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It is well known that the magnitude of band offset (BO) at any semiconductor heterojunction is directly
derivable from the distribution of charge at that interface and that the latter is decided by a minimization of
total energy. However, the fact that BO formation is governed by energy minimization has not been explicitly
used in theoretical BO models, likely because the equilibrium charge densities at heterojunction interfaces
appear difficult to predict, except via explicit calculation. In this paper, electron densities at a large number of
(100), (110), and (111) oriented heterojunctions between lattice-matched, isovalent semiconductors with the zinc
blende (ZB) structure have been calculated by first-principles methods and analyzed in detail for possible common
characteristics among energy-minimized densities. Remarkably, the heterojunction electron density was found
to largely depend only on the immediate, local atomic arrangement. In fact, it is so much so that a juxtaposition
of local electron-densities generated in oligo-cells (LEGOs) accurately reproduced the charge densities that
minimize the energy for the heterojunctions. Furthermore, the charge distribution for each bulk semiconductor
was found to display a striking separability of its electrostatic effect into two neutral parts, associated with the
cation and the anion, which are approximately transferrable among semiconductors. These discoveries form
the basis of a neutral polyhedra theory (NPT) that approximately predicts the equilibrium charge density and
BO of relaxed heterojunctions from the energy minimization requirement. Well-known experimentally observed
characteristics of heterojunctions, such as the insensitivity of BO to heterojunction orientation and the identity of
interface bonds, the transitivity rule, etc., are all in good agreement with the NPT. Therefore, energy minimization,
which essentially decides the electronic properties of all other solid and molecular systems, also governs the
formation of the charge density at these heterojunction interfaces. In particular, the approach presented here
eliminates the need to invoke mechanisms that are specific to semiconductor interfaces.
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I. INTRODUCTION

The formation of band offsets (BOs) at heterojunctions
of semiconductors or insulators is an important issue for
condensed matter physics in general and for the design
and operation of electronic, optoelectronic, and multiferroic
devices based on solid semiconductors and insulators [1,2].
After decades of intensive investigations, however, the basic
mechanism responsible for BO formation remains ambiguous
[1], as a host of models of different origins appears to
predict/explain the experimental BOs similarly [2].

The main quantities pertaining to BO formation are illus-
trated in Fig. 1, which shows that the valence BO (VBO) at a
heterojunction between semiconductors (or insulators) A and
B, �A−B

VBO , can be decomposed into two bulk terms and one
interface term:

�A−B
VBO = Eint

VBM(A) − Eint
VBM(B) = μA − μB + e�ISR.

(1)

In the above equation and in Fig. 1, Eint
VBM is the valence

band maximum (VBM) position of a semiconductor near the
heterojunction interface; −eVCoul. is the averaged electrostatic
potential energy (elaborated in detail below); and μ, the
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internal chemical potential, is the difference between the
VBM and −eVCoul. for a semiconductor. Being a purely
intensive property, μ is obtainable from a bulk semiconductor
calculation with periodic boundary conditions. The interface
dipolar term, e�ISR = −eV A

Coul. + eV B
Coul., is the difference

between the averaged electrostatic potential energies across
the interface, where ISR stands for interface-specific region.
It is a quantity that may vary with interface specifics, such
as atomic structure, orientation, and composition. Being the
only term on the right hand side of Eq. (1) that is not known
a priori for any heterojunction, e�ISR is both responsible for
the magnitude of the VBO and in need of explanation by BO
theories.

Experiments have shown that, for the majority of isovalent
heterojunctions, the BO is largely independent of atomic
structure, orientation, and other specifics of the interface,
to the point that the formation of BO has often been
called a bulk effect [1,3]. A well-known consequence of
such seemingly bulklike behavior is the transitivity rule for
BOs that has been observed for some [4–7], though not all
[8–11], semiconductors. In the long history of heterojunction
research, there have been many models and theories proposed
to account for the formation of VBO. Perhaps inspired by
bulklike experimental findings, most of these theories involve
mechanism(s) beyond the realm of chemistry in order to
possess a built-in insensitivity of the BO to interface specifics.
Theories can be roughly be categorized into two groups [12]:
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FIG. 1. Potential energy and energy band diagram at a semicon-
ductor heterojunction interface. The lateral (−eVCoul.) and macro-
scopic (−eVCoul.) averages of the electrostatic potential energy (see
text for definition) are shown as solid and dashed thick lines,
respectively. The internal ionization potential, μ, is the energy
difference between the VBM and the macroscopically averaged
electrostatic potential energy. e�ISR is the difference between the bulk
values of −eVCoul.. EA/B

g is the bandgap of semiconductor A or B, and
�A−B

VBO is the valence band offset between the two semiconductors.

those based on certain assumptions on the charge density
[13–20] and those based on an assumed fixed internal reference
energy level (in the band gap) of the individual semiconductor
[21–27]. The former group proposed that a certain charge
distribution may be used to represent the bulk semiconductors.
When two bulk densities are stacked together, the charge
density of the heterojunction is assumed to be approximately
reproduced. Perhaps the best example here is the model solid
theory [18,19], which uses superimposed densities of neutral
atoms to approximately represent the electronic density for
each bulk semiconductor, as well as for the interface of the
heterojunction. The operation of this type of model then
relies on the absence of significant charge rearrangement at
the heterojunction during equilibration with respect to the
combined charge densities for atoms in isolation. The latter
group, exemplified by the proposal of the charge neutrality
level (CNL), obtained by generalizing the concept of metal-
induced gap states [21], assumes that a discrepancy in the
CNLs for two bulk semiconductors drives the distribution of
charge and the formation of a dipole at the interface between
these two semiconductors, in the direction for the two CNLs
to align [28]. However, the thermodynamic basis for charge
distribution driven by CNL alignment mechanisms has not
been quantitatively spelled out for insulating heterojunctions.
An extensive comparison of theoretical predictions with
available experimental data identified no clear favorites among
all existing theories [2]. Therefore, the basic mechanism
responsible for BO formation remains ambiguous [1].

The interface term e�ISR, in Fig. 1 and Eq. (1), which
is crucial to the magnitude of the VBO of a heterojunction,
is purely electrostatic in nature. It results entirely from
the charge distribution in the interface region and has no
explicit dependence on the bulk energy band structures of
the two semiconductors. For any electronic system, the laws
governing the equilibrium charge density distribution are all

well known. As perhaps most explicitly stated in the celebrated
Hohenberg-Kohn theorem of density functional theory (DFT)
[29], the ground-state charge density is known to be that
which uniquely defines, and minimizes the energy of, the
system’s Hamiltonian. It seems reasonable to expect, then, that
comprehensive BO theories could be based on, and their main
task should be, the accurate prediction/modeling of the spatial
distribution of the equilibrium charge density at heterojunction
interfaces. The advantage of such a direct, electron-density-
based approach toward the explanation of BO, however, has not
been seized by many previous computational investigations.
Even though predicting the equilibrium charge distribution
of a heterojunction seems difficult in general, the present
paper shows that this is possible for heterojunctions between
semiconductors with the zinc blende (ZB) structure and that
the formation of BO in these heterojunctions can be understood
based on the requirement that the actual density distribution
across the heterojunction has to be the one that minimizes the
interface energy.

Interfaces and multilayered structures of semiconductors
with ZB and diamond structures have long been in wide use
for the fabrication of various devices and the investigation of
fundamental phenomena in condensed matter physics. In fact,
results obtained from interfaces of these semiconductors have
shaped most of the existing ideas on BO formation. The band
structure and charge distribution associated with directional,
tetrahedral, sp3 bonds in solids have been the subject of
many thorough investigations. Technologically important and
well-studied semiconductor heterojunctions are insulating
at low temperatures, with the occupied states energetically
separated from excited states, e.g., conduction band. The
charge distribution relevant for BO formation thus arises only
from occupied (i.e., valence) bands. A chemically intuitive
view on the formation of the VB for ZB crystals has been
provided by the tight binding (TB) approximation, also known
as the linear combination of atomic orbitals (LCAO) theory. It
begins with the formation of hybrid orbitals for each atom and
neighboring cation-anion pair [30], during which the energy of
the bond is minimized and the spatial distribution of charge is
arrived at. The antibonding orbitals, forming the unoccupied
conduction band, may be discarded without affecting either
the total energy or the charge distribution for the subsequent
transformation of bond orbitals into the VB structure [31,32].
Band features at high symmetry points of ZB semiconductors
can be reproduced through these procedures by fitting a small
number of parameters, ignoring all interactions beyond second
nearest-neighbors and even some second nearest-neighbor
interactions. The focus on bonds in TB theory has also been
justified through first-principles calculations. Specifically,
maximally localized Wannier functions for ZB crystals have
been shown to be concentrated between pairs of nearest
neighbors at locations of the sp3 bond orbitals [33,34]. These
results suggest that charge distribution of the individual bond
may serve as the basic unit in the analysis and modeling of
equilibrium charge density not only for bulk semiconductors
but also other structures built on a tetrahedral network, such
as heterojunction interfaces.

The above focus on bonds is in agreement with the concepts
of DFT, which is explicitly centered on the electron density.
The basic premise of this paper states that because the local
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atomic structure of any part of a tetrahedral heterojunction
is essentially identical to that encountered in some bulk or
ternary semiconductor, it is plausible that the equilibrium
charge densities for the two are similar. Indeed, the present
paper shows explicitly that the equilibrium charge density at
heterojunctions of semiconductors with ZB structures system-
atically displays a close relationship with the local atomic
structure, which makes the modeling of the interface charge
distribution possible and reasonably straightforward: Because
the local atomic structure of any part of a heterojunction can be
recreated in a bulk unit cell containing a few (i.e., oligo-) units
of different ZB materials, the charge density that minimizes the
energy of such an oligo-cell then serves as a convenient arena
in which the formation of charge density that minimizes the
energy of the entire interface can be assessed. Strikingly, the
equilibrium charge density of an entire heterojunction is found
to be closely approximated by juxtaposition, layer-by-layer
or bond-by-bond, of local electron-densities generated in
oligo-cells (LEGOs). Detailed analysis of bulk semiconductors
then reveals a striking consistency in the equilibrium charge
distribution immediately surrounding any particular ion.
Specifically, the distribution of charge inside an overall-neutral
polyhedron, characterized by the covalent radius along bond
directions, is nearly independent of the identity of its bonding
partners. This forms the basis of a neutral polyhedra theory
(NPT), which we propose here as a means for modeling the
charge density at heterojunction interface from the perspective
of minimization of interface energy. We find that the BOs of a
large number of heterojunctions obtained from first-principles
calculations are well reproduced by NPT. The BO formation at
these heterojunctions can therefore be understood in terms of
the same chemistry that is responsible for charge distribution
and bond formation in other electronic systems, without the
need to invoke special mechanisms applicable only to solid
interfaces.

The article is organized as follows: computational details
and the general approach to density analysis are discussed next,
followed by results on heterojunctions between semiconduc-
tors with a common anion. Unrelaxed heterojunctions between
semiconductors without a common element are then discussed.
A careful look at the electrostatics of bulk semiconductors
with, or constrained to have, the same lattice parameter then
takes place, followed by discussion of the BO of relaxed
heterojunctions. The rationale for the NPT is then presented
and shown to provide reasonable VBO predictions even for
relaxed heterojunctions.

II. COMPUTATION AND ANALYSIS

In the present paper, first-principles electronic structure
calculations have been conducted on various structures with
a ZB lattice, using a plane wave basis and the projector
augmented wave (PAW) method, as implemented in the
Vienna Ab initio Simulation Package (VASP) [35–37]. All
systems were calculated within DFT, using the Perdew-
Burke-Ernzerhof (PBE) [38] generalized-gradient approxima-
tion (GGA) for the exchange-correlation functional. These
calculations yield (within the chosen approximate exchange-
correlation functional) the ground-state electron density that
minimizes the total-energy functional per any given input

FIG. 2. Ball-and-stick models of structures used in the calcu-
lations. Larger and smaller spheres represent anions and cations,
respectively. (a) (100) supercell, (b) (110) supercell, and (c) (111)
supercell. The outlines of the repeating unit used for the calculation,
which contains 12 anions and 12 cations for each interface orientation,
are marked.

atomic structure. Selected systems were also computed within
the local density approximation (LDA) approach and with
different pseudopotentials for comparison. Throughout these
comparisons, the main results reported here were found to
be essentially independent of functional or pseudopotentials
used. The VBOs were calculated from supercells. Ball-and-
stick models that were used for (100), (110), and (111)
heterojunctions are shown in Fig. 2. As indicated by boxes in
the diagrams, each supercell contains 12 cations, six from each
of the semiconductors, and 12 anions, which together form two
back-to-back interfaces with identical atomic structures for
(100) and (110) heterojunctions, and atomic structures that are
electrically equivalent for the (111) heterojunction. The sizes
of the supercells are adequate, as small increases or decreases
in the size of the supercell were found to have a negligible
effect on the charge distribution or VBO of the heterojunction.
For heterojunctions between two semiconductors with a
common element, e.g., GaAs/AlAs heterojunctions, Fig. 2
remains valid as long as the two different types of anions drawn
in each diagram are understood to be the same. In addition
to supercell calculations, the charge distribution and band
structure of bulk semiconductors and the charge distribution
of ternary or quaternary compounds with a small number of
ZB cells (oligo-cells) were also studied numerically. These are
discussed in detail below.

In order to compare the charge distribution at a hetero-
junction to other reference densities, such as bulk densities,
it is advantageous to have a consistent method to zoom in
on different parts of the interface for a detailed analysis. To
partition the electron density of a multiatomic system into parts
associated with each individual atom or bond, several methods
in quantum chemistry are available [39–42] based on spatial
analysis of the charge density. For ZB systems, however, the
bonding electrons are known a priori to reside largely between
cation-anion pairs [31,34], obviating the need for analysis
of individual atomic densities. Instead, a geometry-based
method, which is the same for all semiconductors, is used to
divide the volume of a tetrahedral multiatomic system into
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FIG. 3. Ball-and-stick models of the zinc-blende lattice, with
cations and anions displayed in blue and yellow colors, respectively.
(a) Anion-centered Wigner-Seitz (AWS) cell, (b) cation-centered
Wigner-Seitz (CWS) cell, (c) quadrant, and (d) neutral polyhedron
on the cation site.

subvolumes, or quadrants, associated with each individual
bond. To proceed, we note that the entire volume of a ZB
crystal can be filled by placing Wigner-Seitz (WS) cells about
each anion position, as shown in Fig. 3(a). An anion-centered
WS (AWS) cell has a quarter (¼) cation at four of the eight
threefold corners for a total of one full cation-anion pair
in the cell. Alternatively, cation-centered WS (CWS) cells
also fill the entire volume, as shown in Fig. 3(b). Because
atom-centered WS cells (AWS and CWS) have vanishing
net charge, dipole moment, and quadrupole moment, they
are convenient building blocks for the construction of model
solids with well-defined average internal potential energy and
band edge positions, relative to an external vacuum level,
as previously pointed out [20,43]. The overlapping volume
between a pair of neighboring CWS and AWS cells, drawn
in Fig. 3(c), contains ¼ anion, ¼ cation, and two valence
electrons. It is defined here as a quadrant that houses the
bond between this cation-anion pair. While such a volume
may not contain the entirety of charge density associated with
a bond within some definitions, nor is it devoid of charge
density due to other bonds, its main character should reflect
that of one bond. The validity of such an approximation,
although anticipated from TB and DFT considerations, is only
borne out in actual computations. There are four quadrants,
oriented in different tetrahedral directions, in each AWS or
CWS. Importantly, a semi-infinite sheet of quadrants has no net
charge but has a net dipole moment that results in a definitive
rise/drop in potential energy across the sheet. Quadrants are
thus convenient units/components for potential analysis, as
their electrostatic effects on the overall BO are well defined.

III. COMMON-ANION LATTICE-MATCHED
HETEROJUNCTIONS

Three heterojunctions stand out as being nearly perfectly
lattice-matched heterojunction systems, where the two semi-

FIG. 4. Lateral two-dimensional (2D) average and macroscopic
three-dimensional (3D) average of two types of potential energy,
plotted along the length of a 12-layer GaAs/AlAs(100) supercell.
The local potential energy (−eVloc) contains pseudopotential con-
tributions. The electrostatic potential energy (EPE) (−eVCoul.) is
the electrostatic (Coulomb) potential energy calculated from the
pseudocharge density output. In the GaAs region of the supercell
(left), the VBM position is computed and shown as a thin solid line,
using the average −eVloc in this region and the known difference
VBM −eVloc for bulk GaAs. Independently, the VBM in the GaAs
region is also determined and shown as a coarse dotted line, using the
average EPE (−eVCoul.) in this region and relative position established
for bulk GaAs. Similarly, the VBM is determined for the AlAs region
(right) of the supercell with both methods, using relative positions es-
tablished for bulk AlAs. Both methods yield indistinguishable VBM
positions.

conductors share a common anion. One, which is perhaps
the most extensively studied semiconductor heterojunction
with many practical applications, is the GaAs/AlAs junc-
tion [5,20,44–47]. The other two are GaP/AlP [48,49] and
GaSb/AlSb [50–53]. We therefore begin with a detailed
analysis of the GaAs/AlAs system, along all three major
interface orientations—(100), (110) and (111)—and address
the other two systems at the end of this section. Throughout
this section, the very small lattice relaxations are found to have
little effect on the magnitude of the VBO and are ignored in
the calculations.

The plane-averaged local potential energy, −eVloc, obtained
from a GaAs/AlAs(100) heterojunction, is plotted in the
direction perpendicular to the heterojunction plane as a dash-
dotted line in Fig. 4. Its macroscopically averaged [54] value,
−eVloc, i.e., its running average within a lattice-parameter-
sized window along the plotted direction, is also shown as a
thick dashed line, exhibiting a difference across the interface
of 0.22 eV. The differences between the VBM and −eVloc on
either side of the heterojunction, obtained from separate bulk
calculations of GaAs and AlAs, are used to mark the VBM
positions in Fig. 4 as thin solid lines. Using Eq. (1), these result
in a VBO of 0.49 eV, in good agreement with experimental
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results [45–47]. In this paper, a positive VBO indicates that
the first semiconductor (e.g., GaAs) has a higher VBM than
the second semiconductor (e.g., AlAs).

While −eVloc of the supercell and the bulk semiconductors
is convenient for an accurate extraction of the theoretically
predicted VBO for the heterojunction, it is not ideally suited
for a detailed charge density analysis because it contains
components of the pseudopotentials used in its calculation.
To facilitate a comprehensive discussion of the relationship
between BO and the interface charge distribution, purely
electrostatic (Coulomb) potential energy distributions are
generated for all the supercells, bulk semiconductors, and
oligo-cells employed in the present paper. This is obtained
for each system by adding suitably positioned point charges
representing the pseudo-ion cores, e.g., +3e and +5e for Ga
and As, respectively, to the electronic density distribution
obtained from the first-principles calculation, resulting in a
total charge distribution that is overall neutral. While this
density is still affected by the pseudopotential, being a
pseudo-density corresponding to valence electrons only, the
ensuing electrostatic profile does not contain pseudopotential
contributions directly. The resulting laterally averaged elec-
trostatic potential energy, −eVCoul., as well as its macroscopic
average, −eVCoul., are also plotted in Fig. 4. As is well known
[55], the absolute value of either −eVCoul. or −eVloc has no
physical significance for a periodic system and therefore can
be specified only to within an additive constant. For the same
cell, however, these two quantities can only be subject to one

arbitrary constant. A definitive offset between −eVCoul. and
−eVloc has been established for every bulk semiconductor and
for all pseudopotentials used in this paper by equating values in
the interstitial part of the ZB unit cell, which is known to be free
of pseudopotential contributions [56]. Plots of the electrostatic
potential energy variation across a heterojunction, also in
Fig. 4, confirm that the shifts between −eVCoul. and −eVloc,
as determined from separate bulk semiconductor calculations,
are self-consistent. As shown in Fig. 4, the difference between
the VBMs extracted from −eVCoul. and −eVloc is < 0.3 meV,
on either side of the heterojunction. Being easier to modify in
response to charge density changes, the electrostatic potential
energy is considered henceforth. The differences between the
VBM and the average electrostatic potential energy for all
bulk semiconductors are given in Table I. The VBM positions
obtained for various model solids of bulk semiconductor, with
respect to vacuum level, are also listed in Table I. They
are of general validity for interface analyses, even though
pseudopotentials have been used in their calculations. The
inclusion of core electrons in the calculation would have
necessitated rigid shifts in the VBMs of model solids in Table I,
but the VBO predicted using Table I would not have been
affected.

The lateral average of the valence electron density that
minimizes the energy for the GaAs/AlAs(100) supercell, as
obtained from the DFT calculation, is shown as (i) of Fig. 5(a).
The arrangement of atoms at this heterojunction is identical to
that encountered in bulk GaAs on one side of the common As

TABLE I. Valence band maximum (eV) for various neutral model solids with respect to the vacuum level, calculated from the charge
density of bulk semiconductors. Model solids CWS and AWS are constructed from charge densities of the respective WS cells. Cation plane
(100) is a model solid terminated in the (100) direction on the plane of cations. The model solids for midplane (110) and neutral point (111)
end on those two locations. The last column is the difference between the VBM and the average electrostatic (Coulomb) potential energy (EPE)
of the model solid, which may be used to retrieve the average potential energy of each model solid. For example, the average electrostatic
potential energy of a model solid constructed with anion Wigner-Seitz (AWS) cells of GaN is 10.979–6.455 = 4.524 eV.

Lattice Cation Anion Mid-Pln Neutral VBM - Avg
Semiconductor Constant (nm) CWS AWS Plane (100) Plane (100) (110) Pt. (111) EPE

GaN 0.452 9.471 10.979 12.922 13.047 0.889 − 2.116 6.455
BP 0.452 17.970 8.223 11.152 21.354 2.796 − 0.723 9.436
AlP 0.545 10.034 6.712 8.571 13.063 − 0.300 − 2.775 5.138
GaP 0.545 10.517 6.586 8.510 13.408 − 0.134 − 2.475 5.274
AlAs 0.566 9.957 6.154 7.982 12.858 − 0.365 − 2.719 4.925
GaAs 0.566 10.490 6.083 7.967 13.261 − 0.132 − 2.364 5.116
InP 0.587 8.437 6.201 7.877 11.127 − 0.683 − 2.788 4.233
AlSb 0.609 10.343 5.187 7.012 13.003 − 0.197 − 2.475 4.870
GaSb 0.609 10.694 4.969 6.835 13.246 − 0.107 − 2.305 4.902
InAs 0.609 8.324 5.575 7.219 10.891 − 0.837 − 2.815 3.949
InSb 0.648 8.818 4.690 6.340 11.225 − 0.741 − 2.665 3.941
ZnS 0.545 10.773 16.531 20.142 13.882 − 1.591 − 3.676 5.877
BeTe 0.566 14.527 2.048 3.797 17.685 − 0.187 − 2.831 5.227
MgS 0.566 8.801 2.229 3.307 11.879 − 2.564 − 4.422 2.185
ZnSe 0.566 11.368 15.323 18.832 14.411 − 1.262 − 3.361 5.969
CdS 0.587 8.501 17.578 21.196 11.329 − 2.059 − 3.978 5.452
ZnTe 0.609 11.899 12.966 16.241 14.777 − 0.999 − 3.156 5.751
CdSe 0.609 8.998 16.227 19.714 11.763 − 1.906 − 3.762 5.357
CdTe 0.648 9.828 14.124 17.407 12.492 − 1.627 − 3.485 5.263
Si 0.545 9.385 9.385 11.867 11.867 0.613 − 1.968 6.179
Ge 0.566 9.045 9.045 11.412 11.412 0.607 − 1.721 5.916
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FIG. 5. (a) Electron density, per nm and per area of the two-dimensional (2D) unit cell (0.16 nm2), of a GaAs/AlAs(100) supercell. (i)
Obtained by ab initio calculation; (ii) from stitching bulk GaAs and bulk AlAs densities at the interface As plane; (iii) from stitching bulk GaAs
and AlAs densities terminated at CWS boundaries; and (iv) from stitching the bulk GaAs AWS density, the bulk AlAs AWS density, and the
density of an AWS cell from a “1 1” GaAlAs2(100) cell (see text for details). (b) Difference between the equilibrium electron density calculated
for a GaAs/AlAs(100) supercell and that constructed for the heterojunction by the various stitching methods. (c) Schematic illustration of two
stitching methods for the simulation of charge density at the GaAs/AlAs(100) heterojunction. The atomic arrangement of the heterojunction is
drawn in the center diagram, with As shown as large spheres, Al as small spheres, and Ga as midsized spheres. In the CWS-stitching method
shown on the right, the volume of the heterojunction is divided into CWSs, and the charge density is stacked CWS-by-CWS with charge
densities calculated for “a” bulk AlAs and “b” bulk GaAs. In the “1 1”-stitching method shown on the left, the volume of the heterojunction
is divided into AWSs, and the charge density is stacked AWS-by-AWS with charge densities calculated for “c” bulk AlAs and “e” bulk GaAs,
except for sites of the interface As common to both semiconductors. On these interface sites, AWSs are filled with charge density calculated
for “d” an AlGaAs2 oligo-cell.

plane and is indistinguishable from that of bulk AlAs on the
other side. As mentioned above, this fact has often prompted
the comparison of the charge density on either side with that
of the respective bulk semiconductor. A model of the interface
charge density can be constructed accordingly, as shown in
panel (ii) of Fig. 5(a), by placing the two calculated bulk
densities on opposite sides of the center As plane common
to both semiconductors. Because of the symmetry of the ZB

structure, such planar stitching of the charge density preserves
the overall neutrality of the interface. However, the charge
density thus stitched deviates appreciably from that calculated
for the supercell, as shown in Fig. 5(b). Still, this deviation is
significant only in the immediate interface region, essentially
between the Ga and Al planes closest to the interface. This
happens to be the region where the local atomic structure, with
As being bonded to Al and Ga at opposite ends, is dissimilar
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FIG. 6. Superimposed plots of charge density (per nm) of quadrants, integrated in the direction perpendicular to the center axis, 〈111〉, of
Ga-anion and Al-anion quadrants, as extracted from the (100), (110), and (111) common anion III-V heterojunction interfaces, as well as from
the bulk semiconductor. At the interfaces, the cation in the quadrant is bonded with both Ga and Al. (a) Ga-P and Al-P quadrants, (b) Ga-As
and Al-As quadrants, and (c) Ga-Sb and Al-Sb quadrants.

to the structure encountered in either bulk AlAs or GaAs, from
which the stitched density originates.

Planar stitching is chemically questionable because the
charge distributions associated with individual bonds at the
interface are not maintained as a unit. To correct for this
shortcoming, the interface charge may be modeled by stitching
together the bulk densities of GaAs and AlAs along bound-
aries between quadrants, thus approximately maintaining the
integrity of the bulk bonds [20]. As shown in panel (iii)
of Fig. 5(a) and on the right-hand half of Fig. 5(c), this is
accomplished by summing the electron densities of the CWS
for both bulk semiconductors. Doing so leads to a significant
improvement over planar stitching in its ability to correctly
model the equilibrium interface electron density, as shown
in Fig. 5(b), and confirms the notion expressed earlier that
the equilibrium charge distribution in ZB-based structures is
analyzable, and approximately stackable, bond-by-bond (i.e.,
quadrant-by-quadrant). The close dependence of the electron
distribution on the identities of the ions in the individual
quadrant and the relative insensitivity of this charge density
to the identities of second-nearest neighbors and beyond is
further demonstrated in Fig. 6(b). It shows, as a function
of the distance from the cation to the anion of a quadrant,
the electron density integrated in the plane perpendicular to
this direction. Clearly, this integrated electron density in a
Ga-As quadrant is little changed from its bulk distribution
when this quadrant is placed at GaAs/AlAs(100), (110), and
(111) heterojunctions. At these heterojunctions, the As at the
end of the quadrant forms bonds with 2Ga + 2Al, 1Ga + 3Al,
or 3Ga + 1Al, respectively, while in bulk GaAs each As
forms bonds with four Ga atoms. Correspondingly, Al-As
quadrants also remain essentially bulklike when placed at these
heterojunction interfaces, as also shown in Fig. 6(b).

It should be noted that such insensitivity of the quadrant
charge distribution to its neighbors is only possible at neutral,

e.g., isovalent, heterojunctions. At heterovalent interfaces,
transfer of charge between neighbor quadrants may be ap-
preciable [57]. Furthermore, because of the mismatches in the
local electron density across boundaries between quadrants of
different origins, some modification in the quadrant density
is unavoidable if an equilibrium charge density for the het-
erojunction is to be reached. However, such modification may
be kept to a minimum if the quadrants come from a chemical
environment that reproduces the local arrangement of atoms to
beyond the immediate cation-anion pair. Based on this insight,
the CWS-stitched electron density for the GaAs/AlAs(100)
interface, although already closely resembling the equilibrium
supercell charge density, may be further improved. As shown
on the left-hand side of Fig. 5(c), of the four quadrants
associated with an interface As atom, the two on the GaAs
side are from a chemical environment where every As ion
has four Ga ions as nearest neighbors. At the CWS-stitched
interface, they are stitched to Al-As quadrants, necessitating
charge rearrangement before reaching equilibrium. A fix for
this chemical mismatch, then, is to have the charge density
near the interface As layer come from an environment where
the As ion has two Al nearest neighbors and two Ga nearest
neighbors. The smallest system one can construct in order to
have such an atomic arrangement as part of its structure is
a ternary GaAlAs2 compound, marked “d” in Fig. 5(c), with
alternating Ga and Al cation planes and with As occupying
all anion positions. Here, we refer to such an oligo-cell as a
one-one (“1 1”) cell, as it consists of one full unit (chemical
formula) each of the two semiconductors. Each having two
bonds with Ga and two with Al, all As atoms in such a “1 1” cell
are electrically equivalent. The AWS cells from the GaAlAs2,
based on the original (undoubled) ZB lattice, are therefore
electrically neutral and may be used to make further adjustment
in the stitched charge density of the GaAs/AlAs(100) interface.
A layer of AWS of the “1 1” crystal may represent the
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TABLE II. Valence band offset (VBO), in eV, calculated from first principles for three common-anion heterojunctions using heterojunction
supercells with different orientations compared to VBOs modeled by stitching charge densities of bulk semiconductors and oligo-cells (see
text and Figs. 5, 7, and 8 for details of the various stitching methods), experimental values, and VBO predictions from NPT.

Interface Orientation Calculated/Modeled VBO (eV) GaP/AlP GaAs/AlAs GaSb/AlSb

100 Supercell Calculation 0.439 0.507 0.321
Anion Plane Stitched 0.345 0.403 0.244

CWS Stitched 0.483 0.534 0.351
“1 1” AWS Stitched 0.436 0.495 0.296

110 Supercell Calculation 0.436 0.497 0.326
Mid-Plane Stitched 0.166 0.232 0.107

CWS Stitched 0.483 0.534 0.370
“1 1” Plane Stitched 0.395 0.457 0.304
“2 2” Plane Stitched 0.438 0.511 0.343

111 Supercell Calculation 0.422 0.507 0.338
Neutral Plane Stitched 0.300 0.355 0.170

CWS Stitched 0.483 0.534 0.351

Experimenta 0.43–0.57 0.42–0.55 0.39–0.45
NPT w/correction 0.441 0.487 0.389

NPT 0.303 0.357 0.259

aRefs. [44–48], [51–53].

charge density in the immediate interface region. Its LEGO
is stitched to AWS-terminated charge density of the respective
bulk semiconductor on either side, as shown in (iv) of Fig. 5(a)
and on the left-hand side of Fig. 5(c). Because the charge
densities of the “1 1” and GaAs now conjoin at a Ga site, there
is no gross chemical mismatch that requires further attention.
Similarly, chemical mismatch is also removed from the “1
1”-AlAs interface. Its every part being chemically similar to
the corresponding part of supercell, the “1 1”-stitched charged
density indeed closely resembles the supercell equilibrium
density, as Fig. 5(b) reveals.

To estimate the VBO for the “1 1”-stitched heterojunction,
one takes the difference between VBMs for AWS model solids
listed in Table I, 6.083eV and 6.154 eV, respectively, for
GaAs and AlAs, and subtracts the shift in average potential
energy calculated for a layer of “1 1” AWS, −0.566 eV,
to arrive at 0.495 eV. This and other VBOs deduced for
differently stitched charge densities are listed in Table II.
In line with the extent to which the density of each model
deviates from the equilibrium density, the error made in
predicting/reproducing the supercell VBO decreases from
∼0.1 eV for planar stitching, to ∼0.03–0.04 eV for CWS
stitching, and to ∼0.01–0.02 eV eV for “1 1” stitching. It
should be noted that in the literature, a 0.1 eV error in the
VBO of a heterojunction is typically regarded as an excellent
result for the model, as it is difficult to determine the VBO
experimentally with an accuracy better than ∼0.1 eV [1].

We now turn to the (110) GaAs/AlAs heterojunction. The
(110) planes in a ZB crystal are neutral, in the sense that
each atomic plane contains equal densities of cations and
anions. The analysis of the equilibrium charge density of the
GaAs/AlAs(110) interface in terms of equilibrium densities for
systems with similar local structures may therefore proceed,
as for the (100) heterojunction, by stitching the GaAs and
AlAs densities along planar and quadrant boundaries, as
illustrated in Fig. 7. The midpoint between atomic planes
is an appropriate location for planar stitching because the

resulting stitched interface is assured of electrical neutrality.
The average potential energy of bulk semiconductor crystals
terminated on this plane can be found in Table I. Because a
CWS-terminated (or AWS-terminated) ZB bulk crystal has an
average potential energy that is related to the spherapole (trace
of the density matrix) of the charge density and independent
of the orientation of the surface [43], the CWS-stitched
density must generate a VBO for the GaAs/AlAs(110) or the
GaAs/AlAs(111) interface of exactly the same magnitude as
that for the GaAs/AlAs(100) interface [20]. An examination
of the CWS-stitched model finds each As atom on the
interface GaAs plane to have been formed by joining three
Ga-As quadrants and one Al-As quadrant. Similarly, each
As atom on the interface AlAs plane has one Ga and three
Al nearest neighbors. As discussed above, the minor charge
rearrangement after CWS stitching may be largely accounted
for by using LEGO with the exact local atomic arrangement.
Incidentally, the “1 1” cell employed before for the (100)
heterojunction may also be used here because such a cell, with
alternating Ga and Al cation planes along one of the 〈100〉
directions, always has alternating GaAs and AlAs planes along
two of its 〈110〉 directions, as “d” in Fig. 5(c) demonstrates.
However, the use of a “1 1” cell, with As bonded to 2 Ga and 2
Al, does not completely remove the chemical mismatch from
CWS stitching at the (110) interface. Nevertheless, as shown
in Fig. 7(b), a significant improvement is already realized with
“1 1” stitching. In general, quadrants from the “1 1” cell are
not suitable for stitching as they may have a net charge. To
satisfy the charge neutrality requirement, the location chosen
for the stitching of the “1 1” cell is planar and on the atomic
planes, as shown in Fig. 7(a).

To better match the chemical environment of the stitched
structure to the actual atomic arrangement at the heterojunction
interface, use may be made of oligo-cells with one or two more
layers of atoms in the cell than in the “1 1” cell. All As atoms
in a GaAl2As3 (“1 2”) cell with its (110) planes repeated in the
-GaAs-AlAs-AlAs- cycle and those in a Ga2AlAs3 (“2 1”) cell

075310-8



BAND OFFSET FORMATION AT SEMICONDUCTOR . . . PHYSICAL REVIEW B 94, 075310 (2016)

FIG. 7. (a) Electron density, per nm and per area of the two-dimensional (2D) unit cell (0.27 nm2), of a GaAs/AlAs(110) supercell, obtained
(i) by first-principles calculation; (ii) from stitching bulk GaAs and bulk AlAs densities on the midpoint between atomic planes; (iii) from
stitching GaAs, AlAs, and “1 1” densities terminated on atomic planes; and (iv) from stitching GaAs, AlAs, “2 1” and “1 2” densities. (b)
The difference (in e nm area) between the equilibrium electron density calculated for a GaAs/AlAs(110) supercell and that stitched together
for this heterojunction with electron densities of bulk semiconductors and oligo-cells. (c) Schematic illustration of two stitching methods for
the simulation of charge density at the AlAs/GaAs(110) heterojunction. The atomic arrangement of the heterojunction is drawn in the center
diagram, with As, Al, and Ga shown, respectively, as large, small, and midsized spheres. In the CWS-stitching method shown on the right, the
volume of the heterojunction is divided into CWSs, and the charge density is stacked CWS-by-CWS with charge densities calculated for “a”
bulk AlAs and “b” bulk GaAs. In the “1 1”-stitching method shown on the left, the volume of the heterojunction is divided into three regions,
by two parallel planes at locations of interface atoms. Charge densities calculated for “c” bulk AlAs and “e” bulk GaAs fill the outside regions,
while the charge density from “d” an AlGaAs2 oligo-cell fill the immediate interface region.

with –GaAs-GaAs-AlAs– stacking have mixed numbers of Ga
and Al as nearest neighbors. By inserting the charge density
from both the “2 1” cell and the “1 2” cell at the locations
indicated in (iv) of Fig. 7(a), the charge density between the two
immediate interface planes is doubly inserted. The redundant
charge density in this region corresponds exactly to that of the
“1 1” cell discussed earlier and shown in (iii) of Fig. 7(a). It
may therefore be removed by a simple subtraction. It should
be noted that these LEGOs being stitched/subtracted are all
individually neutral. The resultant, “2 1” + “1 2” – “1 1”
stitched, density is seen in Fig. 7(b) to closely approximate
the equilibrium charge density of the supercell. The reason for
such a stitching strategy is that all As atoms on the stitched
interface GaAs plane come from a chemical environment with

3 Ga and 1 Al nearest neighbors and all As atoms on the
interface AlAs plane have been calculated with 3 Al and 1 Ga
as nearest neighbors, duplicating the chemical environment
at the respective parts of the heterojunction. With the key
to success identified as reproduction of the local chemical
environment, it seems that an oligo-cell of Ga2Al2As4, with
its (110) planes repeating in a –GaAs-GaAs-AlAs-AlAs– cycle
(“2 2”), could by itself reproduce the chemical environment
of the (110) interface. This is found to be indeed the case.
However, the “2 2” stitched results are not discussed further
because they are nearly identical to results from “12 + 21 –
11”-stitched densities. The extent to which differently stitched
(110) charge densities are able to quantitatively simulate the
supercell VBO is further explored in Table II. It should be
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FIG. 8. (a) The difference (e per nm and per area) between the equilibrium electron density calculated for the GaAs/AlAs(111) supercell
and that stitched together for this heterojunction with electron densities of bulk semiconductors and oligo-cells. (b) Schematic illustration of
stitching methods for the simulation of charge density at the GaAs/AlAs(111) heterojunction. The atomic arrangement of the heterojunction is
drawn in the center diagram, with As, Al, and Ga shown as large, small, and midsized spheres, respectively. In the “1 1”-stitching method shown
on the right, the volume of the heterojunction is divided into AWSs, and the charge density is stacked AWS-by-AWS with charge densities
calculated for bulk GaAs “a” and bulk AlAs “c,” except for sites of the interface As common to both semiconductors. On those interface sites,
AWSs are filled with charge density calculated for “b” the AlGaAs2 oligo-cell. In the “2 2”-stitching method shown on the left, the volume
of the heterojunction is divided into CWSs, and the charge density is stacked CWS-by-CWS with charge densities calculated for bulk GaAs
“d” and bulk AlAs “f,” except for cation sites closest to the interface. On those interface sites, charge density calculated for the Al2Ga2As4

oligo-cell “e” is inserted.

clarified that the “1 2” and “2 1” cells just described are
themselves one-half of a larger cell due to the constraint that
the ZB (110) structure repeats in an even, not odd, number
of atomic planes. Therefore, for example, the charge density
used to fill the “1 2” position in Fig. 7(a) is actually that of
one-quarter of a Ga2Al4As6 cell. The use of a smaller but
oblique oligo-cell is also possible here, although a larger cell
is still preferred for the ability to place grid points (at which
the density is sampled) at exactly the same positions in both
the supercell and the oligo-cell.

There has not been much device work or research interest
in (111)-oriented ZB heterojunctions. Scientifically, however,
the formation of VBO at these heterojunctions must follow
the same rules as for (100) or (110) oriented heterojunctions.
Therefore, conclusions as to the charge distribution and BO
formation at (111) heterojunctions carry as much importance
and validity as those deduced for more frequently studied
heterojunctions. Analysis of the electron distribution at the
GaAs/AlAs(111) interface, however, requires more effort. The
lack of a mirror plane or improper rotation (rotation-reflection)
symmetry in the ZB (111) direction prevents the use of two
electrically identical heterojunctions placed back-to-back in
supercell or oligo-cell calculations. Any periodic-boundary
calculation of the (111) heterojunction necessarily includes
both (111)A and (111)B interfaces, with chemically similar
atomic arrangements, at best, between the two semiconductors
[58,59]. The two interfaces, although different in structural
details, are presently found to be electrically similar for the
GaAs/AlAs(111) supercell [20]. In constructing models of
charge density for the heterojunction, the appropriate location
for planar stitching is not known a priori. Of the two
possible locations for a (111) planar termination that leave

each semiconductor surface neutral, only the neutral point
situated between bi-layers is chemically sensible. The neutral
points for GaAs and AlAs happen to approximately coincide,
allowing for planar stitching with negligible gap/overlap in
the two bulk densities. The planar-stitched density, however,
deviates considerably from the equilibrium heterojunction
density, as shown in Fig. 8(a). Improvement can again be
gained by CWS stitching, which works for the (111) interface
without any neutrality concerns, as for other orientations.
Further improvement is possible by noting that the chemical
mismatch for the CWS-stitched density arises from the fact
that the interface As is bonded to 3Al + 1Ga or 3Ga + 1Al,
depending on whether the (111)A or the (111)B interface is
being examined. Both atomic arrangements can be recreated in
a “1 1” oligo-cell with alternating Al and Ga planes along the
〈111〉 direction, as schematically illustrated by “b” in Fig. 8(b).
The charge in a layer of AWS cells, centered about As in the
“1 1” cell with the corresponding local arrangement, can now
be used and stitched with AWS densities from bulk GaAs and
AlAs, as shown on the right-hand side of Fig. 8(b). Doing so
indeed removes much of the chemical mismatch discrepancy,
as shown in Fig. 8(a). It should be noted, however, that the “1 1”
LEGO stitching just described is for reference and examination
only. Because such an AWS cell is not, in general, electrically
neutral, it is not physically meaningful to use the density
so stitched for potential and VBO simulation. To model the
potential distribution of the GaAs/AlAs(111) supercell without
an obvious chemical mismatch, one can resort to a more
conservative stitching scheme. Each half of a “2 2” oligo-cell
in the 〈111〉 direction, marked by “e” in Fig. 8(b), contains
the atomic arrangement found at either the (111)A or the
(111)B interface, and each half is found to be approximately

075310-10



BAND OFFSET FORMATION AT SEMICONDUCTOR . . . PHYSICAL REVIEW B 94, 075310 (2016)

neutral. Therefore, the half of the “2 2” cell corresponding
to the GaAs/AlAs(111) interface being analyzed can be used,
along with bulk densities, to create a “2 2” LEGO-stitched
density, as shown on the left side of Fig. 8(b). Such a density
not only closely reproduces the equilibrium charge density of
the supercell, as shown in Fig. 8(a), but also approximately
reproduces the VBO calculated with the supercell. Because
the ZB structure repeats in the 〈111〉 direction every six
atomic planes (three bi-layers), it should be noted that the
densities for the “1 1” and “2 2” oligo-cells just described
actually come from larger (Ga1Al1As2)3 and (Ga2Al2As4)3

cells, respectively.
Having examined the GaAs/AlAs heterojunction in detail,

we turn to the other two lattice-matched common-anion
heterojunctions, GaP/AlP and GaSb/AlSb. These have been
studied along all three major interface orientations and in as
much detail as just described for the GaAs/AlAs system. As
shown in Fig. 6, the dependence of the local charge density
on the local atomic structure, as well as the insensitivity
of the local density to its neighbors, are exhibited in these
systems as well. Therefore, the main results and conclusions
pertaining to these systems are nearly identical to those
presented for the GaAs/AlAs in Figs. 4–8 and are not described
individually. Average potential energy and VBM positions for
various surfaces of these semiconductors are given in Table I.
The calculated VBOs of these heterojunctions, including
those obtained from stitching, are shown in Table II and
are also in good agreement with experiment [48,49,51–53].
To summarize, one notices the following: (1) the VBO is
nearly independent of the orientation of the heterojunction;
(2) the charge density at any part (quadrant) of an interface
is dominated by the identities of the cation-anion pair of
the quadrant; and (3) the potential distribution and the
VBO of a heterojunction interface may be reproduced to
within ∼0.04 eV by stitching bulk densities together along
quadrant boundaries (CWS stitching). Correcting for chemical
mismatches in the CWS-stitched density through the use of
oligo-cell(s) further improves the agreement with the supercell
charge density and potential energy distribution. One notes
that since the equilibrium charge density of these supercells
is found to be approximately a juxtaposition of quadrants of
bulk densities (points 2 and 3 above), the relative insensitivity
of the heterojunction VBO to the interface orientation (point
1 above) follows naturally.

IV. UNRELAXED ISOVALENT LATTICE-MATCHED
HETEROJUNCTIONS

There are several lattice-matched, isovalent, ZB heterojunc-
tions that share neither a common anion nor a common cation.
As a result, at least two important features different from
those of the heterojunctions discussed in the previous section
emerge. First, there are at least two inequivalent interface
bonding arrangements for each polar interface, i.e., (100) and
(111), with possibly different VBOs [60–62]. Second, due
to the presence of bonds at the interface that are different
from that encountered in either semiconductor, interface
relaxation is generally unavoidable for these heterojunctions
in equilibrium [63]. The formation of the ground-state electron
density for a particular atomic structure of the interface and the

relaxation of atomic structure at the interface are, obviously,
driven by minimization of the total interface energy. With
these two processes intertwined at a relaxed heterojunction
interface, the resulting electron density at the interface may be
difficult to construct from densities of bulk semiconductors and
small oligo-cells. Two approaches may be undertaken, then, to
understand the equilibrium charge density at relaxed isovalent
heterojunction interfaces. One is to monitor the formation of
charge density in two steps: (a) the formation of unrelaxed
heterojunction with the same atomic stacking as the eventual
interface, followed by (b) the relaxation of the interface
structure. Another is to directly compare the charge density
of the relaxed heterojunction with that of a larger oligo-cell
that encompasses the relaxed structure. Both approaches are
taken in the present paper, so as to gain a fuller view of the
chemistry at such interfaces and its relation to the BO.

In this section, we consider such junctions without lattice
relaxation. In this case, the directions of all interface bonds
are the same as in the bulk. One may then expect to model
the charge distribution using bulk semiconductors and oligo-
cells, as demonstrated above. As an illustrative example, we
consider the InAs/GaSb(100) interface [64,65] with unrelaxed
As-Ga interface bonds, shown schematically in Fig. 9. It
may be viewed approximately as having been put together
with an InAs bulk density (InAs CWS), a GaSb bulk density
(GaSb AWS), and the density corresponding to As-Ga bonds
(As-Ga quadrants). The last contribution may be extracted
from a bulk GaAs crystal, calculated with the lattice parameter
of the unrelaxed heterojunction. The use of an interface-
specific cell, the As-Ga quadrant, not found in either bulk
semiconductor, is reminiscent of the interface phase previously
discussed as controlling the Schottky barrier height at oxide
interfaces [66], although ZB is the only crystalline phase
throughout the entire interface in the present paper. We refer
to the density stitched together in this fashion, shown as
(i) in Fig. 9(a), as single-layer quadrants (1Q) stitching. It
approximately reproduces the equilibrium density obtained in
supercell calculation, as shown in Fig. 9(b), but the fit is less
than impressive. For many heterojunctions of this kind, sum-
marized in Table III, the VBOs modeled by 1Q-stitching are
not too far off from supercell values, but with some exceptions.

Examination of the charge density stitched together at this
preliminary stage reveals chemical mismatches at both As and
Ga locations at the immediate interface planes. The discussion
of the previous section suggests that for the As atoms this may
be remedied by using LEGO with an identical chemical envi-
ronment, namely an InGaAs2 “1 1” cell. Similarly, to correct
for the chemical mismatch around the interface Ga atoms, a
Ga2AsSb “1 1” LEGO may be used. Taking both corrections
is equivalent to stitching the densities of InAs(AWS), “1 1”
InAs-GaAs, “1 1” GaAs-GaSb, and GaSb(CWS) together, as
illustrated in Fig. 9. The charge density of a layer of As-Ga
quadrants, which is double-counted in the process, is then
subtracted to complete the “1 1 + 1 1 − 1Q” stitching. As
shown in Fig. 9, such a LEGO-stitching strategy puts together
a density that is very close to the equilibrium charge density of
the supercell. The success of LEGO stitching in reproducing
the VBOs obtained by supercell calculations has been observed
in all of the unrelaxed, lattice-matched (100) heterojunctions
presently studied, details of which can be found in Table III.
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FIG. 9. (a) Electron densities, per nm and per area of the two-dimensional (2D) unit cell (0.185 nm2), of bulk semiconductors and oligo-cells
that are stitched together to simulate the charge density at the InAs/GaSb(100) heterojunction with As-Ga interface bonds. (b) The difference
between the equilibrium charge density calculated for the unrelaxed InAs/GaSb(100) supercell with As-Ga interface bonds and the simulated
LEGO-stitched charge density for this heterojunction, based on two stitching methods. (c) Schematic illustration of two stitching methods
for the simulation of charge density at the (100) heterojunction between InAs (upper) and GaSb (lower), with As-Ga bonds. The atomic
arrangement of the heterojunction is drawn in the center diagram, with anions shown as larger spheres and cations shown as smaller spheres.
In the 1Q-stitching method shown on the right, the charge of the heterojunction is stacked together with “a” In-centered CWSs extracted from
bulk InAs and “b” Sb-centered AWSs extracted from bulk GaSb. The gap at the interface is filled with “c” As-Ga quadrants extracted from a
binary GaAs calculation. In the “11 + 11 − 1Q”-stitching method shown on the left, the charge density of the heterojunction, except at the
immediate interface, is stacked together with “d” As-centered AWSs extracted from bulk InAs and “e” Ga-centered CWSs extracted from bulk
GaSb. The interface region is filled with “f” As-centered AWSs from an InGaAs2 “1 1” cell and “g” Ga-centered CWSs from a Ga2InAs “1 1”
cell. As drawn, the “1 1 + 1 1” -stitched density has overlaps in the interface As-Ga bond region. The charge density of a layer of “c” As-Ga
quadrants is therefore removed to complete the “1 1 + 1 1 − 1Q” stitching on left.

For completeness, further types of stitching and hetero-
junctions are also studied in Table III. Results of stitching
with an appropriate “1.5 1.5” oligo-cell, e.g., InAs2Ga2Sb for
the InAs/GaSb(100) with As-Ga bonds, are also found to be

very satisfactory, as Table III reveals. We defer discussion of
this stitching method to the discussion of relaxed interfaces
below. Also included in Table III are some heterojunction
interfaces with an interface atomic layer replaced by a layer
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TABLE III. Computed valence band offsets (VBOs), in eV, of unrelaxed, isovalent, lattice-matched (100) heterojunctions. The type of
interface bond is given in parentheses. Heterojunctions marked by three atomic layers, e.g., (Be-S-Zn), contain an atomic interlayer. The
oligo-cells used for multiple LEGO stitching are listed on the last column. For interfaces without an interlayer, a single layer of quadrants
(1Q) is used for stitching in the next to last column. For interfaces with interlayers, the “1 1” oligo-cell is used in that column. The “1.5 1.5”
oligo-cell contains two additional planes of interlayer atoms.

Unrelaxed (100) Supercell “1.5 1.5” Multiple LEGO 1Q or “11” Oligo-Cells
Heterojunction VBO (eV) Stitched Stitched Stitched Used

BP/GaN (P-Ga) 0.723 0.584 0.669 0.932 Ga2PN, BGaP2, GaP
BP/GaN (B-N) 0.605 0.700 0.711 0.209 B2PN, BGaN2, BN
BeTe/ZnSe (Be-Se) 0.078 0.085 0.091 0.224 Be2TeSe, BeZnSe2, BeSe
BeTe/ZnSe (Te-Zn) 0.127 0.181 0.220 0.438 Zn2TeSe, BeZnTe2, ZnTe
BeTe/ZnSe (Be-S-Zn) 0.046 0.020 0.013 0.342 Be2TeS, Zn2SSe, BeZnS2, BeS, ZnS
BeTe/ZnSe (Te-Cd-Se) 0.228 0.240 0.373 0.083 BeCdTe2, CdZnSe2, Cd2TeSe, CdTe, CdSe
BeTe/ZnSe (Te-Mg-Se) 0.233 0.201 0.181 0.071 BeMgTe2, MgZnSe2, Mg2TeSe, MgTe, MgSe
BeTe/MgS (Be-S) 1.093 1.124 1.160 1.202 Be2TeS, BeMgS2, BeS
BeTe/MgS (Te-Mg) 1.345 1.313 1.336 1.537 Mg2TeS, BeMgTe2, MgTe
BeTe/MgS (Be-Se-Mg) 1.202 1.179 1.253 1.808 Be2TeSe, Mg2SeS, BeMgSe2, BeSe, MgSe
BeTe/MgS (Te-Zn-S) 1.188 1.215 1.359 0.792 BeZnTe2, ZnMgS2, Zn2TeS, ZnTe, ZnS
MgS/ZnSe (Mg-Se) − 1.095 − 1.129 − 1.155 − 1.097 Mg2SSe, MgZnSe2, MgSe
MgS/ZnSe (S-Zn) − 1.028 − 1.082 − 1.139 − 1.087 Zn2SSe, MgZnS2, ZnS
MgS/ZnSe (Mg-Te-Zn) − 1.172 − 1.082 − 1.104 − 1.161 Mg2STe, Zn2TeSe, MgZnTe2, MgTe, ZnTe
MgS/ZnSe (S-Be-Se) − 0.995 − 1.040 − 1.073 − 0.787 MgBeS2, BeZnSe2, Be2SSe, BeS, BeSe
MgSe/CdS (Mg-S) − 0.692 − 0.705 − 0.722 − 0.537 SeSMg2, MgCdS2, MgS
MgSe/CdS (Se-Cd) − 0.696 − 0.662 − 0.664 − 0.497 MgCdSe2,SeS Cd2, CdSe
InAs/AlSb (In-Sb) 0.099 0.045 0.058 − 0.0699 In2AsSb, InAlSb2, InSb
InAs/AlSb (As-Al) 0.087 0.037 0.047 − 0.0172 Al2AsSb, InAlAs2, AlAs
InAs/AlSb (As-Ga-Sb) 0.122 0.050 0.087 0.384 InGaAs2, AlGaSb2, Ga2AsSb, GaAs, GaSb
InAs/AlSb (In-P-Al) 0.086 0.053 0.060 − 0.242 In2AsP, Al2PSb, InAlP2, InP, AlP
InAs/GaSb (In-Sb) − 0.215 − 0.243 − 0.232 − 0.421 In2AsSb, InGaSb2, InSb
InAs/GaSb (As-Ga) − 0.189 − 0.219 − 0.213 − 0.395 Ga2AsSb, InGaAs2, GaAs
InAs/GaSb (As-Al-Sb) − 0.219 - − 0.274 − 0.248 − 0.034 InAlAs2, AlGaSb2, Al2AsSb, AlAs, AlSb
InAs/GaSb (In-P-Ga) − 0.175 − 0.207 − 0.187 − 0.630 In2AsP, Ga2PSb, InGaP2, InP, GaP
ZnTe/CdSe (Zn-Se) 0.109 0.188 0.214 0.426 Zn2TeSe, ZnCdSe2, ZnSe
ZnTe/CdSe (Te-Cd) 0.184 0.285 0.326 0.496 Cd2TeSe, ZnCdTe2, CdTe
ZnTe/CdSe (Zn-S-Cd) 0.070 0.119 0.152 0.617 Zn2TeS, Cd2SSe, ZnCdS2, ZnS, CdS

of isovalent atoms. For example, the interface Ga for the
InAs/GaSb(100) heterojunction with As-Ga bonds may be
replaced by a layer of Al, resulting in an interface with an
–In–As-Al-Sb-Ga– stacking sequence. We refer to such an
interface as an InAs/GaSb(100) heterojunction with an Al
interlayer. The charge density at these heterojunctions may
also be appropriately stitched together using the same rules
on chemical adjustment as demonstrated in examples above,
although more LEGOs are required for such interfaces. As can
be seen from Table III, the use of isovalent interlayers, either
cationic or anionic, does not strongly affect the VBO of the
heterojunction.

We now turn to unrelaxed isovalent heterojunctions with
(110) orientation. The most straightforward way to stitch the
(110) heterojunction density is through planar stitching along
the midpoint between atomic layers, as (i) of Fig. 7(a) suggests.
However, this simple method leads to poor results due to
disparity in the atomic arrangement, as shown in Fig. 10 for
the unrelaxed BeTe/MgS(110) junction [4]. As also shown in
Fig. 10, 1Q stitching provides for better agreement. In this case,
it uses bulk densities of MgS and BeTe throughout, except for
the quadrants across the immediate interface planes, for which
the densities of bulk MgTe and BeS, calculated at the unrelaxed

FIG. 10. The difference (in e nm area) between the equilibrium
charge density calculated for an unrelaxed BeTe/MgS(110) supercell
and the simulated charge density obtained for the same heterojunction
from various stitching methods described in the text.
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lattice constant of BeTe, are used. Geometrical analysis shows
that stitching in this manner would produce a VBO that is
the average of the VBOs produced by 1Q stitching for the
two unrelaxed BeTe/MgS(100) interfaces, i.e., with Be-S and
Mg-Te interface bonds. Without any chemical adjustment,
1Q stitching typically produces VBOs that are in acceptable,
but not impressive, agreement with the calculated VBO for
the supercell, ∼0.03–0.3 eV. Other methods of stitching for
the (110) interface have already been described in detail
and schematically shown in Fig. 7(a). With nearly complete
removal of chemical mismatches, the “1 2 + 2 1–1 1”-stitching
strategy best reproduces the equilibrium charge density of the
BeTe/MgS(110), as shown in Fig. 10, as well as its VBO, as
shown in Table IV. Examination of calculated VBOs for other
(100) and (110) junctions in Tables III and IV, respectively,
shows that the VBO for an unrelaxed heterojunction does not
have a strong dependence on either the interface orientation
or the identity of the interface bonds, e.g., the VBOs for
InAs/GaSb(110) and InAs/GaSb(100) with As-Ga bond, and
InAs/GaSb(100) with In-Sb bonds [62] are all similar. This
insensitivity of the VBO to interface specifics is found to be
in effect for all III-V and II-VI heterojunctions studied here.

Because even the modest and straightforward 1Q-stitching
method renders a VBO that is largely independent of the
interface orientation and the identity of the interface bonds,
clearly this insensitivity is in force even without detailed
chemical matching and therefore seems to point to some
invariable characteristics of the charge distribution in bulk
semiconductors. In 1Q stitching, charge density is made up
exclusively of quadrants from bulk semiconductors. Therefore,
this method can predict similar VBOs for the two possible
(As-Al or In-Sb bonded) InAs/AlSb(100) heterojunctions only
if the overall potential energy changes across a layer of
As-Al quadrants plus a layer of Al-Sb quadrants, or across
a layer of As-In quadrants plus a layer of In-Sb quadrants, is
essentially the same. Naturally, all these quadrants are obtained
from bulk semiconductor calculations, with the same 0.609-
nm lattice constant that characterizes this epitaxial system.
Potential energy changes so calculated, also for additional
semiconductors assuming the same 0.609-nm lattice constant,
are listed in Table V. The table confirms that indeed the
two InAs/AlSb(100) bonding scenarios have nearly identical
potential energy changes −2.00 eV and −1.95 eV (the
difference between entries in the As and Sb rows for the Al
and In columns), respectively—accounting for their similar

TABLE V. Potential energy drop (in eV) across a full layer
of (cation to anion) quadrants of III-V semiconductors, with the
cation and the anion arranged as column and row, respectively. All
semiconductors are calculated with an assumed lattice constant of
0.609 nm.

���������Anion
Cation

Al Ga In

P −2.392 −2.994 −2.003
As −3.154 −3.749 −2.748
Sb −5.156 −5.725 −4.698

VBOs. However, a far more striking feature of Table V is the
fact that the difference in values between any two columns, or
any two rows, is almost constant. In other words, switching
the identity of the cation of the semiconductor, e.g., from Al
to Ga, leads to approximately the same change in potential
energy, regardless of the identity of the anion, and likewise for
an anionic switch.

The above observation suggests that the total potential
energy drop for a layer of semiconductor quadrants should
be separable into two individual additive contributions, one
from the cation and the other from the anion. To observe
this, the laterally averaged potential energy distributions across
the above III-V quadrants are shown in Fig. 11(a). Note that
the potential energy remains constant to the left and to the
right of the curves plotted. In the figure, the left (cation)
ends of the quadrant curves are shifted vertically to reflect
the differences between columns of Table V. This causes the
right (anion) ends of the curves to converge closely into groups,
ending with values that reflect the differences between rows
of Table V. This separability, or additivity, of cation and anion
contributions to the quadrant potential energy is not limited to
III-V semiconductors, nor is it valid only for a particular lattice
parameter. Figure 11(a) also features various II-VI quadrants,
and Fig. 11(b) shows that the same is true for a different (0.566
nm) lattice constant. Clearly, many of the semiconductor
combinations considered in Fig. 11 are artificial in that they
have not been calculated at their natural lattice parameter.
Nevertheless, the chemical trend displayed in Fig. 11 reflects
the electronic density distribution that minimizes the total
energy for the particular geometry chosen and therefore serves
below as a valid and important aid to modeling the electrostatic
effect associated with lattice relaxation. One more important

TABLE IV. Valence band offsets (VBOs), in eV, of unrelaxed, isovalent, lattice-matched (110) heterojunctions, computed from
heterojunction supercells, compared with those computed from various stitching methods described in the text.

Unrelaxed (110) Heterojunction Supercell “22” Stitched “12 + 21 − 11” Stitched 1Q Stitched “11” Stitched

BP/GaN(110) 0.639 0.634 0.672 0.570 0.498
BP/AlN(110) 1.567 1.530 1.568 1.455 1.205
BeTe/ZnSe(110) 0.114 0.145 0.170 0.331 0.249
BeTe/MgS(110) 1.232 1.227 1.274 1.369 1.134
MgS/ZnSe(110) − 1.063 − 1.103 − 1.137 − 1.092 − 0.961
MgSe/CdS(110) − 0.689 − 0.664 − 0.664 − 0.517 − 0.513
InAs/AlSb(110) 0.078 0.069 0.062 − 0.044 − 0.036
InAs/GaSb(110) − 0.139 − 0.237 − 0.236 − 0.408 − 0.341
ZnTe/CdSe(110) 0.165 0.262 0.287 0.461 0.359
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FIG. 11. (a) Laterally averaged electrostatic potential energy profile across a layer of quadrants of III-V semiconductors, calculated with a
lattice constant of 0.609 nm. The quadrants are aligned in the 〈111〉 direction and have an areal density that is given for the zinc blende crystal
by (

√
3/4 · a2)−1 ∼ 6.23 nm−2. The potential energy curves have been vertically shifted by amounts suggested in Table V. (b) Same as (a),

except the calculations are done with a lattice constant of 0.566 nm and a corresponding areal density of ∼7.21 nm−2.

outcome of this apparent separability of potential energy is the
approximate independence of the VBO for a heterojunction
of not only the interface bonds and orientation but also
the insertion of an isovalent interlayer at the heterojunction
interface. It should be pointed out that even though Fig. 11
and Table V suggest the separability of cation and anion
contributions in the potential energy of a quadrant, these
plots do not point to a specific, physically motivated way to
actually make such a separation. We shall return to this in the
next section, but for now note that such quadrant partition is
unnecessary for the analysis of unrelaxed interfaces.

V. RELAXED ISOVALENT LATTICE-MATCHED
HETEROJUNCTIONS

We begin our investigation of the effect of lattice relaxation
by considering (100) isovalent, lattice-matched heterojunc-
tions, where the atomic positions for the interface planes
are allowed to relax in the direction perpendicular to the
interface. We use the relaxed BeTe/MgS(100) heterojunction
as an illustrative example, with Be-S or Te-Mg interface
bonds. For either, the positions of the two atomic layers
involved in the interface bonds are relaxed, leading to
changes in three interplanar distances. Upon relaxation, bonds
associated with atoms on four atomic layers are distorted
from their ideal tetrahedral network, making modeling of the
charge density with that of perfectly tetrahedral oligo-cells
questionable. We have seen repeatedly that the heterojunction
electron density is governed predominantly by local atomic
structure. It therefore stands to reason that the charge density
calculated for oligo-cells with atomic relaxation identical to
that found in the supercell may still offer useful information.
For BeTe/MgS(100) heterojunction with relaxed Be-S bonds,
the use of a “1.5 1.5” Be2TeMgS2 oligo-cell, consisting of
back-to-back Te–Be(relaxed)–S(relaxed)–Mg planes, recre-
ates the atomic arrangement in the most critical part of the

heterojunction. The right-hand side of Fig. 12(c) demonstrates
how the LEGO from such a “1.5 1.5” cell may be stitched
with bulk densities on both sides. However, because of lattice
relaxation, the “1.5 1.5” oligo-cell contains no atoms with
bonds in perfect tetrahedral directions and therefore is always
mismatched with the structure of bulk semiconductors when
stitched. This is illustrated in Fig. 12(a), which shows that the
equilibrium heterojunction density is approximately recreated
by “1.5 1.5” stitching, but the agreement is less than perfect.
A similar conclusion arises for the Te-Mg bonded interface
in Fig. 12(b). The remaining discrepancies are likely due to
bond-angle mismatches because for interfaces without lattice
relaxation, discussed earlier and summarized in Table III, the
same “1.5 1.5” stitching approach works very well indeed.
By padding with two more atomic planes between interfaces,
as shown on the left-hand side of Fig. 12(c), a Be3Te2Mg2S3

“2.5 2.5” oligo-cell is formed that correctly reproduces the
entire atomic arrangement of the supercell (we note that for
reasons related to the ZB structure already described above, the
“1.5 1.5” and “2.5 2.5” cells are actually calculated with twice
the intended cell length). With only one layer of undistorted
tetrahedral bonds separating every four atomic layers with
distorted bonds, such a “2.5 2.5” cell has the minimum number
of atomic planes necessary to replicate the interface structure
of the relaxed supercell. Not surprisingly, the charge density
thus stitched is in very good agreement with that calculated
for the BeTe/MgS(100) supercell with either Be-S or Te-Mg
interface bonds, as shown in Figs. 12(a) and 12(b). The VBOs
calculated for relaxed supercells, as shown in Table VI, are in
excellent agreement with that modeled with “2.5 2.5” stitching.
Interestingly, the “1.5 1.5” stitching method, even with its
just-discussed problems, generally reproduces the VBO to
∼0.1 eV!

Turning to relaxed (110) heterojunctions, all atoms on the
two immediate interface planes are allowed to relax in both
in-plane and out-of-plane directions. Energy minimization
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FIG. 12. Difference between the equilibrium charge density (in
e per nm per area) calculated for a supercell and that stitched
together with bulk and oligo-cell densities for the BeTe/MgS(100)
heterojunction with (a) relaxed Be-S interface bonds and (b) relaxed
Te-Mg interface bonds. There is an overall contraction between the
two semiconductors of ∼0.031 nm for the Be-S bonded interface
and an expansion of ∼0.042 nm for the Te-Mg bonded interface. (c)
Schematic illustration of the two stitching methods for a heterojunc-
tion between BeTe (upper) and MgS (lower), with Te-Mg bonds.
The atomic arrangement of the heterojunction is drawn in the center
diagram, with anions shown as larger spheres and cations shown as
smaller spheres. In the “1.5 1.5”-stitching method shown on the right,
the charge of the heterojunction is stacked together with Be-centered
CWSs extracted from bulk BeTe (upper right) and S-centered AWS
extracted from bulk MgS (lower right). The gap at the interface is
filled with density extracted from a BeTe2Mg2S calculation (middle
right). In the “2.5 2.5”-stitching method shown on the left, the charge
density of the heterojunction is stacked together with Te-centered
AWS’s extracted from bulk BeTe and an Mg-centered CWS extracted
from bulk MgS. The interface region is filled with charge density from
a Be2Te3Mg3S2 calculation.

frequently results in an expansion in the overall interface
distance from the nominal bulk distance. With atomic positions
relaxed, at least some of the bonds on four atomic layers at
the interface are distorted from their tetrahedral orientations
and/or length. For the example of the relaxed BeTe/MgS(110)
heterojunction, the interface contains –BeTe–BeTe(relaxed)–
MgS(relaxed)–MgS– planes, which can be arranged back-to-
back to form a Zn3Te3Cd3Se3, “3 3” oligo-cell with exactly
the same lattice relaxation as the heterojunction. However,
such an oligo-cell contains no atoms with undistorted bonds
and therefore always has disparate bond angles when stitched
to the density of bulk semiconductors. Nevertheless, the
equilibrium charge density of the heterojunction can be

FIG. 13. Difference between the equilibrium charge density (in
e per nm per area) calculated for supercell and that stitched together
with bulk and oligo-cell densities for the relaxed BeTe/MgS(110)
heterojunction. The locations of relaxed atoms are indicated.
Additionally, atoms relax laterally, and there is a small overall
expansion, ∼0.004 nm, between the two bulk crystals. The re-
laxed atomic structure for the supercell is also employed for the
“3 3” and “4 4” oligo-cells.

recreated reasonably, as shown in Fig. 13, and the VBO
approximately modeled, as shown in Table VI, by “3 3”
stitching. Adding one more unrelaxed layer of atoms between
interfaces to the “3 3” cell creates a “4 4” Zn4Te4Cd4Se4

oligo-cell, whose density and VBO very well match that of
the supercell, as also shown in Fig. 13 and Table VI. Note
that despite the seemingly large number of atoms in the “4 4”
oligo-cell, there is actually no atom in such a (110) oligo-cell
with completely undistorted tetrahedral bonds! A summary
of results of supercell calculation on relaxed heterojunctions
and VBOs modeled by appropriately chosen oligo-cells can
be found in Table VI.

The excellent agreement between the stitched charge
density and the equilibrium supercell density for both (100)
and (110) relaxed heterojunctions again marks the localness,
or the nearsightedness [67], in the coupling between the charge
density and the atomic structure, just as demonstrated in
the previous section for unrelaxed heterojunctions. However,
the relaxation is significant and plays an important role in the
BO formation. For (100) heterojunctions between the same
two semiconductors but with different interface bonds, lattice
relaxations are generally found to be significantly different.
For example, the As-Ga bonded interface of InAs/GaSb(100)
has an overall contraction while the In-Sb bonded interface
involves a significant overall expansion [64,65]. The directions
of these atomic movements reflect the fact that the equilibrium
As-Ga and In-Sb bonds are shorter and longer, respectively,
than the bulk bond length in this epitaxial system. For the
(110) junction between the same semiconductors, the cation
and anion on one atomic plane have different in-plane and
out-of-plane relaxations, resulting in different lengths for the
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TABLE VI. Valence band offset (eV) of relaxed, isovalent, lattice-matched heterojunctions. For the (100)-heterojunctions, the type of
interface bond is written in parentheses. The long and short LEGOs used for the stitching come, respectively, from “2.5 2.5” and “1.5 1.5”
oligo-cells for (100) heterojunctions. For (110) heterojunctions, these come respectively from “4 4” and “3 3” oligo-cells. The predictions from
NPT and NPT with correction are shown. Also shown as footnotes are experimental VBOs, where available.

Relaxed Heterojunction Supercell Long LEGO Short LEGO NPT with Neutral
Interface VBO (eV) Stitched Stitched corrections Polyhedron Theory

PB/GaN(100) (P-Ga) 1.406 1.537 0.996 1.308 1.420
PB/GaN(100) (B-N) 1.453 1.475 1.574
BP/GaN(110) 1.728 1.703 1.817

MgSe/CdS(100) (Mg-S) − 0.238 − 0.241 − 0.126 − 0.093 − 0.142
MgSe/CdS(100) (Se-Cd) − 0.541 − 0.560 − 0.617
MgSe/CdS(110) − 0.368 − 0.342 − 0.276

BeTe/ZnSe(100) (Be-Se) 0.532 0.528 0.469 0.635 0.503
BeTe/ZnSe(100) (Zn-Te) 0.443 0.433 0.316
BeTe/ZnSe(110) 0.530 0.572 0.502

BeTe/MgS(100) (Be-S) 1.863 1.880 1.905 1.697 1.568
BeTe/MgS(100) (Te-Mg) 2.145 2.176 2.050
BeTe/MgS(110) 2.196 2.264 2.338

MgS/ZnSe(100) (S-Zn) − 1.338 − 1.344 − 1.451 − 1.062 − 1.065
MgS/ZnSe(100) (Mg-Se) − 1.305 − 1.307 − 1.389
MgS/ZnSe(110) − 1.409 − 1.420 − 1.572

InAs/AlSb(100) (In-Sb) − 0.074 − 0.125 − 0.039 − 0.202 − 0.339
InAs/AlSb(100) (As-Al) − 0.188 − 0.288 − 0.416
InAs/AlSb(110) − 0.206 − 0.194 − 0.301

InAs/GaSb(100) (As-Ga)a − 0.380 − 0.469 − 0.543 − 0.482 − 0.507
InAs/GaSb(100) (In-Sb) − 0.360 − 0.375 − 0.379
InAs/GaSb(110) − 0.427 − 0.420 − 0.405

ZnTe/CdSe(100) (Zn-Se)b 0.533 0.572 0.644 0.579 0.601
ZnTe/CdSe(100) (Te-Cd) 0.412 0.440 0.430
ZnTe/CdSe(110) 0.521 0.527 0.625

aExperiment: −0.51 ∼ −0.57 (Refs. [64] and [65]).
bExperiment: 0.64 (Ref. [68]).

As-Ga and In-Sb at the interface. Overall, there is an expected
tendency for the interface bonds to relax toward their natural
bond length of bulk lattice. As noted from Table VI, the VBOs
for relaxed heterojunctions generally differ from those for
the unrelaxed heterojunctions (see Tables III and IV) by a
significant amount of ∼0.2–0.8 eV. Importantly, without any
interface relaxation, heterojunctions are found to have VBOs
that are approximately independent of the interface orientation
or interface bond identity, as discussed above. But even with
the interface structure relaxed significantly from the clamped
structure and, furthermore, relaxed differently for different
cation-anion pairs at the interface, it is interesting to find that
the VBO is still largely insensitive to the interface orientation
and interface bond identity, as shown in Table VI [68].

Because the VBO is directly related to the interface charge
distribution through the interface dipole contribution noted in
Eq. (1), a successful model for explaining these results must
therefore rest with the ability to understand and predict the
effect of relaxation on charge distribution. The localness in
electron density variation, discovered for all heterojunctions
in the present paper, suggests that the electrostatic effect
associated with lattice relaxation may itself be largely local. In
other words, a semiquantitative theory of how, e.g., the charge
density in a “1.5 1.5” cell changes with lattice relaxation should

suffice. The variation in the local charge density associated
with energy minimization, however, is still nontrivial, as it
involves changes in bond lengths and angles. Nevertheless,
a reasonable guess of the equilibrium charge distribution
for relaxed interfaces may consist of charge densities from
distorted quadrants. With this observation, the stage is finally
set for the introduction of the NPT, which is a surprise find in
the present investigation.

VI. NEUTRAL POLYHEDRA THEORY

To formulate relaxation effects into a more general theory,
consider first how the distribution of charge inside a quadrant
changes with quadrant dimension. The dependence of the
calculated quadrant dipole moment on the ZB lattice parameter
for several semiconductors is shown in Fig. 14. Note that
unlike in Fig. 11, here (as well as in Figs. 15–17 below),
the calculation is for single quadrant, not a layer of quadrants.
Clearly, the dipole moment of the quadrant gradually decreases
with increasing lattice parameter and bond length increase.

To analyze the formation of the total dipole moment in
detail, the accumulated dipole, P (x), defined as [56]

P (x) =
∫ x

−∞
dx ′(x ′ − x)

∫∫
dydzρ(x ′,y,z), (2)
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FIG. 14. Dipole moment along the [111] (cation-to-anion) direc-
tion of single quadrant of a ZB semiconductor as a function of lattice
parameter.

where the integration is over a single quadrant, is shown in
Fig. 15 along the length of the Mg-S quadrant, calculated
for several different lattice parameters. The figure reveals
that the decrease in the overall dipole moment with lattice
parameter is largely attributable to a decreased (i.e., more
negative) dipole moment in the cation half of the quadrant.
Recall that, as explained above and shown in Fig. 3(c), each
quadrant contains ¼ anion, ¼ cation, and two valence elec-
trons. Because the accumulated dipole reaches its minimum
when the accumulated charge, from either side, vanishes,
the section of the quadrant in Fig. 15 from Mg to the
minimum of the accumulated dipole must contains only 0.5

FIG. 15. Accumulated dipole moment [see Eq. (2) of text for
definition] of a Mg-S single quadrant, along the length of the quadrant,
integrated from the S end (upper) and from the Mg end (lower) of
the quadrant, for different lattice parameters. The upper curves have
been vertically shifted by 0.15 e nm.

of an electron, while the remaining 1.5 electrons are in the
anion half of the quadrant [56]. Analogously, quadrants for
III-V semiconductors would have 0.75 and 1.25 electrons,
respectively, for cation- and anion-sections (halves) defined in
this fashion. Because the charge distribution in the anion half
of the quadrant is not significantly affected by a variation in the
lattice parameter, or its contribution to the accumulated dipole
moment would have changed, one can phenomenologically
characterize the energy minimization process as dependent
more heavily on charge rearrangement in the cation half of
the quadrant. Such a simplified view on the formation of
the equilibrium quadrant dipole raises the possibility that the
cation side of the quadrant may also end up with a dipole
moment that is characteristic only of the cation, upon energy
minimization, i.e., when the charge density of quadrant with
the optimal (energy minimizing) lattice parameter is used. This
possibility turns out to be amazingly real. Accumulated dipole
distributions for III-V and II-VI semiconductor quadrants,
calculated at their equilibrium lattice parameters, are presented
in Fig. 16. They show that the dipole moment for the cation
section of the quadrant becomes essentially independent of
the anion when the quadrant reaches its equilibrium length.
Combined with the earlier observation that the dipole moment
for the anion side of the quadrant is approximately independent
of the cation, this finding suggests that the dipole moment for a
quadrant in its optimum dimension is separable into two parts
that each depends only on one element. This key result for
comprehensive modeling of VBO at relaxed heterojunctions
is demonstrated in Fig. 17, where curves from Fig. 16 are
replotted with the minimum of each curve rigidly shifted to the
origin. The fact that all dipole curves for a particular element,
either cation or anion, end up with approximately the same
height indicates the separability of the quadrant dipole moment
into two parts.

Figure 17 brings to light an additional crucial point: All
dipole curves for an element end roughly at the same location
on the length axis, i.e., the length of a cation section in
equilibrium is essentially independent of its anion partner,
and vice versa! The equilibrium bond length for any of these
ZB semiconductors is, therefore, the sum of additive lengths,
or radii, of the two elements. Because the minimum in each
dipole distribution curve is the neutral point for that quadrant,
the individual radius so determined for an element is possibly
identifiable with its covalent radius [69,70]. The covalent radii
for all elements presently determined from dipole profile are in
reasonable agreement with the reported single bond molecular
covalent radii [70,71] and the covalent radii for solids [72],
as shown in Table VII. This is remarkable given that the
covalent radius is arrived at in the present paper on the basis
of electrostatic argumentation, which is entirely different from
the statistical fitting basis employed in previous studies. The
numerical breakdown of the bond length, dipole moment, and
potential energy change of a semiconductor quadrant into parts
associated with the cation and the anion is given in detail in
Table VIII.

With knowledge on the formation of the quadrant dipole
from the perspective of energy minimization in hand, we can
now consider how BOs are influenced by lattice relaxation.
The surprising discovery is that upon energy minimization,
the charge density within some neutral region, or neutral
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FIG. 16. Dipole moment accumulated from the cation end of selected (a) III-V semiconductors and (b) II-VI semiconductor ZB quadrants,
calculated at the equilibrium lattice parameter of each semiconductor. For clarity, curves have been vertically shifted.

polyhedron, up to the covalent radius in bond directions, of
each cation or anion appears to converge toward some individ-
ually optimized spatial distribution, as reflected by a distinctive
dipole moment in the quadrant. This simple outcome in the
distribution of charge clearly originates from complex laws
of quantum physics that govern the formation of energy-
minimized charge density not only in bulk semiconductors
but in all electronic systems. It is thus expected that even when
bonds are relaxed out of tetrahedral directions, the neutral
polyhedra around cations (anions) will still approximately
maintain the same spatial distributions, as found to energy
minimize the bulk semiconductors. The usual view of the
lattice relaxation process is “the approximate restoration of
interface bonds to their optimal lengths,” which is also a feat
that is automatically achieved if the neutral polyhedra around
each cation and anion are allowed to approximately reach
their respective covalent radii in bond directions. Therefore,

a proposal that would simultaneously permit the relaxation of
atomic positions toward optimal length for interface bonds and
would allow the electrons at a relaxed interface to distribute
in a manner that minimizes its energy is to let the charge
distribution within the neutral polyhedra around each cation
and anion (at the interface) to approximately remain bulklike.

Rooted in the minimization requirement for the interface
energy, the above assumption can serve as the underpinning
for a simple theory for the formation of BO at both relaxed and
unrelaxed heterojunctions. Basically, the charge distribution
at any heterojunction can be regarded as being put together
with neutral polyhedra, which are volumes around ionic
positions that are each electrically neutral. An example of
a neutral polyhedron about a cation, obtained by dissecting
all four quadrants of this cation at the neutral plane of
each quadrant and keeping only the parts belonging to
this cation, is shown in Fig. 2(d). The shape of neutral

FIG. 17. Accumulated dipole moment curves of the ZB semiconductors from Fig. 16, redisplayed with the neutral point for each quadrant
shifted to origin. For clarity, the end points of each curve are marked by dots. (a) III-V semiconductors; (b) II-VI semiconductors.
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TABLE VII. The distance from an atom to the neutral point of the quadrant (nm), determined from the present paper. Comparison is made
with the covalent radius (C. R., in nm) fitted in single-bond molecules (Ref. [70]) and solids (Ref. [71]), and from analysis of the Cambridge
Structural Database (Ref. [69]).

Element Neutral Length (This Work) Single-Bond C.R. Solid C.R. Cambridge Database C.R.

Al 0.125 0.126 0.129 0.121
Ga 0.122 0.124 0.128 0.122
In 0.138 0.142 0.146 0.142
Be 0.102 0.102 0.106 0.096
Mg 0.135 0.139 0.141 0.141
Zn 0.123 0.118 0.130 0.122
Cd 0.139 0.136 0.148 0.144
Si 0.118 0.116 0.118 0.111
Ge 0.123 0.121 0.123 0.120
P 0.115 0.111 0.108 0.107
As 0.122 0.121 0.117 0.119
Sb 0.140 0.140 0.136 0.139
S 0.113 0.103 0.104 0.105
Se 0.123 0.116 0.115 0.120
Te 0.141 0.136 0.134 0.138

polyhedra created by this method is topologically related
to the proximity cell previously proposed as a convenient
charge analysis tool [43]. Each neutral polyhedron at the
interface has a size and an internal distribution of charge
that approximately replicate these characteristics of neutral
polyhedra in bulk semiconductors. For bulk semiconductors,
each neutral polyhedron has vanishing net charge and net
dipole, the latter because of crystal symmetry. While the
idea of stacking neutral polyhedra to construct a model for
the heterojunction charge density appears to be chemically
sound and practically straightforward, the actual execution
is made nontrivial by lattice relaxation. With relaxation in
atomic positions, the quadrants at the interface are distorted,
and the electrostatic effect of quadrants becomes inaccurate.
For example, a change in bond angle leads to a difference in the
potential drop across a layer of quadrants, even if the charge
distribution in each quadrant remains unchanged. Furthermore,
the shift in atomic positions usually makes the total volume of
the interface region different from the sum of all neutral regions
to be stacked at the interface. Some overlaps or gaps between
neighboring neutral polyhedra are therefore unavoidable for
relaxed interfaces. However, because any neutral region to
be stacked at the interface is already spatially extended to
the ionic radius of the ion it houses, the distance in bond
directions between the cation-anion pair is automatically set
at the nominal equilibrium bond length, as stacked. As a
result, along bond directions there would be little overlap
or gap between neutral polyhedral, and mismatches between
geometrical facets of the stacked neutral polyhedra would
be mostly in peripheral areas away from the main skeleton
of the network of bonds. Charge rearrangement away from
the bonds is not expected to have a significant effect on the
overall potential drop across the stacked interface. Therefore,
no major problems are anticipated with the use of stacked
neutral polyhedra even in the presence of lattice relaxation.

The practical determination of the VBO from a model
of stacked neutral polyhedra is mathematically trivial, as it
involves only analysis of the charge density of bulk semicon-

ductors. The division of a potential drop or VBO into two parts
that each depends only on one of the semiconductors requires
that each part be electrically neutral. One notes that the density
of a bulk semiconductor can be completely constructed from
stacking neutral polyhedra of its constituent ions together. The
neutrality of all the building blocks used in such a construction
guarantees that any such model solid will be overall neutral
and will be neutral on of all its surfaces. Furthermore, because
of the absence of a dipole moment for neutral polyhedra at
either cation or anion site, all model solids constructed from
neutral polyhedra have the same average potential energy
irrespective of the exposed species, orientation, or presence
of steps on any of the surfaces. Model solids constructed
from neutral polyhedra offer a convenient method, through
NPT, to estimate the BO of ZB heterojunctions. The VBM
position for a model solid constructed with neutral polyhedra
is obtained by simply shifting the VBM position for the
CWS (or AWS) terminated surface, tabulated in Table I, by
the potential energy difference across a layer of the anion
(or cation) portion of quadrants, tabulated in Table VIII. For
example, the VBM for polyhedra-stacked surfaces of AlAs
is 9.957 (Table I) – 12.691 (Table VIII) = –2.734 eV. This
and the NPT VBM positions for other semiconductors are
shown in Table VIII. The difference in the NPT VBM values
of two isovalent semiconductors is the VBO corresponding to
the charge density of the heterojunction interface, as stitched
from densities of neutral polyhedra. These predictions from the
NPT for relaxed heterojunctions are compared with the results
of first-principles calculations in Table VI, which shows that
additional charge rearrangement leads to adjustment in the
final VBO of typically less than ∼0.2 eV from that of the
as-stitched configuration. Because the NPT VBM is a bulk
property of the semiconductor, the predicted VBO from the
NPT is independent of the orientation of the heterojunction
or the identity of the interface bonds at polar interfaces,
which is largely in agreement with results of experiments and
ab initio calculations. The NPT is similar in spirit to the model
solid theory for BO formation [19], previously constructed by
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TABLE VIII. Breakdown of bond length, dipole moment, and potential energy properties of a semiconductor quadrant into neutral parts.

Distance Distance Cation-Neut. Anion-Neut. Cation-Neut. Anion-Neut. NPT
Cation-Neut. Anion-Neut. Potential Potential Dipole Moment Dipole Moment VBM

Semiconductor (nm) (nm) Energy (eV) Energy (eV) (e�nm) (e�nm) (eV)

BN 0.084 0.073 13.999 17.683 − 0.0439 − 0.0555 − 0.006
BP 0.083 0.113 8.994 18.742 − 0.0440 − 0.0916 − 0.772
BAs 0.089 0.118 8.244 17.975 − 0.0451 − 0.0983 − 0.898
BSb 0.088 0.133 7.117 18.214 − 0.0446 − 0.1143 − 0.747
AlN 0.120 0.076 13.634 11.565 − 0.0667 − 0.0565 − 2.938
AlP 0.124 0.112 9.505 12.827 − 0.0676 − 0.0912 − 2.792
AlAs 0.126 0.119 8.889 12.691 − 0.0681 − 0.0973 − 2.734
AlSb 0.127 0.137 7.676 12.832 − 0.0681 − 0.1139 − 2.489
GaN 0.114 0.082 13.170 11.662 − 0.0644 − 0.0570 − 2.191
GaP 0.121 0.115 9.075 13.006 − 0.0645 − 0.0924 − 2.489
GaAs 0.123 0.123 8.460 12.867 − 0.0649 − 0.0986 − 2.377
GaSb 0.123 0.141 7.289 13.014 − 0.0647 − 0.1155 − 2.321
InN 0.136 0.080 12.552 9.734 − 0.0745 − 0.0578 − 2.589
InP 0.137 0.117 9.006 11.242 − 0.0743 − 0.0927 − 2.805
InAs 0.139 0.125 8.404 5.655 − 0.0746 − 0.0990 − 2.828
InSb 0.139 0.141 7.365 11.493 − 0.0740 − 0.1155 − 2.675
Si 0.118 0.118 11.369 11.369 − 0.0808 − 0.0808 − 1.984
Ge 0.123 0.123 10.779 10.779 − 0.0826 − 0.0826 − 1.734
BeS 0.100 0.111 6.443 17.941 − 0.0366 − 0.1018 − 3.251
BeSe 0.102 0.121 5.844 17.745 − 0.0369 − 0.1122 − 2.976
BeTe 0.105 0.141 4.917 17.397 − 0.0377 − 0.1334 − 2.869
MgS 0.134 0.111 6.666 13.239 − 0.0511 − 0.1015 − 4.437
MgSe 0.134 0.120 6.165 13.512 − 0.0508 − 0.1114 − 4.134
MgTe 0.138 0.140 5.270 13.403 − 0.0520 − 0.1322 − 3.990
ZnS 0.123 0.113 20.219 14.461 − 0.1437 − 0.1028 − 3.688
ZnSe 0.123 0.123 18.696 14.741 − 0.1433 − 0.1130 − 3.373
ZnTe 0.123 0.141 16.137 15.070 − 0.1432 − 0.1338 − 3.172
CdS 0.140 0.114 21.571 12.493 − 0.1779 − 0.1030 − 3.992
CdSe 0.139 0.125 19.999 12.771 − 0.1775 − 0.1133 − 3.772
CdTe 0.138 0.142 17.618 13.322 − 0.1770 − 0.1339 − 3.494

superposition of atomic densities [73]. An important difference
is that the NPT actually employs/generates the equilibrium
charge density for bulk semiconductors and heterojunctions.

Although the NPT yields reasonable estimates of VBO,
the simple picture upon which such a theory is envisioned
to work is not fully accurate. In reality, lattice relaxation at
the heterojunction interface involves multiple layers of atoms,
and the lengths of bonds at the interface do not necessarily
attain their bulk bond lengths. These obvious shortcomings
notwithstanding, NPT has the conceptual advantage that it is
based on an electron density that approximately minimizes
the energy of the heterojunction interface with a relaxed
structure that is approximately optimized. One improvement
of the NPT that may be easily included would address
the disparity in charge densities on the surfaces of neutral
polyhedra from different semiconductors. Similar in nature to
a problem previously treated for alloys [74,75], such an abrupt
discrepancy along the length of a bond will smooth out and
in the process cause a shift in the over potential difference
and VBO. By assuming the charge difference to dissipate
over ∼1/2 of the bond length, such corrections are less than
∼0.15 eV for the heterojunctions presently studied. As shown
in Table VI, the agreement between NPT and supercell VBOs
improves with this correction for some of the heterojunctions.

In keeping with the experimental observation of an approx-
imately bulklike dependence in semiconductor heterojunction
BO, previously proposed models for the formation of BO
have been essentially based on some chosen properties of
bulk semiconductors. These properties vary from energy levels
(CNL [21,25], orbital energy [23], bond energy [24,26],
deep level energy [22,76], etc.) in the bandgap of the bulk
semiconductor to the average potential energy of model
solids based on atomic densities [18,19], interstitial position
[13], bond point-charge [58], and WS cell [20] of the bulk
semiconductor. The difference in the reference energies of
the two bulk semiconductors then gives the prediction of
BO for the heterojunction in these models. Because of the
intimate connection between the BO and the interface charge
distribution outlined in Eq. (1), the most conservative inter-
pretation of the experimentally observed bulklike behavior
of the VBO is that the difference in the average potential
energy across a heterojunction is independent of interface
specifics. The experimental observation of the transitivity
rule for some heterojunctions then suggests the possibility
that the change in potential energy across a heterojunction
might be attributable to the difference between two reference
potential energies, each representing only one semiconductor.
Furthermore, the reference potential energy for one bulk
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semiconductor would remain the same, irrespective of the
semiconductor partner it forms heterojunction with. For such
a scenario to work, each of the semiconductor references or
surfaces has to be electrically neutral. Model solids previously
constructed with atomic densities or CWS density satisfies the
neutrality requirement but are either a crude approximation
of the equilibrium bulk charge density [19] or work only
on unrelaxed heterojunctions with a common anion [20].
The detailed analysis of the present paper suggests an NPT
based on an electron density that approximately minimizes
the interface energy with relaxed atomic structure. With it,
the insensitivity of VBO to interface specifics at relaxed
heterojunctions is also naturally explained. The connection
discovered between the NPT and the established concept of
covalent radius in chemistry corroborates the appropriateness
of this natural choice of model solid. It may appear at
first that the procedures presently used to construct model
solids in the NPT are limited to semiconductors with the ZB
structure and to isovalent heterojunctions. However, there are
counterindications. Although the idea emerges from analysis
of isovalent ZB heterojunctions, the usefulness of a bulk
reference based on neutral polyhedra of equilibrium bulk
charge density goes beyond these examples and may apply
also to ionic (oxide) semiconductors, an issue we hope to
investigate further [57].

The discovery of a method to construct semiconductor
solids from neutral polyhedra is not an explanation of, but
rather a result of, the underlying physics and chemistry
responsible for the bulklike behavior of heterojunction BO
observed experimentally. The main reason that NPT, or other
model solid theories, can provide reasonable estimates of
BO values obtained from experiment or from first-principles
calculations is the absence of significant charge rearrangement
at the actual heterojunction interface from the assumed,
stitched bulk charge densities. As shown throughout this paper,
the equilibrium electron density at a (neutral) heterojunction
is found to be dominated by local atomic arrangement
and therefore is essentially replaceable with the equilibrium
electronic density of other (e.g., bulk, LEGO) electronic
systems containing the same local atomic arrangement. This
close relation between the electron density and the local atomic
structure is in good agreement with both the concepts and the
practical results of DFT and, certainly for the ZB crystals
discussed here, also in good agreement with the concept of
bond formation in TB theory.

In principle, the formation of BO at a heterojunction
interface can be an intractable process as it involves the
equilibration of dissimilar charge densities across an interface,
along with the relaxation of atomic positions to minimize the
energy. In practice, two factors greatly simplify the situation:
(a) a strong influence on the electron density by local atomic
arrangement, thus minimizing the extent of charge rearrange-
ment; (b) a separability of the electrostatic effects due to cation
and anion at the neutral point (covalent radius) in a quadrant,
thus accounting largely for the effect of lattice relaxation.
The combination of these factors makes the prediction of
the BO from an interface charge density a manageable task.
This same combination underpins the apparent insensitivity
of the VBO to the orientation, atomic structure, etc. of the
interface. Therefore, the apparently bulklike behavior of the

VBO originates from the nonbulklike process of charge density
equilibration that depends sensitively on the interface atomic
structure and other specifics of the interface. This energy
minimization process follows the same rules that all other
solid and molecular systems follow. Therefore, a significant
advantage of the present approach is that there is no need
to invoke mechanisms that are specific to semiconductor
interfaces.

VII. SUMMARY AND CONCLUSIONS

Because of the strict dependence of the BO of a hetero-
junction on the distribution of charge at its interface, the
formation of BO must be governed by the physical law that
controls the charge distribution, namely, energy minimization.
The most straightforward approach to model the BO along
that rigorous line of thought would begin with a modeling
of the energy-minimized charge density of heterojunctions.
However, without detailed knowledge on the commonalities
of equilibrium densities at semiconductor interfaces, such an
approach seems intractable and indeed has not been attempted
before. On the experimental side, investigations have found
a bulklike behavior of heterojunction BOs, as reflected in
the insensitivity of BO to interface orientation and atomic
arrangement and the occasional observation of the transitivity
rule for BOs of different heterojunctions. On the face of it, the
insensitivity of BO to interface specifics seems at odds with
mechanisms that are sensitive to the interface charge density
and thus has instead inspired suggestions and models that some
reference point, e.g., CNL, in the band structure of individual
bulk semiconductor drives the formation of BO. The CNL
concept has been in wide and frequent use despite the lack
of explicit connections between CNL and interface energy.
Considerations from TB and DFT concepts make it plausible
that the regularity in the charge distributions of semiconductors
in the ZB structure may be carried over to the charge densities
at their heterojunction interfaces.

First-principles methods have been employed here to
calculate the electronic structure of lattice-matched, relaxed
and unrelaxed supercells, oligo-cells, and bulk semiconduc-
tors in the ZB structure. The results show that the direct
approach to understand BO formation, that of modeling the
equilibrium charge densities of isovalent heterojunctions, is
actually manageable once the equilibrium charge densities
in various structures are carefully analyzed, compared, and
understood. To facilitate analysis of charge density, the semi-
conductor volume is divided into subvolumes, or quadrants,
that are individually neutral, each housing one sp3 bond.
A comparison of quadrants of a specific cation-anion pair
taken from different locations of a structure or from different
structures shows that the charge distribution inside a quadrant
is nearly independent of the chemical identities of its neighbor
quadrants. Therefore, charge distributions in all quadrants of
the same cation-anion pair are largely interchangeable. This
observation suggests that the equilibrium electron density
distribution in these ZB materials is predominantly dependent
on the immediate, local atomic structure and raises the
possibility that the equilibrium charge densities at hetero-
junction interfaces may be modeled piecemeal with charge
distributions found in bulk semiconductors and oligo-cells.
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Indeed, attempts to juxtapose electron densities extracted
from bulk semiconductors and oligo-cells were found to
reproduce the electron density and VBO calculated from first
principles very well for all heterojunctions of different varieties
presently investigated. Modeling with densities extracted
from only bulk semiconductors, e.g., CWS stitching and 1Q
stitching, produce reasonable estimates of the heterojunction
densities, although mismatches at these stitching boundaries
are noticeable, likely as the result of interactions, ignored
in such stitching schemes, between neighboring quadrants
of different chemical identities. The more significant of the
interquadrant interactions can be accounted for in the modeling
process by employing oligo-cells, from which equilibrated
neighboring quadrants of different chemical identities are
extracted together. As expected, the use of LEGOs, e.g.,
through “1 1”, “2 2” stitching, etc., significantly improves
the agreement between simulated and calculated densities for
various heterojunctions. When interactions between adjacent
quadrants, previously referred to as second nearest neighbors,
are included, heterojunction charge densities for unrelaxed
interfaces are accurately reproduced by LEGO stitching.

For relaxed interfaces, equilibrium charge densities are
also very well simulated, with oligo-cells that include only
small portions that are unrelaxed. These findings reinforce
the ideas that energy minimization governs the distribution of
charge and the formation of VBO at heterojunctions and that
the charge distribution (in these structures) is dominated by
atomic arrangement in its close proximity. The localness in
the dependence of the charge density on atomic structure also
manifests itself in calculated VBOs that are insensitive to the
orientation of the heterojunction or the identity of the interface
bonds, in agreement with experiment. Such a behavior in BO
has been described as bulklike previously.

A systematic analysis of the charge distribution in bulk
semiconductors reveals a remarkable separability of the elec-
trostatic effect of quadrant into two neutral and transferable
parts, associated with the cation and the anion of the quadrant.

When a semiconductor quadrant is divided by a plane, oriented
perpendicular to the axial (cation-to-anion) direction and po-
sitioned such that the net quadrant charge on either side of the
plane vanishes, the charge distribution on the anion side of the
cut quadrant has a net dipole moment that is nearly independent
of the identity of the cation in the quadrant, and vice versa. The
bulklike behavior is easily accounted for by the separability
in quadrant charge distribution, and the latter is another, more
extreme, example of the localness, or nearsightedness [67], in
the dependence of the equilibrium charge density on atomic
structure. The plane that partitions a semiconductor quadrant
into two neutral parts happens to be a distance of approximately
the anion (cation) covalent radius away from the anion (cation).
Use of these planes, in addition to the quadrant boundaries,
divides a ZB crystal into neutral polyhedra centered about
every anion and cation, with minimum radius corresponding
to the covalent radius of the ion, which stack seamlessly into
the entire volume and charge distribution of the crystal. An
approximate view of the formation of equilibrium density in
bulk semiconductors, oligo-cells, and heterojunctions of the
ZB structure, in light of the localness of the density-structure
dependence, is that the charge distribution inside each of the
polyhedra largely depends only on the identity of its center
ion. This simplification leads to a NPT, based on the charge
distribution that minimizes the interface energy, which allows
the VBOs of relaxed and unrelaxed heterojunctions to be
well estimated. These results identify the bulklike behavior
observed for semiconductor heterojunctions as a result of the
very local dependence of the charge density on atomic structure
and, more importantly, reaffirm the main message here that the
formation of BO is governed by energy minimization.
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