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We consider quantum point contact (QPC) defined within a disordered two-dimensional electron gas as studied
by scanning gate microscopy. We evaluate the conductance maps in the Landauer approach with a wave-function
picture of electron transport for samples with both low and high electron mobility at finite temperatures. We
discuss the spatial distribution of the impurities in the context of the branched electron flow. We reproduce
the surprising temperature stability of the experimental interference fringes far from the QPC. Next, we discuss
funnel-shaped features that accompany splitting of the branches visible in previous experiments. Finally, we study
elliptical interference fringes formed by an interplay of scattering by the pointlike impurities and by the scanning
probe. We discuss the details of the elliptical features as functions of the tip voltage and the temperature, showing
that the first interference fringe is very robust against the thermal widening of the Fermi level. We present a
simple analytical model that allows for extraction of the impurity positions and the electron-gas depletion radius
induced by the negatively charged tip of the atomic force microscope, and apply this model on experimental
scanning gate images showing such elliptical fringes.
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I. INTRODUCTION

Scanning gate microscopy (SGM) is an experimental
technique which probes the transport properties of systems
based on a two-dimensional electron gas (2DEG) using the
charged probe of an atomic force microscope (AFM) [1–3].
A negatively charged AFM tip induces a finite-size depletion
in the 2DEG, which acts as a movable scatterer of size and
location controlled by the voltage applied to the SGM tip and
its position above the sample [4]. The SGM technique was
used first to investigate the electron transport in quantum point
contacts (QPCs) [5]. The SGM conductance maps recorded
as a function of the tip position in the vicinity of a QPC
contain two characteristic features: (i) interference fringes with
oscillation period equal to half the Fermi wavelength λF [6–12]
and (ii) semiclassical branched flow of electron trajectories
[9,13–15]. The fringes (i) arise from the coherent interference
between the electron waves incident from the QPC and
backscattered by the SGM tip [9,16]. The branched flow (ii)
stems from the smooth potential disorder in the high-mobility
semiconductor structures [9]. For low-mobility samples, the
hard-impurity scattering is dominant and leads to coherent
fringes which are surprisingly thermally stable, with the
interference pattern visible at a distance from the QPC which
largely exceeds the thermal length λth [6,7,9]. This surprising
behavior is explained [6,7,9] by coherent scattering involving
the tip and nearby impurities spaced by a distance below λth.

In this paper, we consider numerical simulations of a
coherent branched flow of electrons spreading from a QPC. We
study the effect of smooth and hard impurities on the transport
for both low and high density of scatterers, i.e., for high- and
low-mobility samples, respectively. For low-mobility samples,
most of the features visible in the experimental SGM images
can be explained in terms of a one-dimensional (1D) model

of the branch, including (i) thermally persistent fringes visible
at T � 4 K, (ii) reappearance of fringes in some part of SGM
images far from the QPC, and (iii) frequency of the fringes
near the impurities that changes with T . We discuss splittings
of the branches at some defects and funnel-shaped features
that accompany the splitting.

We also consider high-mobility samples and indicate, by
both experiment and theory, distinct signatures of a few hard
scatterers present within the system that produce pronounced
elliptical features in the SGM conductance maps. These ellip-
tical features result from interference involving both the scat-
terer and the tip and remain stable up to at least T � 4 K. We
provide a simple model to describe these nearly elliptical con-
tours which allows one to indicate the position of the scatterer
within the sample, and the size of the area depleted by the tip.

II. MODEL

We consider a 2DEG system with a local constriction
formed by the QPC (Fig. 1). The electrons are fed from
the input lead at the left of the QPC. Behind the QPC, the
electrons propagate freely, with open boundary conditions
denoted by arrows at the blue edge of Fig. 1(a). We consider
the scattering of the Fermi-level electrons solving the effective-
mass Schrödinger equation (atomic units are used)

− 1

2meff
∇2� + Vtot� = EF�, (1)

where � ≡ �(x,y) is the two-dimensional scattering wave
function with density ρ = |�|2, and meff = 0.067 is the GaAs
electron effective mass. In Eq. (1), Vtot = VQPC + Vtip + Vdis

contains contributions of all possible sources of electrostatic
potentials considered in this paper. We assume EF = 15 meV,
which corresponds to 2DEG density of 4.2×1011 cm2. VQPC
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FIG. 1. (a) The sketch of the system. The loop marked by the black arrow schematically shows the scattering process leading to the λF/2
fringes in SGM images. The brown map shows the calculated scattering electron density plotted as

√
ρ. Disordered potential landscape in the

sample near QPC for the case of (b) smooth impurities and (c) hard impurities. White solid lines in (b) and (c) show the isolines of the potential
energy for eVtot = EF. The QPC is tuned to the first plateau.

is the QPC electrostatic potential modeled with the Davies
formula [17] for a finite rectangular gate [green rectangles on
Fig. 1(a)],

VQPC/Vg = g(x − L,y − B) + g(x − L,T − y)

+ g(R − x,y − B) + g(R − x,T − y),

where g(u,v) = 1
2π

arctan ( uv
dP

); P = √
v2 + u2 + d2, with L,

R, B, and T being the left, right, bottom, and top position of
the gate edges [see Fig. 1(a)]. We choose the distance between
2DEG and gates to be d = 50 nm. In the above formula, Vg is
the gate potential. For the applied parameters, the Fermi energy
EF = 15 meV corresponds to the first conductance plateau of
the QPC. Vtip is the electrostatic potential of the charged tip,
for which we use the Lorentzian approximation,

Vtip = d2
tipVt

(x − xtip)2 + (y − ytip)2 + d2
tip

. (2)

The Lorentzian form of the tip potential arises due to screening
by the electron gas inside the heterostructure [18–20]. The
width of the tip is of the order of the tip-2DEG distance
and fixed at dtip = 80 nm. The maximum potential change Vt

induced by the tip in the 2DEG is taken to be 30 meV (except
otherwise stated), corresponding to a depletion area of radius
dtip. This simple form of tip potential corresponds to the case of
linear screening by the 2DEG electrons [18,19], while the more
complicated case with 2DEG depletion (i.e., when Vt > EF)
would require self-consistent numerical calculations. Finally,
the last contribution to the potential, Vdis, arises from the
disorder in the donor layer and it is assumed to be a
superposition of uniformly distributed Gaussian functions,

Vdis(x,y) =
Ndis∑
i=1

αie
−|r−ri |2/2σ 2

,

where Ndis is the number of impurities, αi is the potential
amplitude of the ith impurity, ri is the center of the ith Gaussian,
and the same σ is applied for all Gaussians. The random
positions of ri are generated with a uniform distribution. The

values of αi are generated also with a uniform distribution
within the range |αi | < Vmax. In the paper, we distinguish
between hard and soft impurities. For the hard impurities, we
take Vmax = 0.3 × EF, αi > 0, and σ = 12 nm, while for the
soft impurities, σ = 30 nm and Vmax = 0.05 × EF are applied.

We use the finite-difference discretization of Eq. (1)
and wave-function matching (WFM)—described in the
Appendices—in order to include the effect of the leads into the
Hamiltonian and calculate the scattering amplitudes [21–23].
The conductance of the system is then calculated from the

FIG. 2. (a) Square root of scattering electron density
√

ρ for the
case of smooth impurity background potential. (b) Simulated dG/dx

SGM image. (c),(d) Same as (a) and (b), but for hard impurities.
Squares in (c) and (d) denote the funnel-like fringe pattern discussed
in the text. In (c) and (d), we considered Nd = 500 impurities within
the entire computational box. In (a) and (b), we kept all of the
impurities of (c) and (d) and inserted another 500 placed at random
positions.
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FIG. 3. Zoom of area denoted by “Fig. 3” square in Fig. 2(d).
Points A, B, and C denote the possible tip positions of the scattering
scenario schematically presented in Figs. 4(b), 4(c), and 4(d),
respectively. Black dots represent the centers of the hard scatterers
from Fig. 2(d). Panel (a) shows the square roof of the scattering
density, and (b) the derivative of the conductance with respect to the
tip position.

Landauer formula,

G(EF,T ) = G0

∫ +∞

−∞
dEM(E)

[
−∂f (E; EF,T )

∂E

]
, (3)

where f (E; EF,T ) = 1/{exp [(E − EF)/kBT ] + 1} is the
Fermi-Dirac distribution, M(E) = ∑M

i=1 Ti(E) is the total
transmission summed over all incoming modes in the input
lead, and G0 = 2e2/h is the conductance quantum.

III. RESULTS

A. Effect of disorder on the SGM maps

In Fig. 2(a), we show the scattering electron density for the
smooth disorder at T = 0 K with dG/dx depicted in Fig. 2(b).
A branched flow is formed far from the QPC with well visible
λF/2 fringes [9]. Near the QPC, characteristic circular fringes
[16] appear due to the standing wave between the QPC and
the tip [see the backscattered trajectory in Fig. 1(a)]. Smooth
defects lead to small-angle scattering and the branched flow
remains straight over large distances. This kind of flow is found
in the high-mobility samples [9].

Figure 2(c) shows the scattering electron density for the
case of hard impurities. The potential centers (white dots) are
superimposed on the electron density image in order to show
the relation between the location of branches and impurity
distribution within the sample. From this image, one notices
that the two main branches are formed along the lines with a
lower impurity density [one of those branches is denoted by
the black arrow in Fig. 2(d)]. Not every impurity splits the

electron flow in branches and the current passes across some
of them.

Aside from the two dominating branches in Fig. 2(c),
one can see a number of characteristic funnel-shaped fringe
patterns denoted by the squares. Those patterns accompany
the splitting of the electron density in two branches by a
hard impurity in the branch. This process is schematically
presented in Fig. 4(a) and can also be noted in Fig. 3(a).
Due to the finite size of the obstacle, the electron has to flow
around, which leads to the funnel-shaped local widening of
the branch near the impurity. In the presence of the SGM tip,
the electron waves can be backscattered within the funnel area
[see Figs. 4(b) and 4(c)], which results in the characteristic
circular fringes visible in Fig. 3(b). At some point when the tip
depletion area does not block both parts of the split branches,
backscattering is reduced and circular fringes disappear from
the SGM images. The funnel-shaped fringe patterns are also
visible in the experimental images, e.g., see Fig. 2(b) of
Refs. [24] and [7]. Let us note that by analyzing the size
of the circular fringes, one may roughly estimate the depletion
radius ddepl induced by the SGM tip, as the distance between
the funnel focal point and the last fringe in the funnel, i.e.,
the distance between tip location inducing the flow depicted
in Figs. 4(b) and 4(d) (or points A and C in Fig. 3). From
Fig. 3(b), we get an approximated value of depletion radius
ddepl ≈ 120 nm. This value is of the order of the one obtained
from condition EF = Vtip, which is

ddepl = dtip

√
Vt

EF
− 1 = 80 nm. (4)

B. Thermal stability of the fringes

One of the most unexpected features of the branched flow
in the disordered samples is the stability of the interference
fringes against thermal broadening, which allows for observa-
tion of the fringes at several microns from the QPC at T = 4 K,
when the thermal length is only lth = 2π�

2

mλFkBT
= 400 nm [6,7,9].

In Figs. 5(a)–5(c), we show the simulated SGM dG/dx maps
for a system with hard impurities at T = 0, 1, and 4 K. The
calculations here as well as subsequent later calculations are
performed for a slightly smaller system than in Fig. 2 and the
positions of the scatterers are changed, hence the difference in
the SGM images.

Comparing both Figs. 5(c) and 5(d), one can see that the
persistence of the interference fringes at high temperatures at
large distances is directly caused by the disorder within the
sample [6,7]. Additionally, a few other features can be found

FIG. 4. Sketch of the scattering process leading to the funnel-shaped fringes in the SGM images. (a) Branched flow around impurity without
SGM tip. (b) Tip is above impurity; (c) at the widest branch point when the tip still closes both paths; and (d) when the tip deletion area leaves
the funnel-shaped branch around the impurity. The ddepl is the radius of the area depleted by the SGM tip.
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FIG. 5. (a)–(c) Simulated SGM images in the presence of disorder
obtained at (a) T = 0, (b) T = 1, and (c) T = 4 K. (d) Same as (c),
but without disorder. The quantity dG/dx is plotted in arbitrary units.

in the SGM images: (i) interference fringes are perpendicular
to the flow direction, (ii) at 4 K, some fringes disappear for
a short distance to reappear at a further distance, and (iii) in
general, the fringe period is not uniform.

For the current flowing in branches, the transport across
the 2D system can be reduced to the 1D scattering system
provided that the current leakage from the branch and the
branch splittings are neglected. We found that the observed
features of the branches can be explained within a model
in which the electron branch is treated as a one-dimensional
electron channel. The perpendicular orientation of the fringes
inside the branch is implied—see Appendix B.

FIG. 7. (a) The temperature evolution of the dG/dx scan from
Fig. 6(d). (b) Same as (a), but for narrower SGM potential width
dtip = 5 nm.

In Fig. 6(a), we show a 1D representation of a “clean”
branch. An electron with kinetic energy EF = 3 meV is
incoming from the left reservoir and scatters on the QPC and
SGM tip potentials inside the channel. We set Vt = EF. The
calculated SGM signal dG/dx is presented in Fig. 6(b) for
T = 0 and 1 K. For T = 1 K, the interference fringes disappear
as functions of tip position along the branch, which results
from the finite width of the transport window near the Fermi
level. The simulation for a single impurity within the channel
[Fig. 6(c)] shows that the interference fringes reappear around
the impurity [Fig. 6(d)]. This is possible when the distance
between the SGM tip and the impurity becomes smaller than
the thermal length [9]. The measured current is then sensitive
to the interference which takes place far from the QPC; thus
the presence of fringes in the SGM images at large distances is
evidence of nearby impurities. In Figs. 6(e) and 6(f), we show
that for a disordered channel, the fringes remain visible at large
tip distances for T = 1 K, which results from the multiple
scattering between tip and nearby impurities. This effect is
more dramatic in the case of 2D scattering, where for T = 4 K
in Fig. 5(c), the amplitude of the fringes at some points is
reduced almost to zero. One may note that at some points,

FIG. 6. (a) Potential-energy landscape for a clean 1D branch and (b) resulting dG/dx conductance for T = 0 and 1 K. (c), (d) Same as (a)
and (b), but for the case of one impurity inside the channel and (e), (f) for a large number of impurities. The blue profiles in (b), (d), and (f)
correspond to minus the x derivative of the local density of states (−dLDOS/dx) inside the branch without the SGM tip at T = 1 K.
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FIG. 8. (a) Simulated SGM image obtained for T = 0 and one hard impurity in the system with position denoted by a circle. (b) Same as
(a), but for T = 1 K and (c) T = 4 K. The smallest ellipse is calculated from condition rq−t−i − rq−i = λF/2. The middle ellipse is the smallest
one enlarged by ddepl along the normal direction. The largest contour is calculated from the correction on the finite size of the tip depletion
radius and the scattering angle from Eq. (6).

temperature does change the period of the fringes around the
impurities in Fig. 6(f); however, the period of the fringes in
the spatial derivative of the local density of states (LDOS)
without SGM tip [see blue lines in Figs. 6(b), 6(d), and 6(f)]
remains constant in comparison to the dG/dx signal. This
observation suggests that the change of the fringes’ period is
directly caused by the SGM tip itself. The nonuniformity of
the fringe spacing at finite temperature was experimentally
observed, for instance, in Fig. 4 of Ref. [8] and in Fig. 7 of
Ref. [25]. One should also note the high correlation between
dG/dx and dLDOS/dx in each of the cases in Figs. 6(b), 6(d),
and 6(f).

In Fig. 7(a), we show the temperature evolution of the
dG/dx scan from Fig. 6(d). Far from the QPC and the impurity
(located at x = 2500 nm), the decay of the interference fringes
with increasing T is well visible and the period of the fringes
remains constant. This is, however, not the case around the
impurity, since (1) we observe a rapid change of period with
T and (2) the amplitude of the fringes in the vicinity of the
impurity varies much slower than for usual fringes. The latter
feature is also visible in 2D simulations in Fig. 5. In Fig. 7(b),
we show the same scan as in Fig. 7(a), but for a narrower SGM
tip, i.e., dtip = 5 nm. Note that in this case, the position of the
impurity is almost undetectable, which shows the importance
of the spatial width of the SGM tip on the fringes’ period, i.e.,
only the wide tip does change the fringe frequency.

C. A single hard scatterer in a high-mobility sample

Another interesting and previously unexplored interference
scenario takes place in high-mobility samples when a small
number of hard impurities is present. In Figs. 8(a)–8(c), we
show SGM images for a single hard impurity within the device
(with position marked by the black dot) for temperatures
T = 0, 1, and 4 K. The characteristic quasielliptic fringes
visible in the SGM images can be explained as a result of the
interference between electron waves following two different
paths between the QPC and the impurity: (i) a direct path
of length rq−i and (ii) a path of length rq−t−i = rq−t + rt−i

induced by the reflection on the depleted area below the tip [see
Fig. 9(a)]. When the length difference is an integer multiple of
the Fermi wavelength, the interference is constructive at the
impurity location, resulting in a stronger backscattering and a
lower conductance. The resulting interference fringes can be
approximated as

G ∝ − cos[kF(rq−t−i − rq−i)]. (5)

The map calculated from Eq. (5) is presented in Fig. 9(b)
and it can be compared with Fig. 9(c), where we show the
SGM image calculated for a pointlike tip (dtip = 5 nm and
Vt = 5EF such that ddepl = 10 nm). The white dashed lines in
Figs. 9(b) and 9(c) represent the isolines for rq−t−i − rq−i =

FIG. 9. (a) Two paths which lead to the elliptic fringe pattern displayed in (b). The blue disk is the 2DEG depleted area beneath the tip.
The orange dot is the hard scatterer. The dashed lines show an effective shift of the tip position that is due to the finite size of the depletion area
and α is the angle of incidence of the electron wave to the depleted area. (b) The elliptic fringes obtained from Eq. (5). (c) The SGM image
obtained for a simulation using a pointlike tip potential with dtip = 5 nm and Vt = 5EF.
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FIG. 10. (a) Same as in Fig. 8(a), but dG/dx image. (b)–(d)
Scattering electron densities obtained for tip positions denoted by
crosses in (a). The white dot is the impurity and the red dot is the tip
position.

λF/2, i.e., the position of the tip leading to the first destructive
interference between the paths marked in Fig. 8(a).

In Figs. 10(c) and 10(d), we show the scattering probability
densities that are at the origin of subsequent interference
fringes visible in SGM images in Fig. 10(a) or in Fig. 8(a). The
circular fringes visible inside the ellipse [see Fig. 10(b)] are
characteristic of a clean impurity-free sample and appear for
the impurity hidden by the tip depletion area [as in Fig. 5(d)].
On the other hand, in Fig. 10(c), the tip is located in the shadow
of the impurity, which results in strongly suppressed fringes
since very small electron flow arrives to the tip and thus the
conductance map weakly depends on the tip position. In other
tip positions [as in Fig. 9(d)], the process involves both the im-
purity and the tip [cf. Fig. 9(a)] producing the elliptic fringes.

From Fig. 8(c), one can see that the elliptic pattern is
thermally more stable than the circular fringes which decay
rapidly with the distance to the QPC. The most stable elliptic
fringe is the one for which the length difference between two
paths in Fig. 9(a), rq−i − rq−t−i , is equal to half the Fermi
wavelength (λF/2 = 27.35 nm)—which is much shorter than
the thermal length.

In order to explain the exact position of the first elliptic
fringe, one needs to account for the finite size of the
depletion area and the electron incidence angle α to the
depletion area [see Fig. 8(a)]. Since the kinetic energy related

to the electron motion in the direction normal to the tip
equipotential lines is EF cos(α), the reflection point is located
at a distance drefl from the tip given by EF cos(α) = Vtip(r =
drefl) = eVtd

2
tip/(d2

tip + d2
depl). From this condition, one derives

the reflection radius,

drefl = dtip

√
eVt

EF cos(α)
− 1, (6)

which equals the depletion radius ddepl (4) for the normal
incidence, α = 0, but is much larger for higher incidence
angles. In Figs. 8(a)–8(c), three lines have been drawn on
the SGM images: (i) the solid line is an ellipse corresponding
to the first interference fringe for a pointlike tip potential and
denotes the first interference fringe [same as white dashed lines
in Figs. 9(b) and 9(c)]; (ii) the central ellipse corresponds to
the smallest ellipse simply enlarged by ddepl in the normal
direction; and (iii) the largest contour corresponds to the
smallest ellipse but enlarged by drefl from Eq. (6) in the normal
direction. This contour is no longer an ellipse and we refer to
this kind of curve as quasielliptic/ellipse (QE) in the following.
In order to fit this model to the SGM image, we have set
dtip = 75 nm in Eq. (6), which is about the nominal value of
80 nm. We have to slightly move the impurity location by
20 nm to the left, which is of the order of the impurity radius.
The idea of the incidence-angle-dependent penetration depth
was employed in a recent work of Ref. [26] in which the
authors analyzed small-angle scattering trajectories induced
by potential barriers lower than the Fermi energy.

Figures 11(a)–11(c) show SGM images for three hard
impurities in the system with a set of QE fringes. The dashed
lines show QEs obtained from Eq. (6) with dtip = 75 nm, which
agree with the value used in the simulation. Note that for a
few hard impurities, the SGM images resolve the QE fringes
resulting from separate interference scenarios.

D. Experimental maps for hard scatterers

For the experiment, we use the same series of samples
as in Refs. [4,27] for which the interference fringes between
the QPC and the tip—independently of the hard scatterers—
were reported previously at low temperature. The presence
of hard scatterers can be more easily identified in SGM
images recorded at a higher temperature, for which the
“clean” interference fringes disappear. In this section, we

FIG. 11. (a)–(c) Simulated dG/dx SGM images (in arbitrary units) similar to those in Figs. 8(a)–8(c), but for three hard impurities denoted
by dots. Dashed lines present the calculated position of the first fringe from Eq. (6).
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FIG. 12. (a) Experimental SGM image of the conductance as a
function of the tip position for a tip voltage of −6 V. (b) SGM image of
the transconductance, i.e., the response of the conductance to a 50 mV
ac modulation applied to the tip around its dc value of −6 V. The data
plotted in (a) and (b) are measured simultaneously. The origin of
the coordinates is the center of the QPC. (c) Numerical derivative of
(b) with respect to the horizontal axis, giving higher contrast to the
lines. (d) The dashed lines show the theoretical tip position of the
first fringe calculated for the three impurity positions indicated by
the dots (A,B,C) with Eq. (6) with eVt

EF
= 1.2 and dtip = 200 nm for

points A and B, and eVt

EF
= 1.5, dtip = 170 nm for point C.

illustrate the effects of single hard scatterers in a high-mobility
sample by discussing a SGM experiment performed at 4.2 K.
The QPC is defined in a 2DEG located 105 nm below the
surface of a GaAs/AlGaAs heterostructure. The 2DEG has a
2.5×1011 cm−2 electron density and a 1.0×106 cm2 V−1 s−1

electron mobility [4,27]. The QPC is defined by a Ti/Au split
gate whose rectangular gap is 350 nm wide and 200 nm
long. The device is mounted in a cryogenic scanning probe
microscope and cooled down to a temperature of 4.2 K. The
tip of the SGM microscope is a commercial platinum-coated
AFM tip fixed with silver epoxy to a tuning fork which is used
as the force sensor for topographic imaging. In the SGM mode,
the tip is scanned above the 2DEG with a constant tip voltage
of −6 V and a tip-to-surface distance of 35 nm. The QPC
gate voltage is kept fixed at −0.8 V in order to have the QPC
conductance equal to one conductance quantum 2e2/h when
the tip is far from the QPC. To enhance the sensitivity of the
measurement to small tip-induced effects, a small ac voltage
modulation is applied to the tip and the demodulated current
response gives a transconductance signal. The conductance
G = I ac/V ac

bias is measured with a 100 μV ac bias voltage
applied between source and drain, while the transconductance
δG = I ac/V dc

bias is measured with a 50 mV ac voltage applied
to the tip and a 150 μV dc bias voltage applied between source
and drain. The current flowing through the QPC is amplified

and the response to the ac excitation is measured with a lock-in
technique.

The SGM images plotted in Figs. 12(a) and 12(b) present
the conductance and transconductance signals as a function of
the tip position. The center of the QPC is located at coordinates
(0,0) as determined by SGM images recorded above the QPC
and higher tip-to-surface distance (data not shown). While the
conductance image simply shows the gating effect of the tip
on the QPC transmission, the transconductance image shows
several additional lines. The origin of these lines is attributed
to the presence of hard scatterers in the 2DEG, as discussed
above in Sec. III C.

In the following discussion, we assume that the lines arise
from a single hard scatterer, although we are aware of the
possibility that more impurities are involved. The dashed lines
in Fig. 12(d) show QEs fitted using Eq. (6) in which we employ
Vt

EF
= 1.2 and dtip = 200 nm for the impurities A and B. In

order to fit Eq. (6) to fringes originating from impurities A
and B, we set position of the QPC to rQPC = (50,−100) nm,
rA = (1260,920) nm, and rB = (1810,400) nm. Note that the
QPC position obtained from the fit is shifted with respect to
the center of the QPC [nominally (0,0)], which results from
the fact that the interference result from scattering between the
tip and the QPC gates—and not the QPC entrance [10]—and
thus the QPC focal point of the QE is not located at the
entrance of the QPC. At the scale of Fig. 11, the shift of
rQPC from the origin is small anyway. For the impurity C,
we get slightly different values, Vt

EF
= 1.5, dtip = 170 nm,

rQPC = (0,50) nm, and rC = (1210,140) nm. The difference
in the tip potential parameters may be due to the screening
of the tip by the gates (C is closer to the gates than A and
B). The observed number of impurities in the scanned area
1×1 μm gives impurity density nimp ≈ 3 ( 1

μm2 ), which can
be used to roughly estimate the electron mobility inside the
2DEG with semiclassical formula μ = qlp√

2mEF
= qλFlp

h
, where

lp = 1/nimpλF is the mean free path. The value of lp is
estimated from the semiclassical Broglie’s assumption of the
electron being a particle of diameter λF colliding with pointlike
scatters uniformly distributed in the sample. The approximated
expression for electron mobility reduces then to the simple
formula μ = q

nimph
≈ 0.8×106 cm2 V−1 s−1.

The evolution of the lines with the tip voltage is presented
in Figs. 13(a)–13(e). When the tip voltage is made more
negative, the lines move to larger distances from the QPC and
become wider in the transverse direction (smaller curvature).
This behavior is consistent with the simulations presented in
Fig. 8(c), where a larger depletion disk below the tip results
in a lower eccentricity of the QE lines. The dashed lines
in Figs. 13 show the results of Eq. (6) that are obtained
with increasing values of dtip = {165,205,235,260,280} nm
and ratio Vt

EF
= {1.19,1.22,1.3,1.4,1.45}, respectively. This

nontrivial evolution of the tip-induced potential parameters
(nonconstant dtip and slowly varying Vt ) reflects the complex
behavior of the nonlinear screening in the case of partial
depletion. We obtain a change of the tip radius to be about
∼30 nm for a 1 V change on the tip. In order to obtain a good
fit between the first QE lines and the analytical expression,
we shift the positions of the impurity in Figs. 13(b)–13(e)
(filled circles) with respect to the calculated position in the
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FIG. 13. Experimental SGM images of the transconductance for different tip voltages: (a) −4, (b) −5, (c) −6, (d) −7, and (e) −8 V. In
addition to the increasing gating effect, the lines due to the presence of hard scatterers moves to the right and change in curvature. Note that
these images have been recorded for a slightly smaller QPC transmission than in Fig. 12, resulting in a faster closing of the QPC channel. The
filled dots show the assumed position of the impurity, while the empty dots indicate the impurity position in (a). Dashed lines represent the
theoretical tip position of the first fringe calculated from Eq. (6).

first image of Fig. 13(a) (empty circles) by about (20,−20 nm)
per image. The reason for this shift may be caused by the drift
of the sample with respect to the tip position due to the long
acquisition time of 2 1

2 h per image.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have discussed the role of smooth
and hard impurities in the 2DEG on the SGM images.
We have shown that the funnel-like features that appear in
conductance maps result from the splitting of the branches by
hard impurities, and the position of the impurity is always
shifted in the SGM images due to the finite size of the
depletion area. We have shown that a 1D interpretation of
branches can be used to explain most of the features present
in the conductance maps, including their thermal stability.
Additionally, we have discussed that in the presence of a
small number of hard impurities in a high-mobility sample,
characteristic quasielliptic fringes can be found in the SGM
images even at reasonably high temperatures, ∼4 K. We have
explained those findings in terms of interference between two
paths involving both the tip and the impurity with length
difference of the order of λF/2. We have provided experimental
evidence for these interference processes as well as a simple
analytical formula which can be used to extract the position
of the impurity and to estimate the depletion radius due to
the tip. A reliable estimation of the depletion radius for fixed
SGM parameters needs to account for the dependence of the
effective width of the tip potential on the scattering angle.
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APPENDIX A: DESCRIPTION OF
THE NUMERICAL METHOD

We start from the derivation of the scattering boundary
conditions using the approach from Ref. [28]. Let us assume
that the simulated device can be approximated by tight binding,
such as Hamiltonian H . In our case, such Hamiltonian
is generated from a finite-difference approximation of the
derivatives of the differential operators in H [29]. Additionally,
we follow Ref. [21] and we divide the system into consecutive
slices H i connected by coupling matrices τ i , forming block-
tridiagonal systems of linear equations for the scattering wave
function c inside the system,

−τ i−1ci−1 + (EF − H i)ci − τ
†
i ci+1 = 0.

In the lead region (semi-infinite lead can be located in any part
of the system), the system is assumed to be homogeneous, and
thus one may drop the indices in the matrices and write

−τ ci−1 + (EF − H)ci − τ †ci+1 = 0, (A1)

which can be solved by Bloch substitution cn = λnu [21],
leading to quadratic eigenvalue equation for the transverse
modes [21,22],

−τu + λ(EF − H)u − λ2τ †u = 0,

which can be transformed to a generalized eigenvalue problem
(GEP) of double size,(

0 1
−τ EF − H

)(
u
λu

)
= λ

(
1 0
0 τ †

)(
u
λu

)
. (A2)

We solve it numerically by converting it to a standard
eigenvalue problem (SEP), since in our case τ † is invertible.
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If τ † is noninvertible or ill conditioned, one may use more
sophisticated methods which incorporate singular-value de-
composition (SVD) of the τ † matrix [30].

The eigenvalues of the equation above are then grouped into
incoming {λm,+,um,+} and outgoing {λm,−,um,−} modes, with
each propagating mode um,± (i.e., with |λm,±| = 1) normalized
to carry the unit value of quantum flux. For a more detailed
description, see [21].

The solution in the semi-infinite lead for the mth incoming
mode can be expressed in terms of superposition transverse
modes,

cn = λn
m,+um,+ +

N∑
k=1

rkλ
n
k,−uk,−, (A3)

where λn
m,+ is the Bloch factor [21] for the mth incoming mode

um,+ and N is the number of sites in the lead slice, i.e., the
size of the vector uk,±. Vector uk,− denotes the kth outgoing
mode. For a more detailed description of how the transverse
modes are calculated, see Ref. [21]. By choosing the frame
of coordinates such that i = 0 denotes the first slice in the
considered system, one may expand the wave function at this
slice in terms of transverse modes,

c0 = um,+ +
N∑

k=1

rkuk,−; (A4)

note that c0 is now a part of the discretized system. By
projecting 〈up,−| on Eq. (A4), we get

〈up,−|c0〉 = 〈up,−|um,+〉 +
N∑

k=1

rk 〈up,−|uk,−〉,

with 〈a|b〉 = ∑N
k a∗(k)b(k), which can be written in terms of

matrices,

r = S( Q − Bm),

with r={r1,r2, . . . ,rN }, Qp= 〈up,−|c0〉, Bm,p= 〈up,−|um,+〉,
and S−1

p,k = 〈up,−|uk,−〉. Additionally, by forcing the derivative
of the wave function to be continuous at the device boundary,
we obtain the second condition,

c0 − c−1 = (
1 − λ−1

m,+
)
um,+ +

N∑
k=1

(
1 − λ−1

k,−
)
rkuk,−.

Then, by substituting the r vector to the equation above, we
get

c0 − c−1 = (
1 − λ−1

m,+
)
um,+

+
N∑

k,p=1

(
1 − λ−1

k,−
)
Sk,p(Qp − Bm,p)uk,−.

Let us now simplify the expression above, by starting from the
first term in the sum on the right side,

N∑
k,p=1

(
1 − λ−1

k,−
)
Sk,pQpuk,−

=
N∑

k,p=1

(
1 − λ−1

k,−
)
Sk,p 〈up,−|c0〉 uk,−

=
N∑

k,p=1

(
1 − λ−1

k,−
)
Sk,p

N∑
i

u∗
p,−(i)c0(i)uk,−

=
N∑

i,k,p=1

uk,−
(
1 − λ−1

k,−
)
Sk,pu∗

p,−(i)c0(i)

= U−
(
1 − �−1

−
)
SU †

−c0,

where columns of matrix U± are constructed from trans-
verse modes U± = (|u1,±〉 , |u2,±〉 , . . . , |uN,±〉) and 
i,j,± =
δi,j λi,±. Analogously for the second term, we obtain

N∑
k,p=1

(
1 − λ−1

k,−
)
Sk,pBm,puk,− = U−(1 − �−1

− )SU†
−um,+.

Thus we get

c0 − c−1 = (
1 − λ−1

m,+
)
um,+ + U−(1 − �−1

− )SU†
−c0

− U−(1 − �−1
− )SU †

−um,+. (A5)

The expression above can be further simplified by noticing

that S = (U†
−U−)

−1 = U−1
− (U†

−)
−1

, hence the matrix

U−(1 − �−1
− )SU†

− = U−(1 − �−1
− )U−1

− (U†
−)−1U†

−

= 1 − U−�−1
− U−1

− ≡ 1 − F−.

The matrix F± ≡ U±(U±�±)−1 is the Bloch matrix. The final
formula for Eq. (A5) is then

c−1 = F−c0 + (
λ−1

m,+1 − F−
)
um,+.

By inserting this into the Hamiltonian (A1) for i = 0, one
removes the dependence of the c−1 slice from the linear system,
which gives

(EF − H − τ F−)c0 − τ †c1 = τ
(
λ−1

m,+1 − F−
)
um,+.

We note that

F+ |um,+〉 = U+�−1
+ U−1

+ |um,+〉
= U+ |0, . . . ,λ−1

m,+, . . . ,0〉
= λ−1

m,+ |um,+〉,

FIG. 14. (a) Scattering density inside the sinus-shaped channel.
The Fermi level corresponds to a single conducting mode. (b) The
SGM image of (a). We use dtip = 40 nm and Vt = 1

2 EF.
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FIG. 15. (a) Simulated SGM conductance image of system with three impurities. (b) The spatial derivative of (a). (c) The transconductance
image dG/dVtip in arbitrary units.

and hence the right side can be written in a more compact
form,

τ
(
λ−1

m,+1 − F−
) |um,+〉 = τ (F+ − F−) |um,+〉 ≡ �m.

A summary of the system of linear equations for the case of a
two-terminal device can be written in the following way:

[EF − (H0 + �0)]c0 − τ
†
0c2 = �0,m, (A6)

−τ i−1ci−1 + (EF − H i)ci − τ †
i ci+1 = 0, for 0 < i < N,

(A7)

[EF − (HN + �N )]cN − τN−1cN−1 = 0, (A8)

where �0/N = τ F− is the self-energy calculated for the
left/right lead. Note that in order to obtain open boundary
conditions, we use the approach from the quantum transmitting
boundary method (QTBM) introduced in Ref. [28], but at the
end we finish with the wave-function matching (WFM) equa-
tions [21], which shows that both methods are algebraically
equivalent.

After solution of the scattering problem for a given mth
incoming mode, one may calculate transmission amplitudes
from

tm = U−1
N,−cN,m, (A9)

and reflection amplitudes as

rm = U−1
0,−(c0,m − um,+), (A10)

with U0,− and UN,− being the outgoing modes’ matrices for
the input and output lead, respectively.

APPENDIX B: ALIGNMENT OF THE FRINGES
IN QUASI-1D CASE

In Sec. III B, we discuss the properties of branched flow in
terms of 1D channels which carry most of the current in the
structure. In that approximation, most of the features which
are present in 2D simulations can be explained; however, the
perpendicularity of the fringes, which is a 2D property of
the electron flow, cannot be easily attributed to the strictly
1D model. In order to support our discussion, we perform
a SGM simulation of a curved quasi-1D channel for which
the scattering electron density is presented in Fig. 14(a). The
quasi-1D transport is obtained by choosing the transverse
confinement of the curved channel to carry only one mode.
The SGM image for this case is depicted in Fig. 14(b) with
well-visible perpendicularly aligned fringes.

APPENDIX C: THE TRANSCONDUCTANCE IMAGES

The results presented in the experimental part of this paper
discuss the elliptic fringes visible in the transconductance im-
ages, dG/dVtip. However, in the numerical part, we restrict our
data to simple gradients dG

dx
of conductance maps. In principle,

both quantities correspond to two different measurements: the
former measures the response of the system to the SGM tip
potential change and the latter simply removes a slowly varying
background from the SGM images as a high-pass filter.

The experimental measurements of G and transconduc-
tance are performed with either an ac or dc bias, respectively.
The ac voltage heats the sample, which is not the case for dc
measurements, and hence the fine details are usually resolved
more clearly in transconductance plots. This is the case for the
elliptical features of Fig. 12, which are only resolved in the
transconductance plot.

For the model calculations, we find that both differentiation
over Vtip and the xtip give similar images (see Figs. 15 for
comparison), so we restrict the calculations to dG

dx
, which

requires evaluation of a single conductance map only and is
thus computationally cheaper.
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[18] K. Kolasiński and B. Szafran, Phys. Rev. B 88, 165306 (2013).
[19] B. Szafran, Phys. Rev. B 84, 075336 (2011).
[20] R. Steinacher, A. A. Kozikov, C. Rössler, C. Reichl, W.
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