
PHYSICAL REVIEW B 94, 075401 (2016)

Magnon Dirac materials

J. Fransson,1,* A. M. Black-Schaffer,1 and A. V. Balatsky2,3

1Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 21 Uppsala, Sweden
2Nordita, Center for Quantum Materials, KTH Royal Institute of Technology, and Stockholm University, Roslagstullsbacken 23,

SE-106 91 Stockholm, Sweden
3Institute for Materials Science, Los Alamos, New Mexico 87545, USA

(Received 15 December 2015; revised manuscript received 30 June 2016; published 1 August 2016)

We demonstrate how a Dirac-like magnon spectrum is generated for localized magnetic moments forming a
two-dimensional honeycomb lattice. The Dirac crossing point is proven to be robust against magnon-magnon
interactions, as these only shift the spectrum. Local defects induce impurity resonances near the Dirac point, as
well as magnon Friedel oscillations. The energy of the Dirac point is controlled by the exchange coupling, and
thus a two-dimensional array of magnetic dots is an experimentally feasible realization of Dirac magnons with
tunable dispersion.
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I. INTRODUCTION

The interest in Dirac materials (DMs) as materials sup-
porting Dirac-like spectra of excitations has been rapidly
growing since the discovery of graphene and topological
insulators [1–3]. The majority of the discussion to date has
been focusing on materials where the quasiparticles have
Fermi-Dirac statistics, such as electrons. The concept of DMs
with a Dirac-like fermionic excitation spectrum [4] applies
to materials ranging from graphene [5,6] and topological
insulators [7] to d-wave superconductors in two dimensions
and the newly discovered three-dimensional (3D) Weyl [8–13]
and Dirac [14–16] semimetals.

The concept of DMs can also be applied to a wider
class of quantum materials, including materials with Bose-
Einstein statistics for the quasiparticle excitations. Recent
advances in the synthesis of various two-dimensional (2D)
artificial structures have also spread the research on DMs to
artificial systems beyond bulk materials. Examples include
the theoretical prediction of artificial materials with Dirac
plasmons [17], photonic topological insulators [18,19], and
superconducting grains arranged in a honeycomb lattice [20].
These all point to the existence of bosonic Dirac materials
(BDMs). However, all these realizations of BDMs are yet to
be experimentally implemented. Nevertheless, the consistency
of analysis and similarities in properties of DMs make it clear
that this is a growing class of materials of increased scientific
and technological interest.

In this article we study the properties of collective spin
excitations, magnons, emerging from interacting spins in a
honeycomb lattice. Considering nearest-neighbor interactions
as the predominant spin-spin interaction, we demonstrate that
Dirac magnons emerge naturally from the spatial sublattice
symmetry inherent to the honeycomb lattice. Ferromagnetic
(FM) spin lattices give Dirac-like spectra around the K

and K ′ Brillouin zone corners, while the dispersion in
antiferromagnetic (AFM) spin lattices is Dirac-like around
the center � point. Higher-order magnon-magnon interactions
tend to only rigidly shift the spectrum. As the spin-spin
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interaction sets the scale of the magnon velocity, adapting the
interaction provides direct tuning between fast and slow Dirac
magnons [21]. To illustrate the universality of DM properties
across fermionic and bosonic systems, we also demonstrate
how local defects breaking the sublattice symmetry generate
local impurity resonances [4], as well as magnonic Friedel
oscillations.

Our predictions of Dirac magnons should be experi-
mentally accessible through, e.g., engineered spin structures
on metallic surfaces. Creating 2D structures by depositing
atomic or molecular magnetic absorbants on a substrate
using scanning tunneling microscopy (STM) provides a very
natural way to create 2D honeycomb magnetic structures.
It has become routine over the past decades to use STM
to engineer structures like, e.g., quantum corrals [22] and
artificial graphene [23], which makes the realization of
BDMs with magnons directly experimentally accessible. The
surface-electron-mediated magnetic interactions between the
absorbant spins may range from being purely isotropic to
strongly anisotropic [24–27], which offers further flexibility.
The unique ability of STM to freely manipulate the positions of
the absorbants also allows for an almost continuous tuning of
the magnetic exchange interactions which, thereby, enables
full control of the Dirac magnon velocity. The simplicity
by which Dirac magnons may be generated provides an
experimental advantage compared to other BDMs.

The article is organized by first considering the spin-wave
formulation of ferro- and ferrimagnetic honeycomb lattices in
Sec. II and subsequently antiferromagnetic honeycomb lattices
in Sec. III. We continue our discussion by considering the
effects of local impurities, or defects, in Sec. IV and the
spin-wave-mediated interaction, susceptibility, between pairs
of impurities in Sec. V. Thereafter, we briefly discuss the
impact of higher-order corrections in Sec. VI and follow up
with arguments for experimental realization in Sec. VII. The
paper is finally concluded and summarized in Sec. VIII.

II. FERRO- AND FERRIMAGNETIC LATTICE

Our proposal of Dirac magnons can be easily justified
from the effective magnon model of a general ferrimagnetic
spin-lattice model. In the absence of magnetic anisotropies,
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spin interactions are well described by the Heisenberg Hamil-
tonian HS = −∑

〈ij〉 Jij S(A)
i · S(B)

j , where the summation runs
over nearest neighbors. In a general bipartite lattice we
assign spins S(A)

i and S(B)
i to the two different sublattices.

Applying the Holstein-Primakoff transformation, assuming
that the magnonic fluctuations are much smaller than the
total spin SA/B = |S(A/B)|, and, for now, assuming uniform
ferromagnetic interactions Jij = J > 0, we can write the
effective quadratic magnon model

HFM =
∑

i

(εAa
†
i ai + εBb

†
i bi)

− J
√

SASB

∑
〈ij 〉

(a†
i bj + H.c.) − 3JNSASB. (1)

The first term describes the on-site magnon energies εA(B) =
3JSB(A) + gμBB, where we have included an external mag-
netic field, while the second contribution describes the cou-
pling between sublattices A and B. In reciprocal space, letting
ai = ∑

k ake
ik·ri /

√
N and bj = ∑

k bke
ik·rj /

√
N , we obtain

HFM =
∑

k

{εAa
†
kak + εBb

†
kbk + [φ(k)a†

kbk + H.c.]}

− 3JNSASB, (2)

where the structure factor φ(k) = −J
√

SASB

∑
i exp(ik · δi)

is given in terms of the nearest-neighbor vectors δi . The
eigenenergies are

E±(k) = [εA + εB ± �(k)]/2, (3)

where �2(k) = �2 + 4|φ(k)|2, with � = εA − εB =
−3J (SA − SB). Here, we then retain the normal quadratic
magnon dispersion around � (k = 0); see Fig. 1 (middle and
right lower panels).

For FM structures SA(B) = S and thus � = 0, giving
�(k) = |φ(k)|. For the honeycomb lattice, where δ1 =
a(

√
3,1)/2, δ2 = −a(

√
3,−1)/2, and δ3 = −a(0,1) with lat-

tice parameter a (see Fig. 2), this leads to the emer-
gence of band degeneracy points at ±K = ±2π (

√
3/3,1)/3a,

around which the dispersion is linear, φ(k ± K) ≈
±vJ k exp[±i(π/3 − ϕ)] (vJ = 3aJS/2, tan ϕ = ky/kx); see

FIG. 1. Characteristic features of the honeycomb lattice with
AFM, ferrimagnetic, and FM configurations. The upper panels show
the spin lattices while the lower panels show typical calculated
magnon band structures.

FIG. 2. (a) Impurity correction δN (ω) to the integrated density
of magnon states in rising order for the scattering potential V0/vJ ∈
{103, 104, 105, 106}. (b) Real-space distribution of the impurity
correction. Inset: Fourier transform of the impurity correction.

Fig. 1 (right column). In the ferrimagnetic case, on the
other hand, SA �= SB , such that � �= 0, which leads to a gap
opening at ±K, with the gap size ∼3J |SA − SB | set by the
difference of the spins in the two sublattices; see Fig. 1
(middle column). For momenta and energies around K, and
analogously around −K, we can thus summarize the Dirac
magnon model as HFM = ∑

k �
†
k(ε + vJ k · σ )�k − 3JNS2,

where the pseudospinor �
†
k = (a†

k b
†
k) and ε = diag{εA εB}.

This shows that the spectrum hosts the required chirality for
a DM, which directly leads to a π Berry phase [6,28] and the
absence of backscattering off smooth inhomogeneities [29].
These results show that a magnetic impurity honeycomb lattice
provides a very simple example for realizing Dirac magnons;
at the same time, we cannot exclude that more complicated
systems give rise to similar properties.

III. ANTIFERROMAGNETIC LATTICE

Next, we consider the emergence of Dirac bands around the
� point in AFM honeycomb lattices. Starting from the same
Heisenberg model on the honeycomb lattice, we rotate the
spins in, say, the B sublattice, since the magnetism in the two
sublattices points in opposite directions. Hence, for the spin
operators in the B sublattice we let Sx → −Sx , Sy → Sy , and
Sz → −Sz, which ensures that we capture the correct magnetic
states of the A and B sublattices. Application of the Holstein-
Primakoff and Fourier transformations lead to the quadratic
effective magnon model

HAFM =
∑

k

{EAa
†
kak + EBb

†
kbk − [φ∗(k)akb−k + H.c.]}

+ 3JNSASB, (4)

where EA = −3JSB − gμBB, EB = −3JSA + gμBB. In
this case, the magnon spectrum assumes the form

E±(k) = − 1
2 (� + 2gμBB ±

√
9J 2(SA + SB)2 − 4|φ(k)|2),

(5)

up to the added constant in Eq. (4), making the energies overall
positive. In the strictly AFM case (SA/B = S) the energy
dispersion has degeneracy points only at the � point, around
which we find the linear dispersion relation E±(k) ≈ gμBB ±√

2vJ k; see Fig. 1 (left column). While a linear dispersion near
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the � point is expected for general AFM configured bipartite
lattices [30], we here notice that the model can be written
as HAFM = ∑

k �
†
k(gμBB + √

2vJ k · σ )�k + 3JNS2, using
�

†
k = (a†

k b−k), which manifests the chiral Dirac nature of
AFM magnons. Finally, we note that Eq. (4) can also be
obtained directly from Eq. (2) by continuously changing, e.g.,
SB between SA and −SA, manifesting the equivalence between
the two models.

It should noticed that the spin-wave model pre-
sented in Eq. (4) is stable for magnetic fields |B| <

3J min{SA,SB}/gμB , whereas stronger fields collinear with
the Néel order will generate spin flips towards the Néel order
perpendicular to the field.

IV. IMPURITY SCATTERING

We now investigate the properties of impurity scattering and
we, henceforth, concentrate the discussions on the FM lattices
since the results are similar for AFM lattices. Here we imagine
a local defect created by removing or modifying a spin in the
honeycomb lattice. We know from fermionic DMs that strong
local defects significantly modify the spectral function near the
Dirac node [4]. Indeed, this is the case for the BDMs as well, as
we show below. We find that a local defect induces an impurity
resonance and modifies the Dirac nodal magnon spectrum. We
begin by adding a single potential scattering impurity in, e.g.,
the A sublattice, to HFM. The defect is described by Hdef =
V0a

†
I aI , where V0 is the scattering potential, and we, for sim-

plicity, assume a ferromagnetic spin lattice. Using the T -matrix
approach to obtain the local magnon structure we can write
the single-magnon Green function Gkk′(z) = 〈〈�k|�†

k′ 〉〉(z) as
Gkk′ = δ(k − k′)gk + gke

−ik·rIT eik′ ·rI gk′ , where T = (σ 0 +
σ z)/2(V −1

0 − g0), whereas

gk(ω) = 1

(ω − ε0 + iδ)2 − |φ(k)|2
(

ω − ε0 φ(k)
φ∗(k) ω − ε0

)
(6)

is the bare magnon Green function. Here, g0(ω)σ 0 =∑
k gk(ω), g0(ω) = −2(ω − ε0)[2 ln(Dc/|ω − ε0|) + iπsign

(ω − ε0)]/D2
c , ε0 = εA(B), and D2

c is a high-energy cutoff
[31]. We calculate the density of magnon states, N (k,ω) =
−ImGkk(ω)/π , from which we obtain the sublattice-resolved
correction δNA/B(k,ω) given by

δNA(k,ω) ≈ 2

D2
c

|ω − ε0|∣∣V −1
0 − g0(ω)

∣∣2

(ω − ε0)2

[(ω − ε0)2 − |φ(k)|2]2
,

(7a)

δNB(k,ω) ≈ 2

D2
c

|ω − ε0|∣∣V −1
0 − g0(ω)

∣∣2

|φ(k)|2
[(ω − ε0)2 − |φ(k)|2]2

.

(7b)

The impurity scattering generates an impurity resonance
within the spectrum, roughly at ω = ε0 − Dc/2V0, which
approaches the Dirac point in the limit of strong impurity
potential, i.e., ω → ε0,V0 → ∞; see Fig. 2(a), where we plot
the impurity correction to the integrated density of magnon
states, δN (ω) = ∑

k[δNA(k,ω) + δNB(k,ω)], for increasing
V0. The impurity scattering resonance is pinned to the Dirac
point for strong scattering potential, which has been shown

to be a universal feature of fermionic DMs [4,32–36]. Our
results demonstrate that this holds also for bosonic DMs, not
previously discussed. It is important to point out, however,
that the impurity resonance emerges only in the sublattice that
does not host the defect or scattering center. Here, the defect
is located in the A sublattice which, in the limit of strong
impurity potential, leads to the correction δNA → 0 as ω → ε0

[see Eq. (7a)], while δNB diverges [see Eq. (7b)]. This feature
carries over to the spectral density in real space [see Fig. 2(b)]
such that the impurity scattering-induced Friedel oscillations
generate an enhanced density primarily in sublattice B.

The scattering-induced Friedel oscillations can be analyzed
by evaluating the corresponding real-space quantities, which
are given by [37] G(r,r′) = g(R) + g(RI )T g(−R′

I ), where
R = r − r′,RI = r − rI , etc. Here, g(r,ω) = g0(r,ω)σ0 +
g1(r,ω) · σ , where σ0 and σ are the identity matrix and vector
of Pauli matrices in the pseudospin space, with [38] g0(r,ω) =
2π [vJ x/iD2

c ]H (1)
0 (xr) cos K · r and g1(r,ω) = 2π [vJ x/

(iDc)2]H (1)
1 (xr)(sin θ sin K · r, i cos θ cos K · r,0), where

x=(ω − ε0)/vJ ,H (1)
n (x) is the Hankel function, whereas

θ = φr + π/6 with tan φr = ry/rx . The local magnon density
N (r,ω) around the impurity describes waves emanating from
the scattering center with the wavelength set by the energy
scale (ω − ε0)/vJ with the standard asymptotic 2D decay
∼1/r . The inset of Fig. 2(b) shows the corresponding Fourier
transform with increased intensity at the ±K points.

V. SUSCEPTIBILITY

Considering the susceptibility C(r,r′; z) = 〈〈n(r)|n(r′)〉〉(z),
where the occupation number operator n(r) = a†(r)a(r) +
b†(r)b(r), we can make an estimate regarding its static spatial
properties by approximating the ω → 0 limit of the retarded
form of the two-magnon propagator according to Cr (r,r′) ≈
−tr Im

∫
nB(ε)G(r,r′; ε)G(r′,r; ε)dε/π , where the trace runs

over pseudospin degrees of freedom. Partitioning of
the Green function into pseudospin (in)dependent G1

(G0) components, we can write the static susceptibility
as Cr (r,r′)=−2Im

∫
nB(ε)[G0(r,r′; ε)G0(r′,r; ε)+G1(r,r′; ε)

· G1(r′,r; ε)]dε/π . From this expansion, it is easy to see for
the unperturbed propagators, g, that the susceptibility in the
magnon Dirac material is given by (R = r − r′)

C(R) = 4πv3
J

D4
cR

3

∑
n=0,1

(1 + cos 2K · R cosn 2θ )Fn(ε0), (8)

where Fn(ε0) = Im
∫

[xH (1)
n (x)]nB(vJ x/R + ε0)dx, with

nB(ω) the Bose distribution function. Here, we notice that
the susceptibility is short ranged, 1/R3, which is in analogy
with previous findings for the indirect Ruderman-Kittel-
Kasuya-Yosida (RKKY) spin interaction in graphene [39–41].
Although the static susceptibility C(r,r′) given here is an
average of the interactions between defects separated by R,
as it is the summation over all interactions for defects located
in the same or different sublattices, its spatial characteristics
are expected to have the same properties.

The magnonic mediated pair interaction between two
scattering centers separated by R is dependent on the sublattice
symmetry in a more explicit way, since defects within the same
sublattice have a different pair interaction compared to defects
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located in different sublattices. This is in strong analogy
with the RKKY interaction for magnetic defects in graphene
[39–41], since the sublattice structure plays an integral role
in its properties. For defects within the same sublattice, say,
the A sublattice, the pair interaction is provided by DA(r,r′) =
−Im

∫
nB(ε)V1G

(A)(r,r′; ε)V2G
(A)(r′,r; ε) dε/π , whereas be-

tween defects in different sublattices the interaction
is given byDAB (r,r′) = −Im

∫
nB(ε)V1G

(AB)(r,r′; ε)V2G
(BA)

(r′,r; ε) dω/π . Hence, again taking the unperturbed magnon
Green function and assuming that the interactions Vn = V0,
n = 1,2, we find that the real parts of these interactions
can be written as DA/B(R) = α0(1 + cos 2K · R)F0(ε0), and
DAB/BA(R) = α0[1 + cos 2(K · R ± θ )]F1(ε0), where α0 =
2πv3

J V 2
0 /D4

cR
3. The interaction between defects is the same

within the A sublattice as within the B sublattice, as expected
due to the sublattice symmetry. For the defects in different
sublattices there is a phase difference in the A-B and B-A
interactions which is related to the conjugated phases in g1. The
apparent similarities between these and corresponding results
for magnetic defects in graphene is not surprising since both
the FM Dirac magnons and graphene have the same underlying
lattice structure.

VI. HIGHER-ORDER CORRECTIONS

To firmly establish the honeycomb magnon system as a
BDM, we need to also consider higher-order corrections.
To first order the Holstein-Primakoff expansion of the spin
operators leads to Eq. (2), while higher-order corrections
provide contributions of the form (a†

i ai + b
†
j bj )a†

i bj + H.c.

and a
†
i aib

†
j bj . Physically, the first contribution describes

hopping of magnons between sites i and j in sublattices A and
B, respectively, in the presence of magnons already occupying
these sites, which can be regarded as magnon-assisted hopping
between the sublattices in addition to the bare hopping already
provided in Eq. (2). The second contribution describes a
direct magnon-magnon interaction for magnons in the different
sublattices. Although these two contributions, as well as
higher-order corrections, may account for anharmonic magnon
effects, we conclude that they do not change our main results,
since they all preserve the symmetry established within the
basic picture in Eq. (2). Thus higher-order effects do not
destroy the bosonic DM properties. Defects of the kind dis-
cussed above, however, destroy the local sublattice symmetry,
which may cause local magnon occupation imbalance between
the sublattices. Under such disorder conditions, higher-order
contributions may provide additional effects.

VII. EXPERIMENTAL REALIZATION

Finally, we consider a realistic and feasible route to exper-
imentally verify our predictions. We propose that engineered
spin structures on metallic surfaces provide a natural system
for Dirac magnons, since this serves as a standard way
to create 2D magnetic structures by depositing magnetic
defects on a substrate using STM. It has been established that
surface-electron-mediated magnetic interactions between the
deposited spins may range all from being purely isotropic to
strongly anisotropic [24–27]. Here, since the materials-specific
details are not important, except that the surface should have a

metallic band of surface states, we adopt a simple continuum
model for a metallic 2D electron gas onto which the localized
spins Si are adsorbed:

H =
∑
kσ

ψ
†
kε(k)ψk − gμBB

∑
i

Siz −
∑
kk′i

vskk′ · Si . (9)

The first term describes the surface states of the substrate, in
terms of the spinor ψk = (ck↑ ck↓)T , given some dispersion
ε(k). Hence, for a nonmagnetic metallic surface we may use a
diagonal quadratic dispersion, while spin-orbit (SO) coupling
can introduce chirality into the model. An external magnetic
field B = B ẑ is also applied to the system, by which we can
control the effective chemical potential for the spin system.
The spin moments Si interact locally via exchange (v) with the
electron spins skk′ = ψ

†
kσψk′ in the surface. By distributing the

spin moments in a regular lattice, we can refer to this model
as a Kondo lattice.

For metallic surface states and sufficiently large separation
of the spins, it is well known that the effective spin-
spin interaction is mediated by the surface electrons, as
described by the RKKY interaction [42–44]. This interac-
tion can generally be partitioned into isotropic Heisenberg,
Jij , and anisotropic Ising, Iij , and Dzyaloshinski-Moriya,
Dij , interactions [24,25,45], providing the effective spin
Hamiltonian

HS = −
∑
ij

Si · (Jij Sj + Dij × Sj + Iij · Sj ). (10)

Here, e.g., for metallic surfaces without any mag-
netic texture the Heisenberg interaction parameter Jij =
−2v2Im

∫
f (ω)Gr

ij (ω)Gr
j i(ω) dω/π , where Gr

ij (ω) is the re-
tarded real-space Green function for the surface states be-
tween ri and rj , whereas f (ω) is the Fermi distribution
function. For large separation Rij between the spins Jij ∼
cos(2kF Rij )/(2kF Rij )2, where kF is the Fermi wave vector,
such that we can obtain FM (Jij > 0) or AFM (Jij < 0)
exchange interaction depending on the spatial separation.
Furthermore, the quadratic spatial decay of Jij and Iij [25]
suggests that a nearest-neighbor interaction between the spins
will describe the physics sufficiently well for metals with
small or negligible spin-orbit coupling. Hence, our effective
spin model reduces to nearest-neighbor interactions. For
metals with strong spin-orbit coupling, a non-negligible chiral
next-nearest-neighbor interaction from the linearly decaying
Dzyaloshinski-Moriya interaction is introduced in the effective
model. This can be detrimental to the Dirac magnons, since
it can introduce parity-breaking contributions to the magnon
model, Eq. (2), which breaks the sublattice symmetry. Coun-
teracting this parity breaking is the appearance of a finite Ising
interaction dyad Iij = Iij ẑẑ for spin-polarized metals. This
term serves as a stabilizing mechanism for the spin moments
along some quantization axis. Hence, a collinear ground state
can in fact still be favored, with the effective Hamiltonian for
the magnons given by either Eq. (2) or Eq. (4).

VIII. SUMMARY AND CONCLUSIONS

Beginning from an isotropic Heisenberg model of local-
ized spin moments in a honeycomb lattice, we address the
possibility of emerging Dirac magnons. Our findings suggest
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that the magnonic band structure for the ferromagnetic lattice
closely resembles the fermionic band structure for, e.g.,
graphene. In this sense, there are Dirac point degeneracies
at the K and K ′ points in the Brillouin zone around which
the energy-momentum dispersion relation can be linearized.
The Dirac point occurs at an elevated energy as the magnon
spectrum is defined for positive energies only; i.e., there is
no Fermi level around which the band structure is centered.
The band structure changes upon variations in the magnetic
ordering and we find a gap opening at the Dirac point for
ferrimagnetic lattices, with the size of the gap scaling with
the difference of the spins in the two sublattices according
to 3J |SA − SB |. Pushing the magnetic ordering to a fully
antiferromagnetic lattice redistributes the band structure such
that there is only one Dirac point occurring at the � point.
In analogy with fermionic Dirac materials, we find impurity
resonance near, and pinned to, the Dirac point for local
impurities or defects in the lattice structure, suggesting
universality of impurity-induced resonances. Likewise is the
susceptibility and pair interaction between local defects in the
lattice governed by similar spatial properties as for graphene.
We have, furthermore, shown that the Dirac spectrum is robust

against higher-order contributions in the spin-wave expansion
of the Heisenberg model. Finally, we propose that the type of
our suggested magnonic Dirac material should be possible to
engineer by distributing magnetic adatoms in a honeycomb
lattice on metallic surface. Choosing a metallic substrate
lacking magnetic texture, e.g., Cu surface, should guarantee
that anisotropic Ising and Dzyaloshinski-Moriya interactions
can be avoided.
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