
PHYSICAL REVIEW B 94, 075410 (2016)

Spontaneous stacking faults in van der Waals heterostructures

G. Boussinot
Access e.V., Intzestrasse 5, 52072 Aachen, Germany

(Received 20 April 2016; revised manuscript received 22 July 2016; published 8 August 2016)

The rapid developments in the manipulation of two-dimensional monoatomic layers such as graphene or h-BN
allow one to create heterostructures consisting of possibly many chemically different layers, stacked owing to van
der Waals attraction. We propose a Frenkel-Kontorova model including a transverse degree of freedom in order
to describe local deformations in these heterostructures. We study the case where two dissimilar monolayers
are alternatively stacked, and find that stacking faults may emerge spontaneously for a large enough number of
stacked layers as a result of the competition between adhesion and elastic energies. This symmetry-breaking
transition should become of fundamental importance for the description of three-dimensional van der Waals
heterostructures as soon as a precise control on the lattice orientation of the van der Waals layers is achieved.
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I. INTRODUCTION

Since the discovery of the stability of the one-atom-thick
carbon layer called graphene [1,2], an increasing number of
other monolayers such as hexagonal boron nitride (h-BN),
MoS2, or WSe2 have proven to be stable. Thanks to the van
der Waals (vdW) attraction, responsible for example for the
ability of a gecko to stick to a clean and flat ceiling [3], one may
stack these chemically different monolayers and build a so-
called “vdW heterostructure” (see [4] and references therein).
Moreover, owing to the weakness of the vdW attraction, the
layers may be stacked with almost any misorientation between
their lattices, and progress concerning the control of this mis-
orientation is ongoing [5,6]. Each vdW heterostructure, i.e.,
each stacking sequence, possesses unique physical properties
and the physics of vdW heterostructures thus represents a
new and extraordinarily large domain of research, which up
to now has only scarcely been investigated. In the future,
three-dimensional crystals consisting of a large number of
stacked monolayers will be produced whose properties will be
tuned by a precise scheme for the stacking sequence.

An especially important reason behind the investigations
of vdW heterostructures concerns the possibility of tuning
the fascinating electronic properties of graphene [2,7]. For
example, an energy gap opens in its electronic spectrum
when it interacts with h-BN [8–10]. This deviation from the
spectrum of isolated graphene is due to small spatially varying
deformations of the crystalline lattice. Although resulting in
some elastic energy, these local deformations are favorable
energetically because they allow a decrease in the interaction
energy between layers; i.e., the adhesion energy between layers
increases. This competition between elastic and adhesion
energies arises in different contexts in surface science and the
tool of choice to study it phenomenologically is the Frenkel-
Kontorova (FK) model (see [11] and references therein).

Here we propose a FK model with a transverse degree of
freedom to study vdW heterostructures. The local description
of the deformation of the layers with respect to their stress-free
state (when the layer is isolated) is provided by the usual
in-plane displacement [12] supplemented by a transverse (or
out-of-plane) displacement [13–16]. The particularity of the
model is that, according for example to Ref. [17] concerning
the interaction between graphene and h-BN, the relative

in-plane displacement between layers influences the adhesion
energy and the interlayer equilibrium distance. Although strain
sharing between layers may allow their lattice to be in registry
over the whole sample, we consider here the case where
the lattices are incommensurate and build a so-called moiré
periodic pattern [5,18] with an incommensurability defect, i.e.,
a dislocation (also called a soliton or a kink in the frame of
the classical FK model [11]), in each unit cell. Moreover, due
to incommensurability, the whole landscape of the adhesion
potential between layers is explored and the optimum distance
between them varies within a moiré unit cell. This effect is the
key ingredient for the corrugation of the layers in the transverse
direction [19].

Our investigation focuses on a structure where two dissim-
ilar monolayers A and B are alternatively stacked building
a sequence A-B-A-B-A. . .. For a small enough number N

of stacked layers, the incommensurability defects are aligned
vertically and sit on top of each other as a result of adhesion
energy minimization. This vertical alignment is associated
with an elastic energy in the layers (bending and stretching)
that increases with N . Above a critical N , the vertical
alignment is destabilized and, as we will see in this article,
the incommensurability defects then align obliquely yielding
stacking faults in the vdW heterostructure. The article is
organized as follows. We first present the FK model and its
assumptions. Second, we present the numerical results that
evidence the symmetry-breaking transition yielding stacking
faults in the vdW heterostructure. We then discuss these results
and finally conclude.

II. FRENKEL-KONTOROVA MODEL

FK models were used to study or invoked to ex-
plain commensurate-incommensurate transitions in bilayer
graphene [12] and in the graphene/h-BN system [5]. Here,
we consider a vdW heterostructure consisting of N stacked
monolayers numerated by the integer n. We introduce the
space-dependent in-plane displacement un(x) in layer n and
the space-dependent position of the nth layer vn(x) in the
direction perpendicular to the layers. As mentioned in the
Introduction, the energy of the heterostructure consists of an
adhesion energy between layers and an elastic energy due to
their deformation. For the adhesion part, we use an additive
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ansatz such that the total potential interaction energy in the
heterostructure Eadh is calculated as a sum over all pairs of
layers, i.e.,

Eadh =
N∑

n=1

∑
m>n

Eadh
m,n, (1)

where Eadh
m,n is the pair-interaction adhesion potential between

layer m and layer n. Moreover, we assume that the deformation
of the monolayers is small, i.e., u′

n(x) � 1 and v′
n(x) � 1.

This means that the displacements are changing appreciably
on a scale that is much larger than the atomic distance, and
it allows us to consider that the pair-interaction potential is a
simple integral over the space of a local potential energy [19]:

Eadh
m,n =

∫
x

fm,n(x)dx, (2)

where fm,n(x) is the local adhesion potential between layer
n and layer m that a priori depends on their relative
in-plane displacement un(x) − um(x) and on their distance
|vn(x) − vm(x)|. As mentioned in the Introduction, the adhe-
sion potential between a graphene layer and a h-BN layer was
calculated using DFT calculations [17]. These calculations
are performed within a random phase approximation to treat
the long-range electronic correlations that are responsible
for the vdW attraction. As a function of the distance between
the layers, several stacking configurations (relative in-plane
displacement between the layers) were investigated and the
adhesion curves present features that should be incorporated
qualitatively in our model. In particular, the adhesion energy
and the equilibrium distance between layers depend on the
stacking configuration. However, the dependence on the
stacking configuration of the pair-interaction potential is a
result of short-range electrostatic interactions and therefore
concerns only adjacent layers. Here, we model this adhesion
behavior using a Lennard-Jones-type potential and for the in-
plane displacement dependence, like in the usual FK models,
we use a sinusoidal potential:

fm,n(x) = rα{1 − aδm,n±1 cos 2π [un(x) − um(x)]}
|vn(x) − vm(x)|α

− rβ

|vn(x) − vm(x)|β , (3)

where α > β > 0. The distinction between adjacent and
nonadjacent layers is provided by the Kronecker symbol
δm,n±1 that equals 1 if m = n + 1 or m = n − 1 and equals
0 otherwise. The characteristic distance of this interaction is
r and a represents the amplitude of the sinusoidal potential.
Here, the lengths are scaled by an arbitrary atomic distance
that defines a reference lattice used later on to calculate the
elastic energy in the layers. We assume for simplicity that
the pair-interaction potential is independent of the chemical
nature of the layers, and thus consider n- and m-independent
r,α,β, and a. In Fig. 1, we present fm,n as a function of v/r =
|vm − vn|/r for u = um − un = 0 and u = 0.5 (compare with
Fig. 2 in [17]). The parameters of the Lennard-Jones potential
are here α = 9,β = 3, and a = 0.5.

Let us now turn to the description of the elastic energy stored
in the layers due to their deformation. We consider two types of

u = 0

u = 0.5

v/r
1.0 2.0

-0.6

-0.3

0.0

FIG. 1. Pair-interaction potential in Eq. (3) (with α = 9,β = 3,
and a = 0.5) between two layers separated by a distance v =
|vn − vm|, and presenting a difference of in-plane displacement
u = un − um = 0 and u = 0.5.

deformation: stretching and bending. As mentioned just above,
we calculate the elastic energy using a reference lattice of
arbitrary lattice parameter with which we scale all lengths. The
(normalized) equilibrium lattice parameter bn in layer n defines
an equilibrium deformation εn = bn − 1. We assume that the
moiré unit cell may present a deformation ε̄, i.e., a contraction
ε̄ < 0 or a dilatation ε̄ > 0. The field un(x) then represents
the in-plane displacement in layer n relative to the deformed
lattice having a lattice parameter 1 + ε̄. The bond length may
thus be written ln(x) = [{1 + ε̄ + u′

n(x)}2 + {v′
n(x)}2]

1/2 ≈
1 + ε̄ + u′

n(x) + [v′
n(x)]2/2 and the stretching energy density

in layer n at position x is proportional to [ln(x) − bn]2. On the
other hand, the bending energy is proportional to the square of
the curvature of the layer, i.e., [v′′

n(x)]2. We thus finally write
the elastic energy density at position x in layer n as

eel
n (x) = W 2

2
[{ln(x) − bn}2 + B{v′′

n(x)}2]

≈ W 2

2

[{
ε̄ + u′

n(x) − εn + [v′
n(x)]2

2

}2

+ B{v′′
n(x)}2

]
.

The parameter W represents the ratio between the elastic
energy scale (the elastic constant) and the adhesion energy
scale [taken as unity according to Eq. (3)]. The parameter B

stands for a bending coefficient. Here, for simplicity again, we
do not take into account the difference of elastic constant and
bending coefficient between layers in the heterostructure. The
total elastic energy in the system therefore reads

Eel =
N∑

n=1

∫
x

eel
n (x)dx. (4)

Finally the total energy of our system is the sum of the adhesion
energy and the elastic energy:

E = Eadh + Eel. (5)

For a vdW heterostructure where the chemical bonding within
the layers is much stronger than the one in the transverse direc-
tion (vdW bonding), the coefficient W is a large number. Let
us note that W � 1 is actually a prerequisite to the conditions
of small deformations u′

n(x) � 1 and v′
n(x) � 1, that allow us

to write the adhesion energy in the vdW heterostructure in the
simple form of Eqs. (1) and (2). Moreover, as mentioned in
the Introduction, we assume incommensurable layers and the
equilibrium structure presents a periodic moiré pattern. The
periodicity of the moiré pattern, here the length of the moiré
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cell, should be much larger than the atomic distance in order for
the spatial derivatives of the displacements to be much smaller
than unity. In the case that we study in the following with a
single lattice misfit parameter ε, the length of the moiré cell is
1/ε. Thus ε � 1 is also a prerequisite to the small deformation
conditions.

Let us finally note that, in virtue of the small deformation
conditions, the electronic degrees of freedom are effectively
incorporated in the adhesion potential energy and in the elastic
energy separately. More precisely, we neglect the influence
of strain on the interaction energy between layers, and we
consider that the elastic energy may be calculated in the same
way as for an isolated layer.

III. NUMERICAL RESULTS

Let us now present numerical results for the equilibrium,
i.e., δE/δun(x) = δE/δvn(x) = 0, in a heterostructure where
εn = −ε = −0.01 for even n = 2p and εn = 0 for odd n =
2p + 1 (p is an integer). We assume that an external force
is imposed such that ε̄ = 0. We consider a periodic moiré
pattern of period 1/ε = 100, and boundary conditions for
the in-plane displacement of the form un(1/ε) = un(0) for
odd n and un(1/ε) = un(0) − 1 for even n are applied. For
the transverse displacement, we use vn(1/ε) = vn(0) and
vn(1 + 1/ε) = vn(1) (the latter condition being required for
the bending term in the elastic energy that presents a higher
order derivative compared to stretching) for all n. We choose
W = 50,B = 1 and use a pair-interaction potential where
α = 9,β = 3 [20,21], and a = 0.5. Our potential is thus
precisely the one corresponding to Fig. 1, and we use a
characteristic length r = 1. Note that our choice for a enhances
the differences of adhesion energy and equilibrium interlayer
distance within a moiré cell compared to a realistic system like
graphene/h-BN [17].

First, we present in Fig. 2 the equilibrium displacements
in the case N = 5. We see that the equilibrium state is
highly symmetric. In the left panel, we present the in-plane
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FIG. 2. Equilibrium displacements for N = 5. Left: in-plane
displacements exhibiting incommensurability defects, i.e., partial
dislocations, that are centered at x = 50. Right: position of the layers
in the transverse direction. The vertical alignment of the partial
dislocations is illustrated by the dashed line.

displacements un(x) and evidence the incommensurability
defect in each layer that takes the form of relatively well
defined partial dislocations in the inner layers n = 2,3,4 (in the
outer layers n = 1 and n = 5 the profile is more smooth). They
have a Burgers vector +1/2 for odd n and −1/2 for even n. The
partial dislocations are all centered at x = 1/(2ε) = 50 and are
thus aligned vertically. They separate a region where un(x) =
−εx/2 from a region where un(x) = −εx/2 − (−1)n/2. In
each of these two regions, strain is shared equally by the two
kinds of monolayers (because the difference of elastic constant
W between layers is neglected) and the two lattices are locally
commensurate. This is illustrated by the dashed lines. In the
right panel in Fig. 2, we present the position of the layers
in the transverse direction vn(x). We see that the distance
between layers varies with the horizontal coordinate x and
is larger at x = 50. This is the consequence of the variation
of equilibrium interlayer distance with the relative in-plane
displacement between layers (see Fig. 1), that is an integer at
x = 0 and x = 100 and a half-integer at x = 50 (see left panel
in Fig. 2). This leads to a uneven distribution of elastic energy
in the vdW heterostructure. Indeed, since the corrugation of
the layers leads to some stretching and some bending energies,
we see for example that the elastic energy in layers n = 1 and
n = 5 is larger than in layer n = 3.

When increasing N , we found that the highly symmetric
state, presented above for N = 5, is destabilized. While the
high-symmetry state is still stable at N = 9, it is unstable
at N = 11. Then, a state with a lower degree of symmetry
is the equilibrium state and we present it in Fig. 3. In the
left panel, we present the in-plane displacement in each layer
(denoted by their corresponding n in the figure). While again
the in-plane displacement exhibits a smoother behavior in
the outer layers n = 1 and n = 11 (represented in red), the
partial dislocations in the inner layers are no longer centered
at x = 50 as for the high-symmetry state, and they are aligned
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FIG. 3. Equilibrium displacements for N = 11. Left: in-plane
displacements with their corresponding n (the outer layers n = 1
and n = 11 are in red). Right: position of the layers in the transverse
direction (same order in the numbering of the layers as in Fig. 2). The
oblique alignment of the partial dislocations yielding a stacking fault
in the vdW heterostructure is illustrated by the dashed line.
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obliquely. In the right panel in Fig. 3, we present the transverse
position of the layers vn(x) (the same order in the numbering
is used as in Fig. 2). We see that this new low-symmetry
state allows for a more even distribution of strain in the vdW
heterostructure as compared to the high-symmetry state; i.e.,
all layers are corrugated in the low-symmetry state. As before,
the in-plane displacements are un(x) = −εx/2 on the left side
of the line of dislocations and un(x) = −εx/2 − (−1)n/2 on
the right side. Since the line of dislocations is now oblique,
it can be assimilated to a stacking fault. This is for example
illustrated by the fact that u3(x = 50) � u9(x = 50) − 1/2.
This stacking fault emerges spontaneously as a result of the
accumulation of strain in the vdW heterostructure, and the
strain release is associated with an increase in the interaction
energy between layers. It is important to mention that the
symmetry-breaking transition that leads to the emergence of
stacking faults does not take place if the transverse degree
of freedom is frozen, i.e., if vn does not depend on x. In
Fig. 4, we present schematically the stacking fault within a
moiré cell (0 � x � 1/ε) for a heterostructure comprising
two dissimilar layers (in color black and red) and N = 20
layers. The horizontal lines represent the strong intralayer
bonding. Within the moiré cell, the vdW heterocrystal is built
out of two regions, separated by the stacking fault, where
the vdW layers share strain and are locally commensurate.
The lattices in these two regions present a relative in-plane
displacement 1/2 between them (illustrated by the vertical blue
line). An important remark concerns the general case where the
two kinds of monolayers have different elastic constant, i.e.,
Wn = w0 + (−1)nw1. In this case, the strain-sharing process
yields a strain α = [1 + 2w0w1/(w2

0 + w2
1)]ε/2 in locally

commensurate regions. Then the partial dislocations have a
Burgers vector equal to δ = α/ε − 1 (i.e., −1/2 in the case

Stacking    Fault

x0 1/

FIG. 4. Schematics of a stacking fault within a moiré cell in a vdW
heterostructure comprising two dissimilar layers (in black and red).
The horizontal lines represent the strong intralayer bonding. Within
the moiré cell, the vdW heterocrystal is built out of two regions,
separated by the stacking fault, where the layers share strain and are
commensurate. The lattices in these two regions present a relative
in-plane displacement 1/2 illustrated by the vertical blue line.

w1 = 0 in Fig. 4) for n = 2p and equal to 1 + δ (i.e., +1/2
for w1 = 0) for n = 2p + 1. Thus if the in-plane displacement
obeys un = −αx on the left side of the stacking fault, it obeys
u2p = −αx + δ and u2p+1 = −αx + 1 + δ on the right side.
We are then left with a stacking fault that separates locally
commensurate regions presenting between them an in-plane
shift distance |δ| ∈ [0,1] that depends on w1/w0.

IV. DISCUSSION

The low-symmetry state with a stacking fault is actually
degenerate. If the position of the partial dislocation in layer n

at equilibrium is xn, then the equilibrium state with 1/ε − xn

is equivalent. In an extended system at nonzero temperature,
these two different equilibrium low-symmetry states should
thus coexist yielding domain boundaries whose properties
should be investigated in the future.

We have made a simulation with N = 32 and found that
the angle made by the oblique line of partial dislocations
is the same as for N = 11. We thus conclude that this
angle is a property of the system that should depend on
ε,W,B and the pair-interaction potential rather than on N .
The investigation of such a dependence is beyond the scope
of this article but will represent a crucial piece of work
for a deep understanding of the spontaneous emergence of
stacking faults in vdW heterostructures. Since the angle does
not depend on the number of stacked layer N , we may infer
that large-scale vdW heterostructures with N � 1 should
consist of a succession of oblique stacking faults depicted
in Fig. 5 in the same way as in Fig. 3 with dashed lines.
The locally commensurate regions separated by stacking faults
may then be represented when N � 1 by the integer m (see
Fig. 5) and the in-plane displacement obeys u2p = −αx + mδ

and u2p+1 = −αx + m(1 + δ) in the general case of different
elastic constants presented in the previous section.

Let us now discuss the relevance of the present study to
three-dimensional experimental situations. Let us first note
that the emergence of stacking faults as a symmetry-breaking
process due to strain energy release should occur also in
the case of a heterostructure deposited on a substrate. The
influence of the latter should concern only the layers in the
vicinity of the substrate, in a rather similar way as the vacuum
leading to a smoother in-plane displacement for n = 1 and
n = 11 in Fig. 3. Second, as mentioned in the Introduction,
the lattice orientation of the layers is a degree of freedom

x0 1/

m = 0

m = 1

m = 2

m = −1

m = −2

FIG. 5. Schematics of the stacking fault sequence (oblique dashed
lines) in large-scale vdW heterostructure for N � 1.
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in vdW heterostructures. For example, when one stacks a
graphene layer on top of another graphene layer but with
a different orientation (twisted graphene), a moiré pattern
arises and the misorientation angle between layers plays the
role of the lattice misfit used in this article. Since here we
have used a single lattice misfit ε, our setup thus mimics a
heterostructure with, for example, the following: for odd n,
graphene layers orientated with a certain reference angle θ ;
for even n, graphene layers oriented with an angle δ such that
|δ − θ | � 1. In this respect, the sequence of stacking faults
described in this article shall be evidenced as a macroscopic
state in the future when a precise control of the layers’ lattice
orientation is achieved. However, for the moment, since the
layers may present local fluctuations in their orientation [22]
at elevated temperatures, we can thus conceive that stacking
faults may develop locally in these cases. Another possible
experimental situation concerns graphene/h-BN. In this case,
even if all layers are oriented in the same way, the system
may exhibit a moiré pattern due to a lattice misfit (of order
2%). In Ref. [17], the optimum common lattice parameter
due to strain sharing and the corresponding elastic energy
for macroscopic commensuration were actually calculated.
The authors found that the commensurate state is close in
energy to the incommensurate state with a moiré pattern. One
may thus expect that, at finite temperature, commensurate
and incommensurate regions would coexist in graphene/h-
BN heterostructures, and that the spontaneous emergence of
stacking faults described in this article may occur when the

heterostructure comprises a large number of stacked layers.
This should greatly influence the physical properties of the
heterostructure. However, for both graphene/h-BN and twisted
graphene, we do not know yet which topology should be
expected for these cases of hexagonal lattices.

V. SUMMARY

We have presented a Frenkel-Kontorova model with a trans-
verse degree of freedom for van der Waals heterostructures.
This model allows us to study local deformations within the
two-dimensional van der Waals layers, these deformations
being known to greatly influence their physical properties
such as the optoelectronic ones. We study a heterostructure
where two dissimilar monolayers are alternatively stacked
and we find, for a large enough number of stacked layers,
a spontaneous emergence of stacking faults. This symmetry-
breaking transition is a result of the competition between
adhesion and elastic energies and should greatly influence
the physical properties of three dimensional van der Waals
heterostructures for which a control on the layers’ lattice
orientation is achieved.
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