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Unified percolation model for bipolaron-assisted organic magnetoresistance
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The fact that in organic semiconductors the Hubbard energy is usually positive appears to be at variance
with a bipolaron model to explain magnetoresistance (MR) in those systems. Employing percolation theory, we
demonstrate that a moderately positive U is indeed compatible with the bipolaron concept for MR in unipolar
current flow, provided that the system is energetically disordered, and the density of states (DOS) distribution is
partially filled, so that the Fermi level overlaps with tail states of the DOS. By exploring a broad parameter space,
we show that MR becomes maximal around U = 0 and even diminishes at large negative values of U because of
spin independent bipolaron dissociation. Trapping effects and reduced dimension enhance MR.
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I. INTRODUCTION

In this paper, we examine the origin of magnetoresistance
(MR) in an organic semiconductor (OSC) under the condition
of unipolar current flow. In an OSC, charge carriers are usually
injected from an electrode and migrate via incoherent hopping.
If the counter charges, required to maintain overall charge
neutrality of the device, are not incorporated in the bulk of
transport material (e.g., at a gate electrode of a field effect tran-
sistor), MR must originate from the interaction between charge
carriers of the same sign, which reduces to charge carrier
scattering at the repulsive Coulomb potential unless bipolarons
can be formed. This implies that the cost of Coulomb repulsion
is overcompensated through the gain by coupling to phonons.
However, the formation of bipolarons can lead to a spin
blockade because the Pauli exclusion principle prevents double
occupancy of two charge carriers of the parallel spin [1,2]. This
spin blockade can be lifted by hyperfine interaction that can
rotate a spin thus allowing for singlet-triplet interconversion
of a charge carrier pair [3]. A sufficiently strong magnetic
field can suppress this singlet-triplet mixing and restores spin
blockade because only bipolarons in the singlet state can be
formed. This gives rise to MR.

In OSCs there is usually a Coulomb penalty for adding two
like charges on a given transport site because of insufficient
phonon coupling. It is quantified in terms of the Hubbard
energy U that is typically around 0.5 eV [4]. At first sight, one
would expect that the MR be virtually negligible. However,
the situation changes when an OSC is energetically disordered
and/or when traps play a role [5–7]. In those cases, the energy
released when a charge relaxes to a tail state of the density of
states (DOS) distribution can overcompensate the Coulomb
penalty, where there is a finite probability for bipolaron
formation. The MR effect should therefore depend critically
on the interplay between Hubbard repulsion and electronic
localization due to energy disorder as a function of the Fermi
level of the OSC.
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Historically, the percolation treatment of low-field magne-
toresistance of amorphous semiconductors has been discussed
since the 1970s. By considering the conductance in the
critical percolation path, Osaka [8] obtained an exponential
dependence of MR on U . This monotonic increase of MR with
U is unphysical. To avoid this problem, Harmon and Flatté
developed a U = 0 model [2,7,9]. This raises the question of
how the Hubbard energy can be incorporated in the percolation
theory of MR. A related topic is spin relaxation and diffusion
in the presence of bipolarons. In [10], Shumilin and Kabanov
investigated the spin relaxation in a random magnetic field. In
an earlier paper [11], we investigated the effect of spin diffu-
sion after the injection of charge carriers from a ferromagnetic
electrode into a disordered semiconductor. In both treatments,
a finite value of U has been taken into account and the
dynamics of spin polarization have been considered. However,
these models are built for systems with substantial on-site
magnetization, which is not the case for most MR experiments,
where the Zeeman energy resulting from a typical magnetic
field is negligible relative to kT [1,3]. For example, in [10],
the magnetic field can affect the resistances only via nonzero
on-site magnetization, and MR under typical experimental
conditions cannot be explained. In [11], only the effects of
bipolaron formation and spin exchange (which is unrelated to
MR) are considered, thus even assuming zero magnetization,
the model is insufficient to describe MR. Thus what is missing
is a comprehensive treatment of the interdependent processes
of generation, motion, and dissociation of bipolarons in a
percolating network with zero on-site magnetization. In the
current work, we developed a universal formalism for organic
MR covering a broad parameter space using a percolation
approach. It goes beyond the previous treatments and should
lead to a deeper understanding of spintronics in organic
systems [12,13].

II. THE MODEL

In a conventional hopping theory, it is assumed that charge
carriers can only hop from a singly occupied site (S) i to an
empty site (E) j . The hopping rate is usually described by the

2469-9950/2016/94(7)/075201(7) 075201-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.075201
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Miller-Abrahams relation [14]

γ S→E
ij (Rij ,Ei,Ej ) = γ0e

−(2Rij /R0)−[θ(Ej −Ei )/kT ], (1)

where γ0 is the prefactor rate, Rij is the distance between
the two sites, R0 is the localization length of the carrier’s
wave function, Ei and Ej are the energies of the sites i and
j relative to the Fermi level, and θ (x) = xε(x) with ε(x)
being the step function. Treating the external electric field
as a perturbation [15], the hopping system can be modeled as
a resistor network with the conductance between sites i and j

to be Gij = G0e
−sij with G0 = e2γ0/kT and

sij = 2Rij

R0
+ |Ei | + |Ej | + |Ej − Ei |

2kT
. (2)

The conduction can then be viewed as a percolation process:
If setting a critical conductance Gc and disconnecting all bonds
with conductance lower than Gc, the density of remaining
bonds Nb divided by the total density of sites Ns should have
the critical value Bc to allow for establishing an infinitely
connected network. The conductance of the system is then
approximately proportional to Gc, since it controls the most
difficult transport path of the resistor network [16].

The above consideration neglects the possibility of double
occupancy, i.e., U = ∞. If U is finite, there is a finite
possibility of double occupancy. To consider this in theory,
one should include additional carrier hopping processes such
as from a singly occupied site to another singly occupied
one (i.e., bipolaron formation), from a doubly occupied site
to a singly occupied one (i.e., bipolaron motion) [17], and
from a doubly occupied site to an empty one (i.e., bipolaron
dissociation), as illustrated in Fig. 1(a). The corresponding
hopping rates can be written as

γ S→S
ij (Rij ,Ei,Ej ) = pγ S→E

ij (Rij ,Ei,Ej + U ),

γ D→S
ij (Rij ,Ei,Ej ) = γ S→E

ij (Rij ,Ei,Ej ), (3)

γ D→E
ij (Rij ,Ei,Ej ) = γ S→E

ij (Rij ,Ei + U,Ej ),

where D denotes the initial site i as being doubly occupied,
and p is the probability that a bipolaron can form without spin
blockade, implying that only carrier pairs with antiparallel spin
can occupy the same site. The random hyperfine field rotates
the spins and may convert triplet to singlet states, thus lifting
spin blockade. A strong external magnetic field suppresses this
singlet-triplet mixing, and restores the spin blockade.

It is not an easy task to calculate this probability rigorously
without numerical methods. In this work, we adopt the treat-
ment used in [3], where the long-time triplet-to-singlet tran-
sition probability is approximated as pT →S ∼ σ 2

h /(σ 2
h + B2).

First consider the long waiting time case. According to [18],
this pT →S dominates for the bipolaron formation probability
of random polaron pairs. For zero magnetic field, all three
triplet states T0, T+, and T− can transform into the singlet
state S sooner or later, corresponding to p = 1, while for large
magnetic fields, the parallelity of the z component of spin
cannot be flipped, thus only the T0 state can be transformed to
a S state, corresponding to p = 1/2. To incorporate the short
hopping time cases, an exponent factor [2] 1 − exp(−τh/τs)

FIG. 1. (a) Carrier hopping processes including (left) bipolaron
formation, (middle) bipolaron motion, and (right) bipolaron dissoci-
ation. Top row: spin configurations before hopping; bottom row: spin
configurations after hopping. (b) Illustration of the effective DOS
and the three occupancy ranges (D: double occupancy; S: single
occupancy; and E: empty). Only the part of g0(E − U ) that is inside
the range [−U,0] contributes to the MR.

should be multiplied on pT →S , so finally we have

p =
(

1

2
+ 1

2

σ 2
h

σ 2
h + B2

)
(1 − e−eτhσh/πm), (4)

where σh is the standard deviation of the hyperfine field, B

is the external magnetic field, m is the carrier mass, e the
elementary charge, and τh = 1/(ν0e

−sij ) is the hopping waiting
time [19,20].

To incorporate these processes into percolation theory, it is
convenient to introduce an equivalent treatment: the singly
occupied sites in a finite U system can be considered as
empty in a U = ∞ system with the probability p for bipolaron
formation process, except that their corresponding site energies
should be raised by U . Similarly, the doubly occupied sites
can always be considered as singly occupied in the bipolaron
motion and dissociation process. Thus, the system can still be
approximated as a S → E percolating process, only with the
original DOS g0(E) replaced by an effective DOS

g(E) = g0(E) + [fD(E) + pfS(E)]g0(E − U ), (5)

where fS and fD are the probabilities of a site to be singly
and doubly occupied, respectively. Neglecting intersite corre-
lations, each site is a separate thermodynamic system in contact
with the reservoir, and forms a grand canonical ensemble [8].
The four microstates available are empty, singly occupied with
spin up, singly occupied with spin down, and doubly occupied
microstates. The grand canonical partition function is then
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Z = 1 + 2exp(−E/kT ) + exp[−(2E + U )/kT ], and thus

fE(E) = 1

1 + 2exp(−E/kT ) + exp[−(2E + U )/kT ]
,

fS(E) = 2exp(−E/kT )

1 + 2exp(−E/kT ) + exp[−(2E + U )/kT ]
, (6)

fD(E) = exp[−(2E + U )/kT ]

1 + 2exp(−E/kT ) + exp[−(2E + U )/kT ]
,

where fE is the probability of a site to be empty.
The percolation problem can then be directly calculated

using this effective DOS. As a function of sc, the density of
bonds is [16]

Nb(Gc) = NsBc

=
∫

d Ri jdEidEjg(Ei)g(Ej )ε

[
ln

(
G0

Gc

)
− sij

]
.

(7)

The solution of Eq. (7) gives the critical conductance Gc,
and MR can be evaluated by introducing the external magnetic
field as a parameter.

III. MR IN IDEAL OSCs

In an ideal amorphous organic semiconductor, the DOS can
be well described by a Gaussian distribution [21],

g0(E) = Ns√
2πσ

e−(E+EF )2/2σ 2
, (8)

where σ is the disorder width, and EF is the Fermi level.
Substituting this DOS into Eqs. (5) and (7), we can numerically
calculate the OMR: guessing an initial Gc at first, the
corresponding Nb is obtained by numerical integration. Then
a binary search algorithm is used to repeatedly generate a new
Gc until Nb equals NsBc. Here we use the definition of MR as

MR(B) = R(B) − R(0)

R(0)
= G(0) − G(B)

G(B)
, (9)

where G(B) [R(B)] is the conductance (resistance) at exter-
nal magnetic field B, and G(0) [R(0)] is the conductance
(resistance) at zero magnetic field. A typical MC curve
for a three-dimensional (3D) system with Bc = 2.8 [16,22],
σ = 0.15 eV, U = 0.5 eV, R0 = 0.45 nm EF = −0.1 eV,
Ns = 1021 cm−3, σh = 5 mT, and T = 300 K is shown in
Fig. 2(a). It can be fitted well by a Lorentzian line shape
B2/(B2 + B2

0 ) [23]. It is also noted that the temperature
dependence of the conductance exhibits an Arrhenius-like

FIG. 2. (a) The MR curve as a function of external magnetic field in a 3D system. Circular marks: MR values calculated using Eq. (7).
Solid curve: fitting of the calculated data using a Lorentzian line shape. Inset: the temperature dependence of the conductance at zero magnetic
field. (b) Saturated MR as functions of the bipolaron formation energy parametric in the Fermi level. (c) Saturated MR as functions of the
bipolaron formation energy parametric in the disorder width. The parameters in (b) and (c) are the same as in (a) except for varying EF in (b)
and varying σ in (c). (d) Probability of a site to be empty, singly occupied, and doubly occupied at 300 K.
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relationship, as shown in the inset of Fig. 2(a). This is a
consequence of thermally activated hopping in a Gaussian
DOS rather than long-range hopping in the spirit of Mott’s
variable range hopping concept [24]. Setting MR(50 mT) as
the saturated magnetoconductance MRsat, we calculated MR
as a function of the Hubbard energy U , parametric in the
Fermi level EF and disorder width σ in Figs. 2(b) and 2(c),
respectively. It shows that raising the Fermi level as well
as the disorder width increases the MR effect in the U > 0
regime. This is a plausible result because as the DOS is
being filled up and/or the DOS widens, the probability of
bipolaron formation increases. Remarkably, after reaching the
maximum around U = 0, the MR deceases as U becomes
more negative. Note that our results contradict Osaka’s claim
that magnetoresistance increases monotonically with U .

To explain these results, we first investigate the occupation
probabilities fE , fS , and fD according to Eq. (6). At zero
temperature and for positive U , it is easy to prove that fE(E) =
ε(E), fD(E) = ε(−U − E), and fS(E) = ε(E + U ) − ε(E).
The full energy range thus divides into three parts: the interval
[−U,0] is singly occupied, and the other two ranges [0,∞]
and [−∞,−U ] are empty and doubly occupied, respectively.
Raising the temperature has only a small effect except that
there is a smearing of the boundaries between the domains,
as shown in Fig. 2(d). For negative U , both boundaries tend
to merge. Therefore the interface between empty and double
occupancy lies at E = −U/2. An external magnetic field
enters into the percolation problem through the bipolaron
formation probability p. Therefore, only the term proportional
to fS(Ej ) in Eq. (5) determines the MR. This explains why a
large negative U leads to a vanishing MR. The reason is that
when the sites are almost either empty or doubly occupied,
the external magnetic field has little effect on the percolation
process, because bipolaron dissociation is spin independent.
Another important aspect in the effective DOS [Eq. (5)] is
the energy shift U . This can be illustrated in Fig. 1(b), where
only the U > 0 case is considered and the three energy ranges
are colored by black (doubly occupied), red (singly occupied),
and green (empty), respectively. The original DOS is shifted to
the right by U , and then multiplied by fS(Ej ). Thus, only the
part of the shifted DOS within the range [−U,0] contributes

substantially to the MR. The larger U is, the wider will be the
single occupancy range, but the relevant DOS will be located
in the deeper tail. Remembering that the energy E is measured
from the Fermi level EF , to get a large MR, it is thus beneficial
to raise the Fermi level. Larger disorder width also helps to
relax the requirement concerning the value of U . To shift
the nσ tail of the DOS into the singly occupied range, the
inequality U − EF < nσ should be satisfied. This explains
the change of MRsat curves in Figs. 2(b) and 2(c). We note that
this rise of MR with the Fermi level has been demonstrated in
a recent experiment performed with a thin-film field transistor
(TFT) structure [25], where the MR increases with the gate
voltage. In typical experiments [25], it is nontrivial to obtain
high EF and low U , so that only deep tails of the DOS can
contribute. This leads to a small value of MR. When optimizing
the Fermi level and disorder in some unipolar devices, it
is possible to have large MR, as predicted in Figs. 2(b)
and 2(c). In a two-terminal device, on the contrary, the hopping
waiting time τh decreases, leading to a smaller p according to
Eq. (4), although the carrier concentration increases with larger
voltage.

The U = 0 case was discussed in detail previously [2]. Here
we note that a system with small Hubbard energy can indeed
exhibit a substantial MR effect, because on the one hand,
the single occupancy around E = 0 is still not completely
suppressed [Fig. 2(d)]. On the other hand, reducing U will shift
the DOS toward the singly occupied range. U ≈ 0 roughly
provides a balance between these two effects.

IV. THE EFFECT OF TRAPS

In real world OSCs there are always physical and/or
chemical defects. In the bipolar transport regime, it has been
experimentally suggested that the existence of traps should
facilitate MR [6]. Here we show this is also valid for unipolar
transport cases. The DOS including deep traps can be modeled
as a double Gaussian function

g0(E) = Ns − Nt√
2πσ

e−(E+EF )2/2σ 2 + Nt√
2πσt

e−(E+Et+EF )2/2σ 2
t ,

(10)

FIG. 3. (a) MR as functions of external magnetic field at different trap depths. (b) Saturated MR as functions of the width of the trap
distribution at different trap depths.
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FIG. 4. Effect of dimensionality of MR in a trap-free system (a) and a system containing traps (b).

where Nt is the density of trapping sites, Et is the trapping
depth, and σt is the trapping width. From an intuitive point
of view, the additional trapping term in Eq. (10) alleviates
the requirement to shift the DOS to the singly occupied
domain [Eq. (5)], and the inequality now becomes U − EF <

nσt + Et . It is even possible to shift the peak of the DOS into
the range [−U,0], which requires U ≈ EF + Et . To verify this
argument, we calculate the MR curves of a two-component
system with the same parameters used in Fig. 2(a), together
with Nt = 0.1Ns , σt = 0.15 eV, and varying Et . The results
are presented in Fig. 3(a). As expected, a concentration of
10% trappings sites greatly enhances the MR values. Their
optimal depth is ∼0.6 eV, which is comparable to the difference
between U and EF . The dependence of MRsat on the variance
of the trap distribution is plotted in Fig. 3(b). On one hand, if
the center of trap distribution is far from E = 0, an increase of
the trap depth would pull more trapping states inside the single
occupancy range, thus increasing the MR. This is the case for
Et = 0.4 and 1.0 eV. On the other hand, if the center of trap
distribution is already inside the single occupancy range and
near the E = 0 point, which is the case for Et = 0.6 eV, a
narrower trap distribution would ensure that more trapping
states would participate in the MR effect. If the trapping
distribution is sufficiently wide, it does not matter where the
center is located, and the four curves in Fig. 3(b) would
coincide. The enhancement of MR with traps agrees with
previous experiments [25], where TFTs fabricated on both bare
SiO2 and HMDS-treated SiO2 were investigated. The former
has a larger trap density, and exhibits a larger MR effect. Here
we show that to further increase the MR amplitude, both the
trap depth and width can be tailored.

V. THE EFFECT OF DIMENSIONALITY

Another aspect that influences the MR effect is dimen-
sionality [5]. In TFT structures, the system can often be
considered two dimensional (2D), and a nanowire represents a
one-dimensional (1D) system. There are two mechanisms that
might lead to larger MR in lower dimensional systems. The first
one is the geometric restriction. It tends to force the carriers
to hop to already occupied sites, thus forming bipolarons.
Using the same parameters as in Fig. 2(a), we recalculate the

corresponding MRsat − U curves in 3D, 2D, and 1D cases. In
the 3D case, the density of sites was chosen to be 1021 cm−3,
equivalent to a lattice constant of 1 nm. This corresponds
to site densities of 1014 cm−2 and 107 cm−1 in 2D and 1D,
respectively. The respective percolation thresholds are chosen
to be 4.48 [22] and 2 [26] for 2D and 1D systems, respectively.
Both trap-free systems [Fig. 4(a)] and systems containing traps
with Nt = 0.1Ns , σt = 0.15 eV, and Et = 0.6 eV [Fig. 4(b)]
are calculated. The MR indeed increases with decreasing
dimensionality, for the same Hubbard energy U = 0.5 eV.

The second possible mechanism is that systems with lower
dimensionality might have lower U . This can be rationalized
in terms of a scaling argument in which the 3D treatment given
in [27] can be extended to 1D and 2D systems. As derived in
the Appendix, the bipolaron energy E2 and the energy of two
polarons, 2E1, as functions of their size L can be expressed as

E2 ∼ A(D)

κL2
+ B(D)

εrL
− 2λ(D)

LD + ηD ,

2E1 ∼ C(D)

κL2
− λ(D)

LD + ηD , (11)

where D denotes the dimensionality, A(D), B(D), and C(D) are
dimensional dependent constants, κ is the ratio between the
carrier effective mass and the electron mass, εr is the dielectric
constant, η is a cutoff length, and λ(D) a normalized cou-
pling strength between the electron and lattice. Qualitatively
speaking, the lower the dimensionality, the slower the term
1/(LD + ηD) in Eq. (11) will decrease with L and will facilitate
bipolaron formation. This lowering of U could contribute to
MR enhancement much more than geometric restriction, since
the latter only enhances MR on the same order, while the
former can be an order of magnitude effect, as revealed by
Figs. 4(a) and 4(b).

VI. CONCLUSIONS

In summary, by employing a unified percolation model,
we demonstrate that a moderately positive Hubbard energy is
compatible with a bipolaron mechanism to rationalize MR
in an OSC under unipolar current flow. However, this is
only valid if (i) the DOS distribution of the semiconductor
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energetically broadened and (ii) tail states of the DOS are
filled and a Fermi level is established. The sign of MR is
negative because a magnetic field eliminates spin mixing due
to hyperfine interaction and therefore prevents the formation
of bipolarons. The Fermi level and trap dependences of MR
agree with previous experiments, and the treatment and results
also have general implications for charge and spin transport in
disordered systems.
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APPENDIX

Similar to [27], the bipolaron energy can be expressed as

E2 = 〈Hel〉 + Es

∫
dDr1d

Dr2|ψ(r1,r2)|2[(r1) + (r2)]

+ 1

2
K

∫
dDr2(r). (A1)

By assuming symmetric wave function: ψ(r1,r2) =
ψ(r2,r1), and minimizing E2 with respect to (r), one gets

2Es(r)
∫

dDr1|ψ(r1,r)|2 + K(r) = 0. (A2)

Thus, (r) = −2Es

∫
dDr1|ψ(r1,r)|2/K = −2Esρ(r)/K

with ρ(r) = ∫
dDr1|ψ(r1,r)|2. So

E2 = 〈Hel〉 − (
2E2

s

/
K

) ∫
dDrρ2(r). (A3)

Using the definition that
∫

dDrρ2(r) = L−D, one has E2 =
〈Hel〉 − 2E2

s /KLD. From a dimensional analysis, it is easy to
see that 〈Hel〉 = 〈T2〉 + 〈V2〉, and

〈T2〉 = −2 × �
2

2m∗

∫
dDr2ψ(r1,r2)∇∗

2 ψ(r1,r2)

= �
2

m∗

∫
dDr2|∇2ψ(r1,r2)|2 ∼ A(D)

κL2
(A4)

〈V2〉 =
∫

dDr1d
Dr2V (r1,r2)|ψ(r1,r2)|2

= e2

4πε0εr

∫
dDr1d

Dr2
1

|r1 − r2| |ψ(r1,r2)|2 ∼ B(D)

εrL
.

(A5)

Similarly, two-polaron energy can be obtained to be

2E1 = 2〈T1〉 − 2
E2

s

2K

∫
dDrρ2(r)

= 2〈T1〉 − E2
s

KLD ∼ C(D)

κL2
− E2

s

KLD . (A6)

Defining E2
s /K = λ, and adopting the cut off length η

according to [27], one finally obtains Eq. (11) in the main
text.
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