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We investigate theoretically and numerically the coupling between elastic and localized surface plasmon
modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers
thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of
the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal
propagating plasmon. First, we present the plasmonic properties of the system though computer-simulated
extinction spectra and field maps associated to the different optical modes. Next, a simple analytical model is
introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is
used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the
last part of the paper, we present the full numerical simulations of the elastic properties of the system, and then
compute the acousto-plasmonic coupling between the different plasmon modes and five acoustic modes of very
different shape. The efficiency of the coupling is assessed first by evaluating the modulation of the resonance
wavelength, which allows comparison with the analytical model, and finally in term of time-modulation of the
transmission spectra on the full visible range, computed for realistic values of the deformation of the nanoparticle.
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I. INTRODUCTION

Surface plasmons, which are optical modes supported by
metal nanoparticles, have been thoroughly investigated for few
decades due to their fascinating abilities to confine and enhance
electromagnetic field in very sub-wavelength volumes [1], at
specific wavelengths ruled by the shape of the particle and its
nearby environment. For those reasons, nanoscale-engineered
systems have a large number of applications in domains
like biosensing [2–4], enhanced-Raman spectroscopy [5],
metamaterials [6], photothermal therapy [7], and plasmome-
chanics [8]. Particularly interesting are systems composed of
a small ensemble of closely coupled metal particles, or of
metal films interacting with one or several metal particles
placed a few nanometers away [9,10]. In those regimes, the
localized plasmons modes become very sensitive to a variation
in length well below the nanometer. In case of extended contact
area between a metal film and a metal particle (nanocubes,
nanocylinders, etc.), particular modes form where light is
concentrated inside the thin spacer placed in between the two
flat metal surfaces, with complex field distribution resulting
from the interference of propagating plasmons constrained to
move in between the particle and the metal film [11,12]. The
characteristic of the obtained modes will strongly depend on
the thickness of the spacer layer and the shape of the cavity
where the light is trapped.

Besides, surface plasmons have been investigated since
the middle of the 90’s for their sensitivity to mechanical
oscillations sustained by metal nanoparticles. The acousto-
plasmonic interaction is generally investigated by pump-probe

experiments [13,14], where a wealth of phenomena are
involved from the excitation of the metal particle by a laser
pulse until it is back to equilibrium [15–17], or by Raman
spectroscopy [18,19]. Beside their fundamental interest for the
understanding of electronic and mechanical properties of metal
nanosytems, these studies may have possible applications
to mass sensing [20,21]. If the coupling between surface
plasmon modes and the mechanical oscillations sustained
by metal nanosytems have been studied for a wide range
of particle’s shapes (spheres [22], cubes [23], rods [24–27],
columns [28], antenna [29], crosses [30]), investigations of
systems composed of interacting metal particles and a metal
film are still lacking, to the best of our knowledge. The main
interest in such a structure relies on the fact that the elastic and
plasmonic functions are supported by different components:
the gold nanoparticle sustains the elastic modes whose external
excitation induces a local deformation of the dielectric cavity,
while the plasmonic modes essentially depend on the thickness
and on the two-dimensional shape of that same cavity, and
not so much on the precise form of the metal particle above
the substrate. Beside the advantage in terms of design and
fabrication of a purely plasmonic device, we think that such
a system is a particularly innovative one for investigating the
interaction between elastic and plasmonic waves, due to its
greater flexibility compared to more usual systems made of
single metal particles on a simpler substrate, whose complex
shape can be difficult to realize.

The purpose of this paper is to investigate the acoustoplas-
monic properties of a system made of an array of nanocylinders
deposited on a substrate consisting in a thin (few nanometers
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thick) dielectric layer overcoating a gold film. It has been
previously shown by us that such a coupled particle-substrate
system supports so-called metal-insulator-metal localized-
surface-plasmon modes where the light is essentially enhanced
in between the cylinder and the metal film [12]. We will see
that the confinement of those modes in that portion of the
spacer makes them very sensitive to the deformation of that
volume specifically. In the next section, we summarize the
plasmonic properties of the system by presenting numerical
extinction spectra together with electric field distributions.
In the following section, we introduce a simple analytical
model, which allows to derive a closed-form expression giving
the wavelengths of the plasmon modes as a function of the
shape parameters of the portion of the spacer directly lying
under the nanocylinder, and use that model to investigate the
wavelength shift of plasmonic modes under different kind
of deformations. In the final section, we present the full
numerical simulations of the elastic properties of the same
system and of the acousto-plasmonic interaction. We focus
particularly on five elastic modes for which the elastic energy
is essentially confined in or close to the nanocylinder. We show
that a significant modulation of the transmission spectrum
around the resonance wavelengths of the plasmons modes
can be obtained, attributed to the particular sensitivity of
the MIM-plasmon modes to the geometry of the cavity; an
application to pump-probe experiment is finally discussed.

II. PLASMONIC PROPERTIES

The investigated system is presented in Fig. 1, and consists
in a square array of gold nanocylinders (AuNCs) deposited
on a multilayered membrane composed of gold and silica. In
the whole paper, the AuNCs have a radius R = 100 nm and
a height hp = 50 nm, the silica spacer is e = 6 nm thick and
has a refractive index of 1.5, the gold film is hf = 50 nm
thick, and lies on a H = 144 nm-thick membrane of silica.
The period is a = 300 nm. The refractive index data for gold
are from Johnson and Christy [31]. The grating is illuminated
in normal incidence from the z > 0 half space, the electric
field being taken parallel to the x axis.

Figure 2 shows the extinction spectrum 1 − T/T0, where T

is the transmission through the grating (membrane+AuNCs),

D=2R
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e

z
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FIG. 1. Geometry of the system and cross-section view indicating
the shape parameters of the nanocylinder and of the membrane. The
structure is optically excited by a plane wave in normal incidence on
the AuNCs, linearly polarized along the x axis. The point O is the
center of the bottom face of the AuNC.

FIG. 2. Extinction (black line) and absorbance (red line) spectra
of the system depicted in Fig. 1. The absorbance is computed inside
the nanocylinder using Qe/(ε0cE

2
0a

2), where Qe is the power losses
inside the nanocylinder and E0 the amplitude of the incident electric
field. The three field maps show the distribution of the complex
electric field amplitude (color map) and the real part of the electric
field (green arrows) for the three main resonances appearing in the
spectrum.

while T0 is the transmission through the membrane alone
(without the AuNCs), and the absorbance spectrum computed
using Qe/(ε0cE

2
0a

2), where Qe is the power losses inside the
nanocylinder and E0 the amplitude of the incident electric field.
For that simulation, a commercial finite element program has
been used (Comsol). Three resonances appear, whose electric
field distributions in the polarization (Oxz) plane and in an
xy plane just under the bottom of the AuNCs are indicated on
the right side of Fig. 2. The short-wavelength mode (labeled
(1), λ = 525 nm) corresponds to a dipolar mode localized on
the top-edge of the nanocylinder, which has been observed
both experimentally and theoretically in several systems made
of flatten nanoparticles coupled to substrates [4,9,32]. Let us
notice that very little light is confined in the spacer directly
under the nanoparticle.

This mode has been shown to be highly sensitive to
refractive index changes is the superstrate, mostly due to the
field enhancement at the top edge of the AuNCs. The two
other modes [(2), λ = 615 nm, and (3), λ = 750 nm] are of
very different nature: they correspond indeed to two so-called
metal-insulator-metal localized-surface-plasmon (MIM-LSP)
modes localized in the cavity in between the bottom of the
nanoparticle and the top of the gold film. That cavity plays
an important role in the formation of those modes, and will
be called MIM cavity in the following. As we will see next
those modes result from the formation of interference patterns
in the MIM cavity where propagating plasmons are excited by
diffraction of the incident plane wave.

III. ANALYTICAL MODEL

Prior to any further numerical simulations, we present
a simple analytical model which allows us to explain the
formation of the MIM-LSP modes. Beside giving a good
agreement of their resonance wavelengths and shape with the
full numerical simulation, that model allows to simply assess
the efficiency of the coupling between elastic and plasmonic
modes.
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Model of the MIM-LSP

The MIM-LSP modes supported by the investigated struc-
ture essentially result from the formation of resonant patterns
within the circular MIM cavity located in between the particle
and the gold film, and limited transversally by the external
circular edge of the bottom of the nanocylinder. Those resonant
patterns originate in the modal superposition of propagative
plasmons constrained to move under the bottom of the
nanocylinder.

Let us suppose first that the particle has an infinite diameter:
the system reduces then to an unidimensional system com-
posed of air/Au(50 nm)/SiO2(6 nm)/Au(50 nm)/SiO2(144
nm)/air. It supports MIM propagative-surface-plasmon modes
(MIM-PSP) whose wave vector qpl(ω,e) depends both on
the spacer thickness e and the angular frequency ω = k0c =
2πc/λ, where c is the speed of light in the vacuum. The
corresponding dispersion curve is plotted in Fig. 3(a) for e =
6 nm. Notice that only the dispersion curve of the MIM-PSP
has been plotted, but the system supports several other modes
(guided modes inside the spacer and propagative plasmons
on the top and bottom metal surface of the membrane). For
that geometry, the effective index is neff = qpl/k0 ≈ 8.32 for
a wavelength in vacuum of λ = 2π/k0 = 600 nm, which
corresponds to a mode wavelength of about 2π/qpl = 72 nm

FIG. 3. (a) Black line: dispersion curve of the MIM-PSP sup-
ported by a structure made of air/Au(50 nm)/SiO2(6 nm)/Au
(50 nm)/SiO2(144 nm)/air; red line: light line in silica; (b) evolution
of the effective index neff = qpl/k0 for three wavelengths as a function
of the spacer thickness (logarithmic scale); (c) distribution of field
for the twelve first modes as predicted by the analytical model; (d)
comparison between the resonance wavelengths for the MIM-LSP
modes predicted by the analytical model and the full numerical
simulation (Green’s function method) of the absorption spectra
computed as a function of the AuNC’s radius for a tilted incidence
angle (θ = π/3).

along the interface. Hence the MIM-PSP mode has a typical
length scale comparable to the nanocylinder diameter, which
explains why those propagative waves can form resonant
patterns on a surface with very subwavelength size. As
indicated in Fig. 3(b), the effective index is strongly dependent
of the spacer layer thickness, and increases, for a given
wavelength, when the spacer is thinner.

From the numerical evaluation of qpl as a function of
the frequency for a given thickness e, the wavelengths and
the shapes of the MIM-LSP modes can be simply explained
by describing them as a linear superposition of MIM-PSP
propagating in different directions (given by the direction of
qpl) under the nanoparticle. Such a superposition necessarily
obeys the wave equation �‖Eα − q2

plEα = 0, where �‖ =
∂2/∂x2 + ∂2/∂y2 and α = x,y,z. Let us notice that the wave
vector qpl still depends both on the angular frequency of light
ω and on the spacer thickness e, but those variables have
been hidden for clarity. The solutions of that equation in polar
coordinates (ρ,φ) are of the form Eα = A cos(nφ)Jn(qplρ),
where A is an amplitude factor, and Jn the Bessel function
of first kind and of integer order n. Rigorously speaking, A

depends on z, but this dependency is very weak in the spacer
layer [see profile of the mode in the inset of Fig. 3(a)] and will
be neglected in the following. In order to find the values taken
by qpl, and then the wavelengths λ, for each MIM-LSP mode,
a proper boundary condition must be applied at the edge of the
cavity, in ρ = R. As a simple rule, we notice that plasmonic
modes generally lead to large intensity enhancement at sharp
edges of metallic structures, which happens in particular in
our case at the bottom circular edge of the AuNCs. Hence, the
electric field being mostly vertical in the MIM cavity as shown
on the field distributions of Fig. 2 for modes (2) and (3), we
choose values of qpl such that the z component of the electric
field reaches a maximum at ρ = R. This leads to J ′

n(qplR) = 0,
where the prime denotes the derivative of the Bessel function
with respect to its argument. We finally obtain the following
expression for the z component of the electric field:

Ez(ρ,φ) = E0 cos(nφ)Jn(x ′
npρ/R)

with the dispersion equation

1

qpl(λ,e)
= R

x ′
np

, (1)

where p is an integer larger than 1 and x ′
np are the zeros of

the Bessel function’s derivative. That relation is exactly the
same as the one giving the cutoff wavelengths of the first
TE modes in a circular metal waveguide. The first twelve
values of the coefficients x ′

np are x ′
1,1 = 1.841, x ′

2,1 = 3.054,
x ′

0,1 = 3.832, x ′
3,1 = 4.201, x ′

4,1 = 5.317, x ′
1,2 = 5.331, x ′

5,1 =
6.416, x ′

2,2 = 6.706, x ′
0,2 = 7.016, x ′

6,1 = 7.501, x ′
3,2 = 8.015,

and x ′
1,3 = 8.536. The corresponding field distributions are

shown in Fig. 3(c). We can immediately notice on Fig. 2
that the two MIM-LSP modes labeled (2) and (3) correspond,
owing to their field distribution, to the modes (n,p) = (1,3)
and (n,p) = (1,2) in the analytical model. We compare in
Fig. 3(d) the position of the MIM-LSP modes predicted by the
analytical model with the one resulting from the full numerical
simulations of the absorption spectra as a function of the
nanocylinder radius, for an incident plane wave at a tilted
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angle of 60◦, measured from the (Oz) axis. It is necessary
to use a tilted illumination in order to excite more MIM-LSP
modes, as the normal incidence imposes a selection rule on
the excited modes, which must be symmetric with respect to
the (Oyz) plane and antisymmetric with respect to the (Oxz)
plane. In particular, the modes with even n cannot be excited in
normal incidence. The agreement between the simulation and
the model is pretty good, slight redshifts occur in the simulation
compared to the model, more particularly for the (n,p) = (0,1)
mode. However, the variations of the wavelength with the
radius of the particle match very well in both approaches.

IV. ELASTOPLASMONIC INTERACTION

We will now assess the effect of a modification of the
shape of the MIM cavity under an elastic deformation. That
deformation is physically induced by the movement of the
AuNC above the spacer when a particular elastic mode is
excited. Computer simulations of those modes are presented
in the next section, however, we show here that most of the
physics is captured by considering the shape of the MIM cavity
independently of the AuNC.

We are interested here in two types of cavity deforma-
tions. In the first, called “radial breathing deformation,” the
cavity undergoes an isotropic oscillation of its radius at the
elastic frequency, while the thickness of the cavity oscillates
accordingly in phase opposition compared to the radius: when
the cavity expands, it becomes thinner, and thicker when it
contracts. In the second type of mode, called “multipolar
deformation,” the radius oscillates with a harmonic angle
variation: R(φ) = R0 + δR cos(mφ), m �= 0. In that case, we
suppose that the top and bottom surfaces of the cavity keep the
same area to the lowest order in δR, and that the thickness of
the cavity stays mostly unchanged during the acoustic period.

Radial breathing deformation. That deformation changes
both R and e. It is convenient to examine first a change of the
radius of the MIM cavity while keeping its thickness constant,
and second a change of the thickness of the MIM cavity
while its radius is kept constant. Starting from x ′

np = R qpl(λ,e)
[Eq. (1)], we obtain

0 = dR

R
+ dqpl

qpl
= dR

R
+ 1

qpl

(
∂qpl

∂λ

∣∣∣∣
e

dλ + ∂qpl

∂e

∣∣∣∣
λ

de

)
.

We introduce SR = ∂λ/∂R|e, which represents the sensitivity
of the MIM-LSP mode wavelength to a modification of the
particle radius, keeping the thickness of the spacer layer
constant. Writing de = 0 in the previous expression, we find

SR = ∂λ

∂R

∣∣∣∣
e

= −qpl

R

1
∂qpl

∂λ

∣∣
e

.

In a similar way, we obtain the sensitivity Se of the MIM-
LSP mode wavelength to a modification of the spacer layer
thickness:

Se = e

R

∂λ

∂e

∣∣∣∣
R

= − e

R

∂qpl

∂e

∣∣
λ

∂qpl

∂λ

∣∣
e

.

The factor e/R allows to scale Se to values comparable to SR ,
by taking similar deformation in thickness (de/e) and radius
(dR/R) in both situations.

Next, we need to introduce the ratio νe of the radius
deformation dR/R compared to the thickness deformation
de/e:

νe = −dR

R

/
de

e
. (2)

The minus sign accounts for the phase opposition between
the deformation in radius and the deformation in thickness.
In case of a cylinder in vacuum, submitted to a force applied
symmetrically on its top and bottom faces, this coefficient
identifies with the Poisson’s ratio ν. However, in that situation,
νe cannot be predicted a priori but will be estimated later
from the numerical simulations of the corresponding elastic
eigenmode. The resonance wavelength is a function of e and R:

λ(e,R) ⇒ dλ = ∂λ

∂e

∣∣∣∣
R

de + ∂λ

∂R

∣∣∣∣
e

dR. (3)

By combining Eqs. (2) and (3), we finally obtain the
sensitivity Sν of the MIM-LSP wavelength λ under a
breathing deformation:

Sν = ∂λ

∂R

∣∣∣∣
ν

= SR − 1

νe

Se. (4)

Multipolar deformation. We suppose here that the thickness
of the MIM cavity does not change during the deformation, but
that the radius of the MIM cavity is of the form R(φ) = R0 +
δR cos(mφ) at the considered time of the acoustic deformation,
R0 being the radius of the particle at rest. We need to evaluate
how much a MIM-LSP mode of order (N,P ) is modified under
that deformation. For that purpose, we expand that mode on the
basis of functions solution of the wave equation in cylindrical
coordinates (see above):

EN,P
z =

∞∑
n=0

αn cos(nφ)Jn(qplρ)

with αN ≈ 1 and αn 	 1, n �= N . The new boundary condi-
tion reads

0 = [
EN,P

z

]′
(R(φ),φ)

=
∞∑

n=0

αn cos(nφ)Jn[qpl(R0 + δR cos(mφ))].

As the deformation is weak, the value of qplR0 stays close to
x ′

NP , and we write it qplR0 = x ′
NP (1 + β). To the first order in

αn, β, and δR/R0, with J ′
N (x ′

NP ) = 0:

0 =
{

cos(Nφ)β + δR

2R0
[cos ((m − N )φ)

+ cos ((m + N )φ)]
}
J ′′

N (x ′
NP )

+
∑
n�=N

αn cos(nφ)J ′
n(x ′

NP ).

We can verify that m = 0 corresponds to the radial breathing
deformation, and then αn = 0 if n �= N : the shape of the
MIM-LSP mode is unchanged as the MIM cavity is still
exactly cylindrical. The only effect is a shift of the resonance
wavelength. However, when m �= 0, β �= 0 only if N = m − N ,
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FIG. 4. Evolution of the sensitivity of the MIM-LSP wavelength
to (a) black line (respectively, red line): the thickness, (respectively,
radius) of the MIM cavity at constant radius (respectively, thickness);
(b) a radial breathing deformation for different ratios νe (black lines)
or a multipolar deformation (red).

which happens only if m is even. In that case, the only mode
affected by the deformation is N = m/2, and

β = − δR

2R0
x ′

NP ,

αN = 1,

α3N = − δR

2R0

J ′′
N (x ′

NP )

J ′′
3N (x ′

NP )
,

αn = 0, n �= N,3N.

The wavelength of the deformed mode N = m/2 is then given
by

qpl[λ,e]R0 = x ′
np

(
1 − δR

2R0

)
≈ x ′

np + R0
∂qpl

∂λ

∣∣∣∣
e

δλ.

Finally, the sensitivity of the MIM-LSP mode wavelength
under a multipolar deformation is independent on m and reads

Sm = δλ

δR
= − qpl

2R

1
∂qpl

∂λ

∣∣
e

= 1

2
SR.

Figure 4(a) shows the evolution of −Se and SR with the
resonance wavelength λ of the MIM-LSP mode, for e = 6 nm.
The sensitivity to the spacer thickness Se is negative, because
when the spacer thickness increases (δe > 0), the effective
index neff decreases: in order to satisfy the MIM-LSP excita-
tion condition, the wavelength must then be shorter (δλ < 0).
However, SR is positive; an increase in diameter obviously
does not change the effective index, and the wavelength must
increase to compensate δR > 0. We can additionally see that
in the whole range of investigated wavelengths, |Se| < SR by
a factor of about 0.8 around λ = 600 nm to about 0.5 around
λ = 1 μm. The most interesting result appears in Fig. 4(b),
which, similarly as Fig. 4(a), shows the evolution of Sν and Sm

with the wavelength. In particular, Sν has been evaluated for
several values of νe between 0.3 and 0.9. It appears clearly that
Sν is always larger that Sm, because the wavelength shifts Se

and SR cumulate when the cavity undergoes a radial breathing

deformation, as an increase in radius generally induces a
decrease in thickness. For example, Sν and Sm, which are
both positive, differ for νe = 0.5 by a factor of about 5.5 to 4.5
from 600 nm to 1 μm, the change in wavelength induced by
a radial breathing deformation being then significantly larger
that the one induced by a multipolar deformation, which does
not change the MIM cavity thickness.

V. FULL NUMERICAL SIMULATIONS

For the numerical simulations, a commercial finite element
method has been used (Comsol) in order to be able to
simultaneously investigate the plasmonic, elastic, and coupled
elasto-plasmonic aspects. The radio-frequency module is
employed for the photonic simulations, while the structural-
mechanics module is used for the elastic simulations. In order
to characterize the elasto-plasmonic interaction, we use a
quasistatic approximation, which consists in the recalculation
of the shape of the elastic modes at several selected instants
of an elastic period (or several selected phases), the shape of
the structure being frozen at these instants. This is justified by
the fact that the plasmonic frequency is by several orders of
magnitude larger than the elastic frequency.

A. Elastic properties

First, we investigate the elastic properties of the structure
described in Fig. 1 (R = 100 nm, hp = 50 nm, e = 6 nm,
hf = 50 nm, H = 144 nm, and a = 300 nm) by computing
the elastic eigenmodes and eigenfrequencies of a unit cell of
the grating. Free interfaces boundary conditions are applied
on the topmost surfaces of the AuNC and the silica spacer,
and on the bottom surface of the 144-nm-thick silica layer,
while periodic boundary conditions are applied on the lateral
boundary of the unit cell. The elastic parameters for silica and
gold have been taken in Royer and Dieulesaint [33]. Gold is
anisotropic (face centered cubic), and the crystal is oriented
such as xy planes correspond to (001) crystallographic
directions of gold; silica is isotropic.

Figure 5(a) shows the resulting band diagram along the
�X direction, where a partial band-gap is opened around
3 GHz. Overall, the structure supports a lot of modes, most of
which are strongly dispersive and have elastic energy spread
all around the AuNCs. However, for five modes at the � point,
most of the energy is localized in or close to the AuNC, as
indicated by their displacement distribution. Their respective
frequencies are 3.7 (two degenerated modes along the x and y

directions), 4.0, 4.2, and 5.6 GHz, their displacement maps are
indicated in Fig. 5(b). The color map shows the amplitude
of the displacement vector u = (ux,uy,uz) (real at the �

point), while the green arrows indicate the displacement itself.
The deformation is obviously exaggerated in order to more
clearly show the shape of the mode. On the right side of each
displacement map the deformed 6-nm-thick spacer layer is
represented. The deformation is again amplified for clarity, and
the color scale represents either the z component of ∇ × u (�,
top) or ∂zuz (�, bottom). The first quantity indicates the rotation
experienced by the MIM cavity around the vertical (z) axis,
while the second shows its relative change in thickness. These
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FIG. 5. (a) Band diagram along the �X direction. (b) For each of
the four frequencies indicated by an arrow in (a) at the � point: on the
left side the displacement [u = (ux,uy,uz)] map in 3D is plotted [color
map: |u|, green arrows: �(u)], while on the right side the deformed
representation of the silica spacer under the AuNC is plotted, where
color maps show the z component of ∇ × u (�, top) and ∂zuz

(�, bottom).

maps emphasize the differences between the three excited
modes and their potential effect on the MIM-LSP modes.

The two lowest frequency modes at 3.7 GHz are degen-
erated, and correspond to flexural deformations along the
(Ox) or the (Oy) axis of the square grating. As a result, the
nanocylinder and the MIM cavity oscillate together around
either the (Ox) or the (Oy) axis, and very small deformation
occurs in the MIM cavity: its shape is mostly unchanged and
the coupling between that elastic mode and the MIM-LSP is
expected to be weak. Yet, we will have to differentiate the x

and y flexural modes in the elastoplasmonic coupling as the
incident electric field is polarized along the x axis.

The next mode at 4.0 GHz is an azimuthal shear deforma-
tion mode where the displacement is essentially orthoradial,
enhanced close to the circular top edge of the nanocylinder
but much lower at its bottom. Under that deformation, the
MIM cavity undergoes no compression (constant thickness
and radius) but a clear rotation around the vertical axis.
That displacement is coupled to a very weak radial breathing
movement, which corresponds to a small increase of the
volume of the particle, which reaches a maximum every half an
acoustic period. Again, this mode is not expected to strongly
couple with the MIM-LSPs.

The mode at 4.2 GHz is a quadrupolar mode, enhanced on
the top part of the nanoparticle, with displacement maxima
along the main directions of the grating. That mode is
symmetric compared to both Oxz and Oyz planes, and

does not strongly affect the volume of the nanoparticle, as
the expansion/contraction along the x direction is balanced
by the opposite displacement in the y direction. The MIM
cavity undergoes a quadrupolar deformation, which results in
a slight vertical compression/dilatation at its circular edge:
the thickness of the MIM cavity is hardly modified except
close to its border. Hence the radius of the cavity follows at
that frequency an azimuthal-angle dependency of the form
R(φ) = R0 + δR cos(mφ) with m = 2.

Finally, the high-frequency mode at 5.6 GHz clearly shows
a vertical compression/dilatation of the nanocylinder, while
its average radius correspondingly increases and decreases
during an acoustic period. The displacement map is mostly
symmetric compared to any plane perpendicular to the sub-
strate containing the particle revolution axis (despite slightly
deformed by the closest neighboring particles along the Ox

and Oy axes). Similarly, the MIM cavity keeps its circular
shape during the deformation, its radius alternately increases
and decreases while its thickness decreases and increases.
However, contrary to the 4.0-GHz mode, the rotation of that
mode around the perpendicular axis is very small. Finally,
the MIM cavity at that frequency clearly undergoes a radial
breathing deformation as presented in the analytical model.

B. Elastoplasmonic interaction

In that section, we investigate the influence of the five
previous elastic modes on the optical properties of the system.
For that purpose, the deformed geometry corresponding to
each mode is computed for different phases ψ = �t = 2πF t

during half an acoustic period, where F is the eigenfrequency
of the considered elastic mode. The origin of phase is chosen
such as ψ = 0 corresponds to the structure at rest. The
amplitude of the deformation is chosen such as the maximum
of the elastic displacement in the nanocylinder is taken equal
to 2% of its radius, which gives here umax = 2nm. Then,
that deformed structure is used to compute the extinction
spectrum under the same illumination conditions as in section
2, at the given phase ψ . Let us mention that, at the scale
of the crystalline network, the corresponding deformation is
of about umax/R ≈ 2%, which is huge and not physically
meaningful. For instance, in reference [26], authors estimate
that the length increase of their 150-nm-long nanorods is on the
order of 5 pm for the considered acoustic modes, which gives
a deformation of about 3.3×10−5. For numerical purpose it is
necessary to use larger values, however, the obtained quantities
can then be scaled to smaller deformation in order to obtain
realistic figures. In the following, the modulated spectra will
be analyzed to assess the strength of the coupling, using two
methods. In the first, the shift in wavelength of the different
plasmon modes is evaluated as a function of the acoustic
phase ψ = �t , and in the second, the relative variation of the
transmission is computed for realistic deformations, similarly
to what can be realized in a typical pump-probe experiment.

First, we present in Fig. 6(a) the modulated extinction
spectra for the five elastic modes chosen in the previous
section. A closer view of the evolution of the absorbance
spectrum around the wavelength of the MIM-LSP mode at
750 nm is shown in Fig. 6(b) for the two highest-frequency
elastic modes. The differences between the five modes are
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FIG. 6. (a) Evolution of the extinction spectra 1 − T/T0 for different values of the elastic phase for the five modes of Fig. 5 (T : transmission
through the membrane+AuNCs, T0: transmission through the membrane without the AuNCs). (b) Evolution of the absorbance spectra for
different values of the elastic phase for the two elastic modes at 4.2 and 5.6 GHz, around the wavelength of the main (n,p) = (1,2) MIM-LSP
mode.

very obvious. First, the two flexural modes at 3.7 GHz and
the azimuthal shear deformation mode at 4.0 GHz produce
no changes neither in the extinction nor in the absorption
spectra. That result is obvious for the 4.0 GHz mode as the
displacement is essentially orthoradial and then does barely
move or deform any interfaces in the system. For the flexural
modes, despite the fact that interfaces move, neither the
shape of the particle nor the shape of the MIM cavity is
modified, as they both rotate undeformed around the x or
the y axis. The second mode at 4.2 GHz, however, induces
noticeable modifications, which are more easily observable on
the absorption spectrum around the main resonance at 750 nm
[MIM-LSP mode (n,p) = (1,2)]. Finally, the high-frequency
mode at 5.6 GHz produces the largest modifications, easily
observable both in the extinction and the absorption spectra,
and mostly in the range of wavelengths where the MIM-LSP
modes are excited. In the following, we focus only on the
quadrupolar mode at 4.2 GHz and the vertical breathing mode
at 5.6 GHz.

Figure 7 shows the evolution of the variation of
the resonance-wavelength of the three localized plasmons
modes (the short-wavelength, top-face-localized-dipole at λ =
525 nm, and the two MIM-LSP modes at 615 nm [(n,p) =
(1,3)] and 750 nm [(n,p) = (1,2)]) as a function of the sine of
the phase of the elastic wave when coupled to the quadrupolar

mode [Fig. 7(a)] and to the vertical breathing mode [Fig. 7(b)].
The position of the different peaks have been determined by
fitting the absorbance spectra with Lorentzian functions. It
appears clearly that the wavelengths depend linearly on the
sine of the phase. Very weak deviations from that linear law
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FIG. 7. Modulation of the wavelength of the three plasmon modes
as a function of the sine of the acoustic phase of the two elastic modes:
(a) F = 4.2 and (b) 5.6 GHz. Symbols are the wavelengths obtained
directly from absorbance spectra while dashed lines are linear fits.
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TABLE I. Summary, for the three localized plasmon modes,
and for the two elastic modes at 4.2 GHz and 5.6 GHz, of the
wavelength shifts per sin(ψ), δλ/ sin(ψ), or of the wavelength shift
per maximal variation of the cavity’s radius δλ/δR [mode at 525 nm
is not concerned (n.c.)]. Simulated (s) and analytical (a) values are
compared.

F = 4.2 GHz F = 5.6 GHz

λLSP
δλ

sin(ψ)
δλ

δR
,s δλ

δR
,a δλ

sin(ψ)
δλ

δR
,s δλ

δR
,a

525 nm −0.3 n.c. n.c. 0.02 n.c. n.c.
615 nm 0.59 1. 0.93 2.92 2.15 3.53
750 nm 1.45 2.46 1.9 6.37 4.68 6.90

might be noticeable, which must be attributed to the large value
of the maximum displacement (2 nm). A linear fit of �λ as
a function of sin(ψ) is plotted as dashed lines in Fig. 7. For
the elastic mode at F = 4.2 GHz, the MIM-LSPs have, for the
imposed value of 2 nm maximum displacement, a linear shift of
δλ/ sin(ψ) = −0.6 nm (respectively, δλ/ sin(ψ) = −1.5 nm)
for the 615 nm (respectively, 750 nm) MIM-LSP modes.
The shortest-wavelength mode at 525 nm is less sensitive
with δλ/ sin(ψ) = −0.3 nm. The wavelength shifts obtained
with the F = 5.6 GHz elastic mode are much larger for
the two MIM-LSP modes with δλ/ sin(ψ) = 2.9 nm for the
615 nm mode and δλ/ sin(ψ) = 6.4 nm for the 750 nm mode.
However, the 525 nm mode shows almost no wavelength
dependency with a δλ/ sin(ψ) = −0.02 nm. Hence the wave-
length modulation amplitude is clearly enhanced with the
F = 5.6 GHz mode compared to the 4.2 GHz, by a factor
of 4.9 for the λ = 615 nm MIM-LSP and by a factor of 4.4 for
the λ = 750 nm MIM-LSP.

Those extracted values of δλ/ sin(ψ) have been obtained for
a maximum displacement of umax = 2 nm as explained earlier.
In order to compare those numerical results to the figures
obtained with the analytical model, we need to evaluate the
quantities δλ/δR, where δR is the radius variation of the MIM
cavity for each of the two considered elastic modes. By a direct
evaluation on the simulated displacement maps, those values
have been estimated to δR = 0.59 nm for the quadrupolar
mode and δR = 1.36 nm for the vertical breathing mode. For
the F = 5.6 GHz elastic mode, we need as well an estimate
of the deformation ratio νe. We find that de/e ≈ 0.015 for
umax = 2 nm, which gives νe ≈ 0.92. The comparison between
the sensitivities obtained in the numerical and the analytical
approach are indicated in Table I.

The agreement is overall qualitatively correct in the
four cases, with the largest discrepancy for the 615-nm
MIM-LSP/5.6-GHz elastic mode, and the best agreement for
the 615-nm MIM-LSP/4.2-GHz elastic mode. The sensitivity
is underestimated by the analytical model for the 4.2-GHz
mode but overestimated for the 5.6-GHz mode. Differences
might partly be attributed to the fact that the analytical model
is very simplified as it does not take into account the precise
shape of the cavity, nor the fact that the MIM-PSP wave vector
is complex. However, the strong increase in sensitivity with
the radial breathing elastic mode compared to the quadrupolar
mode is correctly obtained in both cases, which makes us think
that the physics of the coupling is correctly captured even

Δ
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FIG. 8. �T/T = (T ∗ − T )/T for the different phases ψ of the
two elastic modes at (a) F = 4.2 and (b) 5.6 GHz, where T ∗(λ)
is the transmission through the deformed structure at phase ψ and
T (λ) the transmission through the structure at rest.

with that simplified description. In particular, the enhanced
wavelength shift with the high-frequency acoustic deformation
is clearly due to the cumulative effect of the expansion of the
MIM cavity (radius) and the contraction of the spacer layer
(thickness).

Finally, we estimate in that section the time modulation
of the transmission spectra for more realistic deformations of
the structure under coupling with the quadrupolar and radial
breathing acoustic deformations.

For that, we start from the fact that in the limit of weak
deformation, the evolution of the transmission spectrum T ∗(λ)
is a harmonic function of time for every fixed wavelength.
This is relied here to the fact that the displacement vector
u is real: at a certain time t of the acoustic period, the
displacement will then be at every point u sin(�t): changing
the amplitude of the displacement is completely equivalent to
changing the sine of the phase ψ = �t of the acoustic mode.
Despite the fact that the transmission might oscillate with 2�

in some situations [34], this is not the case here. Figure 8(a)
shows, for the two acoustic modes, the relative difference
�T/T = [T ∗(λ) − T (λ)]/T (λ) between the modulated T ∗(λ)
and the unmodulated transmission T (λ) as a function of the
acoustic phase ψ : �T/T is a mostly symmetric function of
the phase, and whatever the wavelength, the modulation of
the optical transmission has the same period than the elastic
mode. Following that idea, we compute for every wavelength
the slope a(λ) of the tangent to the modulated transmission
T ∗(λ) in ψ = 0, from which we can evaluate the relative
variation of transmission �T/T = [T ∗(λ) − T (λ)]/T (λ) for
any arbitrarily small deformation of the structure using:

�T

T
(t) = B

B0
a(λ) sin(�t),

where B is a coefficient corresponding to the chosen “realistic”
deformation B = umax/R, and B0 = 0.02 is the reference
deformation used in the simulation. Figure 9 shows the
relative variation in transmission of the modulated system
under the two elastic deformations as a function of time.
In case of a pump-probe experiment, the amplitude of the
modulation should be damped due to the losses, which are
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FIG. 9. Time evolution of the relative variation of the transmission (T*-T)/T compared to the nanostructure at rest under the two
elastic modes at F = 4.2 and 5.6 GHz, computed with a deformation of A = umax/R = 3×10−5. The blue curve is the unmodulated
transmission T (λ).

not taken into account here [35]. The two diagrams have
been plotted using a typical deformation of the structure of
B = umax/R = 3×10−5, which correspond to a maximum
displacement of about 3 pm inside the AuNC. For both
acoustic modes, the obtained numbers are comparable to the
values obtained experimentally in Ref. [26], of about 10−4,
and reaches 8.9×10−4 close to the 750-nm MIM-LSP mode
when the structure is deformed by the radial breathing elastic
mode: this corresponds to an increase of 4.6 in the oscillation
amplitude of �T compared to the amplitude obtained with the
quadrupolar elastic mode.

VI. CONCLUSION

Using a combination of finite-element numerical simula-
tions and a simplified analytical model, we have provided
physical insight in both the origin of the MIM-LSP modes
supported by AuNCs on a thin silica film coating a metal
interface, and their coupling with elastic modes supported
by the same system, for which the movement of the AuNCs
induces a deformation of the cavity formed by the portion
of the silica spacer underneath. Due to the nature of the
MIM-LSP, the three lowest-frequency elastic modes (flexural
and azimuthal shear deformation modes), which do not modify
the shape of that cavity, do not change significantly the
optical response of the system. However, stronger effect
is obtained when the AuNC, and then the MIM cavity,
experiences a quadrupolar deformation or even better a radial
breathing movement. The latter clearly results in an enhanced
wavelength shift and transmission modulation, due to the

cumulative effect of the increase/decrease of the cavity’s
radius and the corresponding contraction/dilatation of its
thickness. Compared to the quadrupolar deformation which
only affects the radius, both the wavelength shifts and the
transmission modulation are increased by a factor of about
4.6. That structure could give interesting results in a typical
pump-probe experiment, despite the fact that efficiency of
the coupling between the probe and the vibration of the
particle is not precisely known, but only estimated from other
publications. We believe that such a study can be of interest for
the fundamental understanding of the coupling mechanisms
between localized plasmon modes and elastic modes, based
mostly on the fact that, contrary to previously investigated
systems, the “elastic function” is mostly supported by the
gold nanoparticle while the “plasmonic function” is essentially
supported by the dielectric cavity under the nanoparticle.
This would give additional flexibility for the engineering of
elasto-plasmonic devices with the possibility of loading or
changing the volume of the nanoparticle in order to tune the
elastic modes frequencies without affecting significantly the
plasmonic aspects. Besides, the interaction between the elastic
and plasmonic modes could be influenced by using spacers
with different mechanical properties but similar refractive
index.
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(2015).

[10] S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander,
Nano Lett. 11, 1657 (2011).

[11] A. Moreau, C. Ciracı̀, J. J. Mock, R. T. Hill, Q. Wang, B. J.
Wiley, A. Chilkoti, and D. R. Smith, Nature (London) 492, 86
(2012).
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