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Critical behavior of quantum magnets with long-range interactions in the thermodynamic limit
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Quasiparticle properties of quantum magnets with long-range interactions are investigated by high-order
linked-cluster expansions in the thermodynamic limit. It is established that perturbative continuous unitary
transformations on white graphs are a promising and flexible approach to treat long-range interactions in
quantum many-body systems. We exemplify this scheme for the one-dimensional transverse-field Ising chain
with long-range interactions. For this model, the elementary quasiparticle gap is determined allowing to access
the quantum-critical regime including critical exponents and multiplicative logarithmic corrections for the ferro-
and antiferromagnetic case.
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I. INTRODUCTION

Correlated quantum many-body systems play an important
role in various areas in modern physics, since fascinating
quantum phases with exotic excitations as well as novel
collective quantum behavior are expected. In many cases
these correlations are induced by almost local interactions,
e.g., the screened Coulomb interaction of the Hubbard model
in correlated electron systems or the Ising and Heisenberg
interactions between nearest neighbors in quantum magnetism.
In contrast, there are many important physical systems with
long-range interactions, which come more and more into
focus [1–13]. One example for long-range interactions in
condensed-matter physics are dipolar interactions between
spins in so-called spin-ice materials giving rise to emergent
magnetic monopoles [4]. Another important platform to
engineer quantum many-body lattice models with long-range
interactions are trapped cold ion systems in quantum optics
for which the nature of interactions can be varied flexibly
[8,9]. Here an enormous experimental progress has been
achieved over the last years allowing to realize one- and
two-dimensional quantum-spin models and to investigate the
properties of quasiparticle excitations [8,10,11,13].

Naturally, the theoretical treatment of long-range in-
teractions in quantum many-body systems is notoriously
complicated. This is especially true for the majority of
numerical approaches which are usually applied to finite
systems [14–19] with a few exceptions like, for example,
variational tensor network techniques. As a consequence, most
investigations have focused on ground-state properties of one-
dimensional quantum systems. One important tool to study
quantum-lattice models directly in the thermodynamic limit
and therefore avoiding finite-size effects are linked-cluster
expansions (LCEs) which have been applied successfully in
any dimension for models with short-range interactions in the
past [20–27]. Here the physical properties of the ground state
and of quasiparticle excitations are determined via a full graph
decomposition in topologically distinct graphs. However, the
use of LCEs for systems with long-range interactions appears
to be almost impossible, since the number of graphs in any
order diverges due to the infinite number of different coupling
constants.

In this letter, we establish that this is not the case. LCEs
up to high order in perturbation can be set up successfully by

applying the recently developed white-graph expansion [27].
Our approach is flexible, e.g., it can be used a priori in any
spatial dimension as well as for arbitrary interactions including
geometric frustration. As a proof of principle, we determine
the quasiparticle gap of the one-dimensional transverse-field
Ising model (TFIM) with long-range interactions in the
polarized high-field phase. This model has recently been
realized in experiments on cold trapped ion systems [10,13]
and is relevant for solid-state physics [1,2]. Furthermore, our
findings for the quantum-critical line can be compared to other
numerical investigations [17,18] in order to gauge the quality
of our approach. Finally, we extract the corresponding critical
exponent from our LCEs.

II. SET UP

We consider an Hamiltonian H at zero temperature of the
form

H = H0 + λ V̂

= H0 + λ
∑
i,j

V[g(i − j )], (1)

where H0 ≡ E0 + ∑
i,μ f̂

†
i,μf̂i,μ is easily diagonalized in

terms of supersites. In practice, a supersite might be a single
spin, a dimer of two sites, or any collection of elementary
sites which are suitable to describe the quantum phase under
investigation. Here we assume that H0 has an equidistant
spectrum with an energy gap � = 1 bounded from below by
E0. The lowest energy of a single supersite E0/N with N being
the number of supersites is considered to be nondegenerate
(although degeneracies can be treated similarly with our
approach). The sum over μ runs over all excited local degrees
of freedom of a single supersite, e.g., for a single spin 1/2
there is only one local excitation corresponding to a local
spin flip while for an antiferromagnetically coupled dimer
of two spins 1/2 there are three degenerate local triplet
excitations. The long-range interaction V[g(i − j )] couples
different supersites i and j so that g(i − j ) denotes the
coupling strength. Here we concentrate on two-supersite
interactions and a single parameter λ, but generalizations are
straightforward.

The unperturbed ground state |ref〉 at λ = 0 with energy
E0 is interpreted as the vacuum and is given as the product
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state |ref〉 ≡ |0〉 · · · |0〉 with |0〉 being the ground state of
a supersite. Local excitations of type μ on supersite i are
created by f̂

†
i,μ|ref〉. It is always possible to introduce the

counting operator Q ≡ ∑
i n̂i ≡ ∑

i,μ f̂
†
i,μf̂i,μ and to write

H0 ≡ E0 + Q.
The Hamiltonian (1) can then be expressed as

H = H0 +
Nmax∑

n=−Nmax

T̂n , (2)

where λV̂ ≡ ∑
n T̂n and [Q,T̂n] = nT̂n. The operator

T̂n ≡ ∑
i,j g(i − j )τ̂ ij

n corresponds to all operators where the
change of energy quanta with respect to Q is exactly n. Note
that we have included λ in the definition of the operators τ̂

ij
n

involving the supersites i and j . The maximal (finite) change
in energy quanta is called ±Nmax.

III. APPROACH

Hamiltonians (2) can be well treated by the method of
perturbative continuous unitary transformations (pCUTs) [22]
and, more specifically, by the recently introduced white-graph
expansion [27]. Here this approach is extended to long-range
interactions V[g(i − j )].

In pCUTs, Hamiltonian (2) is mapped model-independently
up to high orders in perturbation to an effective Hamiltonian
Heff with [Heff,Q] = 0. The general structure of Heff is then
a weighted sum of operator products T̂ν1 . . . T̂νk

in order
k perturbation theory, where T̂νj

are from the pool of T̂n

in Eq. (2) for each j ∈ {1, . . . ,k}. The block-diagonal Heff

conserves the number of quasiparticles (qp). This represents
a major simplification of the quantum many-body problem,
since one can treat each quasiparticle block, corresponding
only to a few-body problem, separately. Physically, the zero
quasiparticle sector contains the ground-state energy of the
system whereas the one quasiparticle block gives access to the
one quasiparticle dispersion and therefore to the one-qp gap.
Higher quasiparticle blocks represent interacting few-body
quantum systems.

The more demanding part in pCUTs is model-dependent
and corresponds to a normal-ordering of Heff. This is most
efficiently done via a full graph decomposition in linked graphs
using the linked-cluster theorem and an appropriate embedding
scheme afterwards. In order k perturbation theory, only linked
graphs up to k links have to be considered (see also Fig. 1). A
link between supersites i and j is introduced by the interaction
V[g(i − j )] = ∑

n g(i − j )τ̂ ij
n , where each coupling g(i − j )

is associated with a different “color.” In contrast to short-range
interactions with only one (or a few) number of different colors,
there are infinitely many different colors already in first-order
perturbation theory for long-range interactions and the usual
LCEs break down.

At this point, the recently introduced white-graph expansion
[27] turns out to be extremely useful. The essential idea is not
to fix colors on graphs in advance, but to keep all relevant
information during the calculation on graphs, so that one has
to reintroduce colors only at the end of the calculation during
the final embedding procedure. In the simplest realization,
one introduces different parameters λj on all Nl links lj with

FIG. 1. Illustration of all white graphs up to three links necessary
for order three perturbation theory. Circles denote supersites sν while
lines correspond to interactions V[g(sν1 − sν2 )] linking two supersites
s1 and s2 on the graphs due to the interaction g. These white graphs
have to be embedded into the system in the thermodynamic limit by
identifying supersites sν of the graphs with the actual supersites i of
the lattice. For a long-range interaction g(i − j ), there are infinitely
many embeddings for each graph.

j ∈ {1, . . . ,Nl} of a given graph. The calculation then yields

contributions proportional to λ
k1
1 . . . λ

kNl

Nl
with k1+· · ·+kNl

=k

in order k, which have to be embedded in the infinite lattice
by replacing the λj by the function g. Note that also more
sophisticated schemes are possible, which is a consequence of
the fact that Heff is given in second quantization and in the
thermodynamic limit [27].

Therefore, due to white graphs, it is not anymore the
generation of and the calculation on graphs which is most
challenging for LCEs with long-range interaction, but it is
the final embedding procedure. Indeed, one obtains up to k

infinite sums in order k perturbation theory for the different
matrix elements of Heff. Physically, an infinite sum originates
from the fact that each link of a given graph has to be embedded
infinitely many times on the lattice due to the long-range nature
of the interaction. The number of infinite sums then equals
the number of different links of a graph, i.e., one obtains
maximally k infinite sums for the case of the chain graph
with k different links. These infinite sums have to be evaluated
quantitatively in order to capture the physical processes of
the effective Hamiltonian properly. The technical details of
this evaluation procedure are given in Appendices A to C. We
stress that the infinite sums are in general nested, since extra
conditions have to be imposed when embedding graph sites on
the lattice. Important examples are the chain graphs (i)–(iii) in
Fig. 1, where it is not allowed to embed two graph sites on the
same lattice site.

Let us illustrate the appearance of infinite sums during the
embedding process for the simplest graph (i) with one link
as shown in Fig. 1. The interaction between two supersites
s0 and s1 on this graph yields in first-order perturbation
theory operators of the form g(s0 − s1)τ̂ s0s1

0 which can for
example represent a nearest-neighbor hopping amplitude of a
quasiparticle. In the next step, this white-graph contribution
has to be embedded into the infinite lattice. Since the
interaction is long-range, there are infinitely many, usually
different embeddings of this graph. The final contribution of
graph (i) in the thermodynamic limit then yields

1

2

∞∑
δ = −∞
δ �= 0

g(δ ≡ s0 − s1) τ̂
s0s1
0 . (3)

075156-2



CRITICAL BEHAVIOR OF QUANTUM MAGNETS WITH . . . PHYSICAL REVIEW B 94, 075156 (2016)

For a general graph, consisting of n links, each link lj typically
yields such an infinite sum over distances δlj . Additionally, if
graphs contain loops, each loop introduces the extra condition∑

lj ∈{loop} δlj = 0 on the involved distances of the loop.
Such products of sums have to be evaluated efficiently

in order to reach quantitative results up to high orders in
perturbation. However, apart from that, this expansion allows
to formulate high-order LCEs for long-range interactions in
quantum lattice models on general grounds.

IV. APPLICATION

As an important example we consider the transverse-field
Ising chain with long-range interactions given by

H = −1

2

∑
j

σ z
j − λ

∑
i �=j

1

|i − j |α σ x
i σ x

j , (4)

where the sums run over the sites of the infinite chain, σκ

with κ ∈ {x,y,z} denotes the Pauli matrices, and α varies
from the short-range limit α → ∞ up to the ultra long-range
case α = 0. Positive (negative) λ corresponds to ferromagnetic
(antiferromagnetic) Ising interactions.

Introducing hardcore boson operators b
†
j , bj , and n̂j ≡ b

†
j bj

on site j by applying the Matsubara-Matsuda transformation
[28] [see also Eq. (A2)], we can rewrite Eq. (4) up to the
constant −N/2 as

H =
∑

j

n̂j − λ
∑
i �=j

gα(i − j )(b†i b
†
j + b

†
i bj + H.c.), (5)

which is indeed of the form (2) with Nmax = 2 and gα(i − j ) ≡
|i − j |−α .

This model possesses two gapped phases: a polarized phase
for small |λ| and a Z2 symmetry-broken ground state for large
|λ|. We have applied the above formulated LCE to calculate
the one-qp gap �f/af of the polarized phase in the high-field
limit |λ| → 0 up to order 8 in λ for the ferromagnetic (f) /
antiferromagnetic (af) case.

The two leading orders can be evaluated exactly, since only
the two chain graphs (i) and (ii) in Fig. 1 without loops are
relevant. One obtains

�f = 1 − 2ζ (α)λ + 2(ζ (2α) − ζ (α)2)λ2 + O(λ3), (6)

�af = 1 + (21−α(2α − 2)ζ (α))λ(2ζ (2α)

− 21−2α(2α − 2)2
ζ + (α)2)λ2 + O(λ3), (7)

where ζ (α) is the Riemann zeta function. The higher orders
of the gap are determined by summing the various infinite
sums using finite limits N and performing appropriate ex-
trapolations of the numerical data sequences as outlined in
Appendix B. Apart from the Wynn algorithm [29], we used
a scaling in 1/N α−1 (1/N α) for f (af) Ising interactions.
This scaling can be derived analytically for any product of
Riemann zeta functions and is the correct scaling for every
coefficient of the gap series (see Appendices B and C). Both
extrapolation schemes give consistent results, but the scaling
works generically better so that we display these results below.

f

NN
Bare series
dP (3,3)
dP (3,4)

0.0

0.2

0.4

0.6

0.8

1.0

af

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

FIG. 2. The one-qp gap �f/af as a function of λ for f (af) Ising
interactions with exponent α = 3. Solid black lines correspond to
the bare order-8 series, while other solid lines refer to representative
DlogPadé extrapolants. Dashed black lines are the exact one-qp gaps
for the nearest-neighbor TFIM in the limit α → ∞.

V. FERROMAGNETIC CASE

Let us focus on ferromagnetic interactions λ > 0. Here
only exponents α > 1 are well defined. In our LCE, this
becomes apparent due to divergencies in the infinite sums
for α � 1. In the opposite limit α → ∞, one recovers the
exact solution of the nearest-neighbor TFIM �f = 1 − 2λ

yielding a quantum phase transition between the polarized
phase and the symmetry-broken phase at λc = 0.5 with an
exponent zν = 1. Any ferromagnetic long-range interaction
with finite α stabilizes the symmetry-broken phase and one
expects λc < 0.5. This is illustrated in Fig. 2 for α = 3.

We use DlogPadé extrapolation of the gap series [30] to
estimate the quantum critical points λc for various values of α

(see also Appendix D). The results are displayed together with
scaled exact diagonalization (ED) data from Ref. [18] in Fig. 3.
One obtains very good agreement between both approaches for
a wide range of α values. Only for the demanding regime of
small α visible deviations can be seen. Here the extrapolation
of the series as well as the finite-size scaling of ED data
becomes challenging.

Next, we turn to the nature of the quantum phase transition
as a function of α. From one-loop renormalization group
calculations [18,31], one expects three different domains:
(i) the system is in the same universality class as the nearest-
neighbor TFIM with zν = 1 for α � 3, (ii) the system displays
mean-field behavior zν = 1/2 for α � 5/3, and (iii) the system
has nontrivial continuously varying critical exponents for
5/3 < α < 3.

We extracted the critical exponent zν as a function of α

from the DlogPadé extrapolation of �f , which is shown in
Fig. 3. As expected, the critical exponent is close to 1 for
α � 3 and then continuously decreases for smaller values of
α. One should stress that any LCE is not able to resolve abrupt
changes of critical exponents, since only finite orders enter
into the extrapolation of the series.

However, the visible deviation around α = 5/3 is unex-
pected but can be traced back to the presence of multiplicative
logarithmic corrections at the “upper critical α” similar to
the upper critical dimension d = 3 for the nearest-neighbor
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FIG. 3. Quantum-critical points λc (top) and critical exponents
zν (bottom) as a function of α for the ferromagnetic case. Black
circles represent averaged DlogPadé extrapolants of �f of the highest
available order. Green triangles correspond to scaled ED data from
Ref. [18]. The mean-field (MF) and nearest-neighbor (NN) TFIM
universality classes are illustrated as grey backgrounds and the
associated critical exponents as horizontal dashed lines.

TFIM. For the latter, one finds p = −1/6 for d = 3 from
perturbative RG and series expansions [32–36]. In our case,
fixing λc = 0.1374 and zν = 1/2, we find p ≈ −0.20(4) for
α = 5/3 when averaging over order-8 DlogPadé extrapola-
tions. We stress that multiplicative logarithmic corrections are
very sensitive on λc. The extracted value for p is therefore
remarkably close to −1/6. This fully supports the idea that
the quantum critical behavior induced by the long-range Ising
interaction can effectively be understood in terms of the
nearest-neighbor TFIM in an effective spatial dimension deff .

VI. ANTIFERROMAGNETIC CASE

The antiferromagnetic long-range TFIM behaves funda-
mentally different to the ferromagnetic case, which is mainly
due to geometric frustration. As a consequence, any finite value
of α enlarges (reduces) the polarized (symmetry-broken) phase
compared to the nearest-neighbor TFIM for α → ∞. This is
illustrated for α = 3 in Fig. 2. In Ref. [17], this phase diagram
has been calculated by variational matrix product states (MPS).

=2

O(8)
dPade

0.0

0.2

0.4

0.6

0.8

1.0

af

−0.6 −0.4 −0.2 0.0

NNantiferromagnetic

LCE
MPS
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−0.45
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FIG. 4. Quantum-critical points λc as a function of α for the
antiferromagnetic case. Black circles represent averaged DlogPadé
extrapolants of �af . Red triangles correspond to MPS data from
Ref. [17]. The nearest-neighbor (NN) TFIM universality class is
illustrated with a gray background. (Inset) The gap �af as a function
of λ for α = 2. Dashed line refers to bare series and solid lines
correspond to different order-8 DlogPadé extrapolants.

They found that the critical point increases monotonously from
λc = −0.5 to λc → −∞ when varying α from ∞ to 0.

We used DlogPadé extrapolation of �af to extract the
critical point λc (see Fig. 4) and the critical exponent zν for
various values of α. From renormalization group calculations
one expects the system to be in the same universality class
as the nearest-neighbor TFIM for α � 9/4 [17]. Our LCE
for the critical line are in quantitative agreement with MPS
calculations in this α regime and we find indeed a critical
exponent zν close to one, e.g., zν = 1.012(3) for α = 9/4.
The situation is more peculiar for α < 9/4. Here the MPS
calculations suggests continuously varying critical exponents
and, furthermore, a breakdown of the area law due to the
long-range nature of the interaction even inside the gapped
polarized phase [7,17]. Interestingly, the deviations LCE and
MPS are already large for α = 2 (see inset of Fig. 4). This
suggests that either the critical exponent zν grows extremely
for α < 9/4 (we find zν = 1.7(5) for α = 2), the quantum-
critical breakdown of the polarized phase is not at all described
by a simple algebraic divergence, but nonperturbative terms are
present which cannot be captured by the LCE, or this highly
entangled and long-range α regime is also very challenging
for the MPS calculation.

VII. CONCLUSION

We established that LCEs using perturbative continuous
unitary transformations are a flexible and promising approach
to treat long-range interactions in quantum many-body sys-
tems. As a proof of principle, we have applied LCEs to
the long-range transverse-field Ising chain obtaining highly
competitive results compared to existing numerical data. This
opens the door for microscopic calculations of two- and three-
dimensional correlated quantum systems with long-range
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interactions of arbitrary nature important for condensed matter
physics and quantum optics.
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APPENDIX A: WHITE-GRAPH EXPANSION OF THE
LONG-RANGE TFIM

We investigated the critical behavior of the one-dimensional
TFIM with algebraically decaying long-range interactions

H = −1

2

∑
j

σ z
j − λ

∑
i �=j

1

|i − j |α σ x
i σ x

j (A1)

using perturbative continuous unitary transformations about
the high-field limit.

To this end, we perform a Matsubara-Matsuda transforma-
tion [28] and replace the Pauli matrices σκ

i , κ ∈ {x,z} with
hardcore-boson annihilation (creation) operators b

(†)
i :

σx
i = b

†
i + bi, σ z

i = 1 − 2n̂i , with n̂i = b
†
i bi . (A2)

The ground state of polarized spins in the limit λ → 0
becomes the vacuum state in the bosonic quasiparticle picture
while spin-flip excitations correspond to hardcore bosons
located on the lattice sites. In this formulation, we end up
with Eq. (5) in the main body of the manuscript,

H =
∑

j

n̂j − λ
∑
i �=j

gα(i − j )(b†i b
†
j + b

†
i bj + H.c.), (A3)

which is of the form (2) with Nmax = 2 and gα(i − j ) ≡ |i −
j |−α .

In pCUTs, Hamiltonian (2) is mapped up to high or-
ders in perturbation to an effective Hamiltonian Heff with
[Heff,Q] = 0. The block-diagonal Heff conserves therefore
the number of quasiparticles which correspond to dressed
spin-flip excitations in our case. Here we focus on the one-qp
sector where the effective Hamiltonian is given as a hopping
Hamiltonian of the form

H1qp =
∑

i

∑
δ

aδ(b†i bi+δ + H.c.), (A4)

with aδ denoting the hopping amplitude of distance δ between
two sites on the chain. In pCUTs, these hopping amplitudes
are derived up to high orders in perturbation.

Using the Fourier transformation

b
†
j = 1√

Ns

∑
q

eiqj b†q, bj = 1√
Ns

∑
q

e−iqj bq (A5)

with the number of lattice sites Ns, the one-qp Hamiltonian
(A4) is readily diagonalized:

H1qp =
∑

q

ωq b†qbq . (A6)

Here, ωq = a0 + 2
∑

δ>0 aδ cos(q δ) is the one-qp dispersion.
The minimum of the dispersion corresponds to the one-qp gap
� ≡ minq ωq . For the long-range TFIM, the one-qp gap � is

located at momentum q� = 0 for a ferromagnetic and q� = π

for an antiferromagnetic Ising interaction, respectively.
We have calculated this quasiparticle gap � as a series in

the perturbation parameter λ,

�(λ) = 1 + p1λ + p2λ
2 + · · · + pkλ

k, (A7)

up to order k = 8. All prefactors pr depend on q� and can be
analytically expressed as

pr =
∑

γ

tr,γ , (A8)

where the sum runs over all graphs γ contributing to the given
order r (cf. Fig. 1 in the main body of the text for an overview
of all graphs up to order 3). In order 8, there are 358 graphs in
total.

The parameter tr,γ is the unique contribution of graph γ to
the coefficient pr in which the aforementioned infinite sums
appear due to the embedding process. In practice, we introduce
a different coupling λj for each link lj of a given graph γ . The
pCUT calculation in order r then yields hopping amplitudes
between sites ν and ν + δ of the form∑

{rj }
Aν,ν+δ,γ ({rj }) λ

r1
1 . . . λrmax

max, (A9)

where
∑

j rj = r holds for each summand and the coefficients
Aν,ν+δ,γ ({rj }) are exact fractions. In the next step, one has to
embed the graph links lj into the infinite chain, which implies

λ
rj

j −→ −λrj

(
1

|δlj |α
)rj

(A10)

and summing over all possible embeddings of graph γ .
Fourier transformation of all hopping processes yields the

parameter tr,γ , which can be written for general momentum q

as

tr,γ = a
(r)
0,γ + 2

∑
δ ∈ γ

δ > 0

a
(r)
δ,γ cos(q δ), (A11)

where

a
(r)
δ,γ = ξγ

∑
ν<Nγ

∑
{rj }

Aν,ν+δ,γ ({rj })

×
∑
sNγ

. . .
∑
s2

∑
s1

f
{rj }
ν,ν+δ,γ ({sj }). (A12)

Here, ν = 0..(Nγ − 1) where Nγ is the total number of
the graph’s lattice sites, ξγ is a factor compensating the
overcounting in the summation due to the graph symmetry,
and Aν,ν+δ,γ ({rj }) is the pCUT graph-dependent hopping
amplitude from graph site ν to ν + δ. The lattice-site indices
on the infinite chain are denoted by sν . For the local hopping
a

(r)
0,γ , the graph’s ground-state energy is subtracted from the

one-qp energy. The factor f
{rj }
ν,ν+δ,γ ({sj }) is a graph-dependent

product of fractions arising from the long-range interactions

f
{rj }
ν,ν+δ,γ ({sj }) = λr

∏
{rj }

1∣∣sνj
− sν ′

j

∣∣rj α
, (A13)

where the sum over all rm equals the order r and sνj
− sν ′

j
=

δlj �= 0.
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FIG. 5. Embedding of a graph with three sites sν into the one-
dimensional lattice in the thermodynamic limit. One after the other,
each of these sites have to be set to any of the (still unoccupied) lattice
sites to get the contribution of all the realizations of the graph in the
actual lattice.

As a simple example, which arises from the pCUT
calculation in order r = 3, let us consider graph (ii) in Fig. 1
in the main body of the manuscript denoted from now on by
γ(ii). This chain graph has three sites s0, s1, and s2 and two
links l1 between the first two sites and l2 between the last two
sites. Here we focus on a specific nearest-neighbor hopping
between site s0 to s1 with a certain set of {rj } in order to
illustrate the embedding procedure and we want to calculate
in the following contribution of this process to the parameter
t3,γ(ii) .

The corresponding contribution for that hopping on graph
γ(ii) is given as

− 1
4λ1λ

2
2. (A14)

The embedding process, illustrated in Fig. 5, means a summa-
tion over all possible realizations of that graph on the actual
lattice. For a long-range interaction, there are clearly infinitely
many possibilities. In our example, we get after embedding
the following contribution to the parameter t3,γ(ii) :

1

4
λ3

∞∑
δl2 = −∞
δl2 �= −δl1

δl2 �= 0

∞∑
δl1 = −∞
δl1 �= 0

1

|δl1 |α
1

|δl2 |2α
cos(qδl1 ), (A15)

where the factor ξγ(ii) = 1/2 comes from the graph’s symmetry
and accounts for a double counting of each realization of the
graph on the lattice. This factor is canceled with the factor 2 in
Eq. (A11). The conditions δl2 �= −δl1 and δlj �= 0 in the sums
ensure that the possibility of two graph sites being located on
the same lattice site is excluded.

For a quantitative evaluation of this expression, the infinite
sums still need to be calculated. This task proves to be difficult
for a general value of q. Here we are only interested in
the two specific momenta q = 0 and q = π . In both cases,
expression (A15) can be evaluated analytically to a product
of two Riemann zeta functions. For the ferromagnetic case
q = 0, one obtains

(2λ3ζ (α)ζ (2α) − 1λ3ζ (3α)) (A16)

and for the antiferromagnetic case, one finds

tλ3(2(21−2α − 1)ζ (α)ζ (2α) + 2−3α(8α − 2)ζ (3α)). (A17)

APPENDIX B: EXTRAPOLATION OF DATA SEQUENCES

The nested infinite sums appearing at perturbative orders
r > 2 cannot be evaluated analytically. Therefore we have

calculated the various contributions by cutting the sums at
finite limits N . In this situation, one has to find proper
schemes to extrapolate the data sequences for different N
to N → ∞. In practice, we have applied the Wynn algorithm
and performed proper scalings in 1/N to the coefficients pr

of the one-qp gap. We haven chosen to extrapolate the pr to
minimize the number of extrapolations, which have to be done
in order to obtain �.

We found that the behavior of the ferromagnetic data se-
quences is fundamentally different from the antiferromagnetic
ones. The ferromagnetic sequences converge monotonically
for large enough N , while in the antiferromagnetic case, one
observes an alternating behavior about the exact value atN →
∞. As a consequence, the antiferromagnetic coefficients pr

converge faster with N than the ferromagnetic parameters and
the scaling behavior of both cases is different.

1. Wynn algorithm

The sums are evaluated for fixed values of α as partial sums
up to the upper boundary N . In the antiferromagnetic case,
the partial sums are alternating. Therefore we consider only
every second data point to get a monotonically converging
series of data points (see also next section). These data points
are extrapolated using Wynn’s epsilon method [29]. Several
extrapolations using a subset of the full series of points from S1

up to SN are made for each pr . These are shown as red crosses
in the figures. Afterwards the Wynn results are averaged using
the best converged data points, which is marked by a vertical
black line in the figures (see, e.g., Fig. 8).

Wynn’s epsilon method is an acceleration method for series,
which are converging slowly, as is the case especially for
small values of α. Setting the start values of the algorithm to
ε0(Sn) = Sn and ε−1(Sn) = 0, the iteration reads

εk+1(Sn) = εk−1(Sn+1) + 1

εk(Sn+1) − εk(Sn)
. (B1)

2. Scaling

As discussed above, each coefficient pr of the gap is a sum
of various nested infinite sums. Truncating the infinite sums
at a finite limit N , one might wonder how the coefficients pr

scale to the infinite-sum limit for different α. Here we argue
that each term of infinite sums scales similarly to the scaling
of a product of Riemann zeta functions, which can be derived
analytically and is therefore used as the proper scaling of the
numerical data sequences.

a. Ferromagnetic case

If one sets q = 0 in the coefficients pr relevant for
ferromagnetic Ising interactions, then all infinite sums become
monotonic [see, for example, Eq. (A15)]. We therefore start
by considering a single harmonic sum of the form

N∑
δ=1

1

δα
, (B2)

which converges to the Riemann zeta function ζ (α) for
N → ∞. We are interested in the leading asymptotics for
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large N of the full sum, i.e., we consider the difference

∞∑
δ=N+1

1

δα
= ζ (α) −

N∑
δ=1

1

δα
. (B3)

We therefore replace the sum by an integral and find for
large N and α > 1∫ ∞

N+1
d δ

1

δα
= (N + 1)−α+1

−α + 1
∝ N−α+1

−α + 1
. (B4)

In the coefficients pr , there are sums of terms with a different
number of infinite sums. If these sums are independent, then
one can factorize them and obtains generically a product of
harmonic sums of the form( N∑

δ1=1

1

δα
1

)( N∑
δ2=1

1

δα
2

)
· · ·

⎛
⎝ N∑

δm=1

1

δα
m

⎞
⎠. (B5)

Each terms scales for large N as ζ (α) + N−α+1

−α+1 so that the
leading scaling of the product is

ζ (α)m + mζ (α)
N−α+1

−α + 1
+ · · ·. (B6)

So all products scale with the same exponent (1 − α) inde-
pendent of m, which we also confirmed numerically. In the
following, we used this scaling for the coefficients pr of the
gap. Here we assume that the nested conditions in the sum,
which usually spoil the possibility to factorize the sums, do
not alter the scaling behavior. First, one can rewrite a nested
product of sums often as a sum of unnested sums. Second,
the term with the largest number of sums arises always from
the longest chain graph contributing in a given order and the
contribution of this chain graph contains always the factorized
product of independent sums.

b. Antiferromagnetic case

If one sets q = π in the coefficients pr relevant for
antiferromagnetic Ising interactions, then all infinite sums
become alternating [see, for example, Eq. (A15)]. We therefore
start by considering a single sum of the form

N∑
δ=1

(−1)δ
1

δα
(B7)

and we denote the limiting value of the sum as ε(α) for
N → ∞. We are again interested in the leading asymptotics
for large N of the full sum, i.e., we consider the difference

∞∑
δ=N+1

(−1)δ
1

δα
= ε(α) −

N∑
δ=1

(−1)δ
1

δα
. (B8)

We then separate odd and even orders corresponding to
negative and positive contributions and we assume N to be
even

∞∑
δ=N+1

(−1)δ
1

δα
=

∞∑
δ=N

2 +1

(
1

(2δ)α
− 1

(2δ − 1)α

)
. (B9)

This sum is again monotonic as above for the ferromag-
netic case. The involved δ are large, since N is supposed

to be large. We therefore perform the Taylor expansion
1/(2δ − 1)α ≈ 1/(2δ)α(1 + α/2δ + · · · ) for the second term
so that the sum is taken over α/(2δ)α+1. In the next step, we
replace the sum again by an integral and find the following
scaling behavior:

∫ ∞

N
2 +1

d δ
α

(2δ)α+1
= −α

(N
2 + 1

)−α

2α+1
∝ −α

2
N−α. (B10)

As for the ferromagnetic case, this can be generalized for
products of independent sums to

ε(α)m − m
α

2
ε(α) N−α + · · · , (B11)

where ε(α) denotes the exact value for N → ∞. So all
products scale with the same exponent −α independent of
m, which we also confirmed numerically. We used this scaling
for the coefficients pr of the gap in the antiferromagnetic case.

APPENDIX C: WYNN EXTRAPOLATION AND
SCALING ANALYSIS

This section contains an exemplary overview of the extrap-
olations and scalings of the prefactors pr [cf. (A7)] for both,
a ferromagnetic and an antiferromagnetic Ising interaction.
Representative data for α = 3/2 and α = 5/2 are shown in
Figs. 6 to 9 for the highest orders 6, 7, and 8. The contributions
from all relevant graphs that are given as nested sums are
evaluated up to an upper boundary N which is only limited by
computation time. These partial sums Sn are shown as green
circles in the figures.

They are plotted against n = 1
N α−1 (n = 1

N α ) for a ferro-
magnetic (antiferromagnetic) Ising interaction. As derived in
the previous section the series of points then should display a
linear behavior for largeN . The last two points (corresponding
to the largest N ) are used to define a linear curve which gives
an estimation for the value of the prefactor for N → ∞. The
curve is shown as a solid green line.

For the calculation of the Wynn extrapolants, a subset of
partial sums (S1, . . . ,SN ) is used and shown as red crosses in
the figures. The antiferromagnetic series display an alternating
behavior due to the location of the gap at q = π [see
Eq. (A15)]. Only every second value is used to obtain a
monotonically converging series. While they give the general
tendency, they deviate from the scaled result considerably
when looking at small values of α in the ferromagnetic case.
However, we found that the differences between the two
extrapolation/scaling schemes do influence the final results
for the critical values and exponents only marginally.

For a better comparison of Wynn extrapolation and scaling
value the Wynn results are averaged from a minimum N when
they seem to have converged. This minimum N is illustrated
by a vertical solid black line in Figs. 6 to 9. The standard
deviation of these points is illustrated by a gray area.

It can be clearly seen that the prefactors for the anti-
ferromagnetic interaction converge much faster than their
ferromagnetic counterpart. Also, as a result, they are in much
better agreement with the Wynn extrapolations.
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FIG. 6. Wynn extrapolation and fit for the highest-order prefac-
tors in the ferromagnetic case for α = 1.5. The black vertical line
marks the point after which Wynn extrapolation points are used for
calculating the average (dashed black line). The gray area around the
mean refers to the standard deviation of those Wynn points.

APPENDIX D: EXTRAPOLATION OF HIGH-ORDER
SERIES

Once the energy gap is given as a power series [cf. Eq. (A7)],
we perform standard dLog-Padé extrapolations. We refer to
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FIG. 7. Wynn extrapolation and fit for the highest-order prefac-
tors in the ferromagnetic case for α = 2.5. The black vertical line
marks the point after which Wynn extrapolation points are used for
calculating the average (dashed black line). The gray area around the
mean refers to the standard deviation of those Wynn points.

the literature for general review of this topic, as for example
given in Ref. [30]. Here we give specific information which
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points.
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is relevant for the particular extrapolation we performed in
the main body of the manuscript, which is essentially the
information given in Ref. [36].

Our series are all of the form

F (λ) =
k∑

n�0

anλ
n = a0 + a1λ + a2λ

2 + · · · akλ
k, (D1)

with λ ∈ R and ai ∈ R. If one has power-law behavior near a
critical value λc, the true physical function F̃ (λ) close to λc is
given by

F̃ (λ) ≈
(

1 − λ

λc

)−θ

A(λ), (D2)

where θ is the associated critical exponent. If A(λ) is analytic
at λ = λc, we can write

F̃ (λ) ≈
(

1 − λ

λc

)−θ

A|λ=λc

(
1 + O

(
1 − λ

λc

))
. (D3)

Near the critical value λc, the logarithmic derivative is then
given by

D̃(λ) := d

dλ
ln F̃ (λ)

≈ θ

λc − λ
{1 + O(λ − λc)}. (D4)

In the case of power-law behavior, the logarithmic derivative
D̃(λ) is therefore expected to exhibit a single pole at λ ≡ λc.

The latter is the reason why so-called Dlog-Padé extrapola-
tion is often used to extract critical points and critical exponents
from high-order series expansions. Dlog-Padé extrapolants of
F (λ) are defined by

dP [L/M]F (λ) = exp

(∫ λ

0
P [L/M]D dλ′

)
(D5)

and represent physically grounded extrapolants in the case of
a second-order phase transition. Here, P [L/M]D denotes a
standard Padé extrapolation of the logarithmic derivative

P [L/M]D := PL(λ)

QM (λ)
= p0 + p1λ + · · · + pLλL

q0 + q1λ + · · · qMλM
, (D6)

with pi ∈ R and qi ∈ R and q0 = 1. Additionally, L and
M have to be chosen so that L + M − 1 � k. Physical
poles of P [L/M]D(λ) then indicate critical values λc, while
the corresponding critical exponent of the pole λc can be

deduced by

θ ≡ PL(λ)
d

dλ
QM (λ)

∣∣∣∣∣
λ=λc

. (D7)

If the exact value (or a quantitative estimate from other
approaches) of λc is known, one can obtain better estimates of
the critical exponent by defining

θ∗(λ) ≡ (λc − λ)D(λ)

≈ θ + O(λ − λc),

where D(λ) is given by Eq. (D4). Then

P [L/M]θ∗
∣∣
λ=λc

= θ (D8)

yields a (biased) estimate of the critical exponent.
In the ferromagnetic case at the upper critical α = 5/3, the

long-range TFIM displays multiplicative corrections close to
the quantum critical point so that one expects the following
critical behavior

F̄ (λ) ≈
(

1 − λ

λc

)−θ(
ln

(
1 − λ

λc

))p

Ā(λ), (D9)

where λc (θ ) is the associated critical point (exponent) as before
while p yields the exponent of multiplicative logarithmic
corrections. Clearly, the extraction of p from a high-order
series expansion is very demanding. The only reasonable
approach is to bias the extrapolation by fixing θ . In our case,
the critical exponent θ is given by the well-known mean-field
value 1/2.

Assuming again that the function Ā(λ) is analytic close to
λc, Eq. (D3) transforms into

F̄ (λ) ≈
(

1 − λ

λc

)−θ(
ln

(
1 − λ

λc

))p

Ā|λ=λc

×
(

1 + O
(

1 − λ

λc

))
(D10)

and the logarithmic derivative Eq. (D4) becomes

D̄(λ) ≈ θ

λc − λ
+ −p

ln (1 − λ/λc)(λc − λ)
+ O(λ − λc).

One can then estimate the multiplicative logarithmic correction
p by defining

p∗(λ) ≡ − ln (1 − λ/λc)[(λc − λ)D(λ) − θ ]

≈ p + O(λ − λc),

and by performing Padé extrapolants of this function

P [L/M]p∗|λ=λc = p. (D11)
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