of ε. Scaling theory implicitly assumes
that all states are localized at T = 0 (ε = 0.5), which is not
what is found experimentally. However, the functional form is
roughly correct; flat at low temperature and falling off rapidly
at high temperature. Note that here, the T0 parameter of scaling
theory plays the role of the critical temperature at which the
dissipationless conductance ceases to exist.

VI. CONCLUSION

A simple model involving thermal activation, from local-
ized states in the tail of the Landau level at the Fermi energy,
to delocalized states above the mobility edge in the same
Landau level, explains the Bc(T ) phase diagram for a number
of different quantum Hall samples with widely ranging carrier
density, mobility, and disorder. Good agreement is achieved
over two to three orders of magnitude in temperature and
magnetic field for a wide range of filling factors. The width
of the low-temperature Bc(T ) region depends sensitively on
the Landau-level broadening �. For a given sample, both even
and odd filling factors can be fitted with the same value of
� demonstrating that the Landau-level width is independent
of magnetic field in the high-field regime. The position of
the mobility edge is also independent of magnetic field,
provided the Landau-level overlap does not change. Our data
suggest that the mobility edge moves to maintain a sample
dependent critical density of states at that energy, leading to
a simple relation between the position of the mobility edge
with and without the opening of the spin gap. The same
model can also be applied to fractional quantum Hall states
via the composite fermion model. The composite fermion
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Landau levels have exactly the same width as their electron
counterparts, as previously suggested based upon a Dingle
analysis of the low-field composite fermion oscillations [47].
The long tails of a Lorentzian are essential for the activation
model, providing localized states deep in the gap, which
are required to reproduce the robust high-temperature part
of the Bc(T ) phase diagram. This is in agreement with
published torque measurements, the detailed analysis of which

concluded that Lorentzian broadening provided the best fits to
the sawtoothlike oscillations in the 2DEG magnetization [5].
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