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Strong charge and spin fluctuations in La2O3Fe2Se2

Guangxi Jin,1,2 Yilin Wang,3 Xi Dai,3 Xinguo Ren,1,2 and Lixin He1,2

1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China,

Hefei 230026, China
3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 30 November 2015; revised manuscript received 13 July 2016; published 25 August 2016)

The electronic structure and magnetic properties of the strongly correlated material La2O3Fe2Se2 are studied
by using both the density-functional theory plus U (DFT + U ) method and the DFT plus Gutzwiller (DFT + G)
variational method. The ground-state magnetic structure of this material obtained with DFT + U is consistent
with recent experiments with an appropriate U parameter, but its band gap is significantly overestimated by
DFT + U , even with a small Hubbard U value. In contrast, the DFT + G method yields a band gap of 0.1–0.2
eV, in excellent agreement with experiment. Detailed analysis shows that the electronic and magnetic properties
of La2O3Fe2Se2 are strongly affected by charge and spin fluctuations which are missing in the DFT + U method.
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I. INTRODUCTION

Because of their close relationship with the Fe-based
high-Tc superconductor, there has been revived interest in iron
oxychalcogenides, R2O3T2X2 (R = rare-earth element, T =
transition-metal element, X = S or Se), which have similar
crystal structures [1,2]. One example is La2O3Fe2Se2 (LOFS),
which was first explored by Mayer et al. [3] and considered to
be a strongly correlated material composed of the transition-
metal ion Fe2+. Analogous to its oxychalcogenides relatives,
LOFS was determined to be a semiconductor by experiment
and claimed to be a Mott insulator [2].

The crystal structure of LOFS with space-group I4/mmm

(No. 139) is shown in Fig. 1, and the corresponding Wyckoff
positions are listed in Table I. It is composed of alternating
layered units of [La2O2]2+ and [Fe2OSe2]2−, stacking along
the c axis. The layered sheets of [La2O2]2+, formed by
edge-sharing La4O tetrahedra, expand along the a-b plane.
The [Fe2OSe2]2− layers consist of face-sharing FeO2Se4

octahedra where the Fe atom is surrounded by two axial oxygen
atoms and four equatorial selenium atoms, forming a tilted
Fe-centered octahedron with the D2h point symmetry. Viewed
along the c axis, the Fe atoms in the [Fe2OSe2]2− layer form a
checkerboard lattice, and the Fe-Fe interactions are mediated
by Fe-O-Fe and Fe-Se-Fe bonds.

Despite the considerable research in the past, there are
still some mysteries about this material to be understood.
First, the magnetic structure of LOFS was found to be
antiferromagnetic (AFM) below the critical temperature of
TN ∼ 90 K. However, two possible magnetic ground states
have been proposed by experiments. The first model (model I)
was proposed in Ref. [2]. Within this model, the AFM ground
state is described by the propagation vector k = (0.5,0,0.5),
and the Fe atoms form a spin-frustrated magnetic structure,
which aligns ferromagnetically (FM) along the a axis and
antiferromagnetically along the b axis [2,4]. An interesting
aspect of this magnetic structure is that it lacks inversion
symmetry, which may further break the inversion symmetry
of the crystal, resulting in ferroelectricity by the exchange-
striction effect as possible magnetic ferroelectrics [5,6]. The
second model (model II) is a noncollinear AFM model, which

is composed of two magnetic sublattices with propagation
vectors k1 = (0.5,0,0.5) and k2 = (0,0.5,0.5), respectively.
This magnetic structure was first proposed by Fuwa et al. [7]
for Nd2O3Fe2Se2 and was identified as the magnetic structure
for LOFS by recent experiments [8,9]. Within this model, the
spins align in parallel in each sublattice and perpendicular
between different sublattices. In contrast with model I, the
magnetic structure of model II still possesses the inversion
symmetry.

Second, the magnitude of the local magnetic moment
measured by different experiments scatters significantly, rang-
ing from 2.62 to 3.50 μB [2,4,8,9]. Thus information from
reliable first-principles calculations will be helpful to clarify
the situation.

Third, LOFS was determined to be a semiconductor by
electrical resistivity measurement with a small band gap of
0.17–0.19 eV [1,4,10]. However, the band gaps obtained by the
DFT + U method, even for very small Hubbard U parameters,
are significantly larger than the experimental values. This
suggests that the Hartree-Fock-type treatment of electron
correlations, which neglects the multiplet effects, might not
be sufficient for this system.

In this paper, we first identify the ground-state magnetic
structure of LOFS via first-principles calculations. We calcu-
lated the total energies of different magnetic structures using
density-functional theory (DFT) with an on-site Coulomb
interaction correction (DFT + U ), including the two exper-
imentally proposed magnetic structure models. Our results
suggest that the model II spin configuration is the ground-state
magnetic structure of LOFS. However, the DFT + U method
greatly overestimates the band gap of LOFS [11]. In order to
correctly describe the electronic structure of LOFS [1,10], we
further calculated the electronic and magnetic properties of this
compound by the DFT plus Gutzwiller (DFT + G) method.
With appropriate U,J parameters, the obtained DFT + G band
gap is approximately 0.1–0.2 eV, in excellent agreement with
experiment. The local magnetic moment obtained by DFT +
G is about 3.0 μB , falling within the range of experimental
results, but is somewhat smaller than the DFT + U values,
which are approximately 3.4–3.6 μB . Detailed analysis shows
that there are strong charge and spin fluctuations in this system,
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FIG. 1. (a) Crystal structure of LOFS where green, red, blue,
and yellow balls represent La3+, O2−, Fe2+, and Se2−, respectively;
(b) Symmetry points in the Brillouin zone; (c) FeO2Se4 octahedra
where the Fe atom is surrounded by two axial oxide atoms and four
equatorial selenide atoms, forming a tilted Fe-centered octahedron
with the D2h point symmetry.

which are responsible for the significant reduction of the
band gap and the magnetic moments. The strong charge and
spin-fluctuation effects to the electronic structures of various
iron pnictides have been studied previously [12–18], however
most of these materials are metals with bad-metal behavior,
whereas LOFS is a semiconductor [1,4].

The rest of the paper is organized as follows. In Sec. II, the
methods used in our calculations are described. In Sec. III A,
we determine the ground-state magnetic structure of LOFS
by comparing the total energies of various spin configurations
using the DFT + U method. In Sec. III B, we study its band
structure using the DFT + G method. A summary of our work
is given in Sec. IV.

II. COMPUTATIONAL DETAILS

A. DFT + U

We perform first-principles calculations based on DFT
within the spin-polarized generalized gradient approximation
(GGA) and Perdew-Burke-Ernzerhof functional [19], imple-

TABLE I. Internal atomic coordinates (IACs) of nonequivalent
Wyckoff positions (WPs) with the different occupied atoms (OAs) in
the LOFS crystal where the oxygen atoms occupy two nonequivalent
WPs, which are denoted as O(1) and O(2) below.

WP OA IAC

4e La ( 1
2 , 1

2 ,0.18407)
4d O(1) ( 1

2 ,0, 1
4 )

4c Fe ( 1
2 ,0,0)

2b O(2) ( 1
2 , 1

2 ,0)
4e Se (0,0,0.09618)

mented in the Vienna ab initio simulations package [20,21].
The projector-augmented-wave pseudopotentials with a
500-eV plane-wave cutoff are used. To account for the
correlation effect of Fe atoms, we apply on-site Coulomb
interaction U as is performed in the DFT + U scheme [22].
The total energies are converged to 10−8 eV.

B. DFT + G

LOFS is a strongly correlated system, whose band structure
understandably cannot be well described by single-particle
mean-field approximations, such as DFT + U . As mentioned
above and detailed below, the band gaps obtained from DFT +
U calculations are too big. To correct this, we resort to the DFT
+ G variational method [23,24], which can treat the multiplet
effects more accurately [16]. The DFT + G method starts with
the following many-body Hamiltonian:

Ĥ = ĤT B + Ĥint + Ĥdc

= ĤT B +
∑

i

Ĥi,atom −
∑

i

Ĥi,dc. (1)

The first term in Eq. (1) is a d-p tight-binding (TB)
Hamiltonian constructed from a non-spin-polarized GGA band
structure, projected to the d-p manifold of maximally localized
Wannier functions [25–28]. This term apparently describes
the hopping of electrons. Since the Wannier functions contain
not only the localized 3d orbitals of Fe atoms, but also the
extended 2p orbitals of O atoms and 4p orbitals of Se atoms,
the model takes account of the hybridization of p-d orbitals
[13]. Using the Wannier functions, the TB term can be written
more explicitly as

ĤT B =
∑
i,j

m1,m2
σ

t
m1σ,m2σ
i,j d̂

†
im1σ

d̂jm2σ

+
∑
i,j

m1,m2
σ

t
m1σ,m2σ
i,j p̂

†
im1σ

p̂jm2σ

+
∑
i,j

m1,m2
σ

t
m1σ,m2σ
i,j d̂

†
im1σ

p̂jm2σ

+
∑
i,j

m1,m2
σ

t
m1σ,m2σ
i,j p̂

†
im1σ

d̂jm2σ (2)

where the operator d̂
†
imσ (d̂imσ ) creates (annihilates) a 3d

electron of a Fe atom on site i with orbital m and spin σ .
Likewise, p̂

†
imσ (p̂imσ ) creates (annihilates) a p electron of O

and Se atoms. As depicted in Fig. 2, the TB band structures
are in excellent agreement with the original band structures
obtained from GGA calculations.

The second term in Eq. (1) is a rotationally invariant
Coulomb interaction Hamiltonian describing the strong on-site
electron-electron interactions within the 3d orbitals of Fe
atoms. We assume the spherical symmetry of local envi-
ronment of the Fe atom and use a full interaction tensor as
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FIG. 2. Comparison of the non-spin-polarized GGA band struc-
tures and the down-folded tight-binding band structures.

Um1σ,m2σ ′,m3σ ′,m4σ . For the detailed definition of the U tensor,
we follow the method described in Ref. [29]. Within the
complex spherical harmonics basis, the second term of the
Hamiltonian in Eq. (1) can be explicitly expressed as [30]

Ĥi,atom =
∑

m1,m2,m3,m4
σ,σ ′

Um1σ,m2σ ′,m3σ ′,m4σ

× d̂†
m1σ

d̂
†
m2σ ′ d̂m3σ ′ d̂m4σ , (3)

where the U tensor satisfies the condition,

Um1σ,m2σ ′,m3σ ′,m4σ = δm1+m2,m3+m4

∑
k

c
m1,m4
k c

m2,m3
k F k . (4)

Here, m1, m2, m3, and m4 are the orbital indices, σ,σ ′ denote
the spin states, c

m1,m4
k are the Gaunt coefficients, and Fk are

the Slater integrals. For the d shell, k = 0,2,4, and hence
the full U tensor can be specified by the parameters F 0, F 2,
and F 4. According to Wang et al. [29], F 4/F 2 = 0.625 is an
approximation with good accuracy for the d shell [31] and
hence is also adopted in this paper. The intraorbital Coulomb
interaction and Hund’s rule coupling are set to be U = F 0 +
4

49F 2 + 4
49F 4 and J = 5

98 (F 2 + F 4), respectively. Therefore,
given the parameter values of either F 0,F 2 or U,J , we can
construct the full interaction U tensor.

The last term of Eq. (1) is a double-counting (DC) term in
order to subtract the correlation effect which has been partially
included in DFT calculations. The DC term is not uniquely
defined, and here we adopted the choice used in Ref. [32]
where it can be expressed as

Ĥdc =
∑

σ

Uσ
dcn̂

σ
d ,

Uσ
dc = U

(
nd − 1

2

)
− J

(
nσ

d − 1
)/

2, (5)

nσ
d =

∑
m

〈�G|d̂†
mσ d̂mσ |�G〉.

When treating the nonmagnetic DFT band structure as the
starting point of DFT + G calculations [16], the average
occupation number of 3d electrons per Fe is calculated to
be n̄d = 6.828.

The Gutzwiller trial wave-function |�G〉 is constructed by
applying a projection operator P̂ on the uncorrelated wave-
function |�0〉 from DFT calculations,

|�G〉 = P̂ |�0〉, (6)

with

P̂ =
∏

R

P̂R =
∏

R

∑
�,�′

λ(R)��′ |�,R〉〈�′,R|, (7)

where |�,R〉 are the eigenstates of the on-site Hamiltonian
Ĥi,atom for site R and λ(R)��′ are the Gutzwiller variational
parameters to be determined by minimizing the total energy of
the ground-state |�G〉 through the variational method [23,24].
More details of this method can be found in Refs. [24,33].

III. RESULTS AND DISCUSSION

In this section, we first study the magnetic ground state of
LOFS using the DFT + U method. The most stable magnetic
configuration coming out from our DFT + U calculations
agrees with the one proposed by Fuwa and co-workers
[7]. However, as mentioned above, the DFT + U method
significantly overestimates the band gap of LOFS. We then
study the band structure of LOFS using the DFT + G method.

A. Results from DFT + U

In order to identify the magnetic structure of the ground
state, we performed a series of DFT + U total energy
calculations for different magnetic configurations. In LOFS,
each unit cell contains two [Fe2OSe2]2− layers along the c

axis. Atomic positions of the second [Fe2OSe2]2− layer are
shifted by (0.5, 0.5, 0.5) of the lattice vectors relative to the
first layer. Possible magnetic configurations in each layer are
shown in Fig. 3. The magnetic structures in a unit cell are then
the combinations of the magnetic configurations of the two
layers. For example the configuration [(b) + (a)] means the
first layer takes configuration (b), whereas the second layer
takes configuration (a). This notational system is similar to
that used by Zhu et al. [1] and Zhao et al. [11].

We calculated the total energies of seven magnetic struc-
tures, including (1) FM[(a) + (a)], (2) AFM1[(c) + (c)], (3)
AFM2[(b) + (a)], (4) AFM3[(g) + (g)], (5) AFM4[(d) +
(f )], (6) AFM5[(e) + (e)], and (7) AFM6[(d) + (d)]. In the
AFM3 configuration, the spins in each [Fe2OSe2]2− layer form
a double stripe AFM structure along the a axis [2], which
is different from the structure used in Refs. [1,11]. AFM3 is
actually the experimental magnetic structure model I proposed
by Free and Evans [2], whereas the AFM6 configuration
corresponds to the experimental magnetic model II, within
the collinear approximation. Such an approximation was
previously adopted for Sr2F2Fe2OS2 in Ref. [11] because the
magnetic-anisotropy energies are rather small compared to the
energy differences between different configurations.

Experimentally it was found that the spins form AFM along
the c axis. We calculate the total energy of spin configurations
with propagation vectors (1/2,0,1/2) and (1/2,0,0) for the
experimental magnetic model I (AFM3) using a 2 × 1 × 2 su-
percell. We found that the energy difference between the AFM
spin configuration along the c axis with magnetic propagation
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FIG. 3. (a)–(g) The magnetic structures of one layer of Fe atoms
on the crystalline ab plane. Only the Fe atoms are shown in the figures,
which is indicated by large blue circles; and the small red circle and
yellow cross represent up- and down-spin orientations, respectively.

vector k = (0.5,0,0.5) and the ferromagnetic configuration
along the c axis with propagation vector k = (0.5,0,0) is
only about 0.1 meV in a 2 × 1 × 2 sueprcell. Therefore,
in the following studies, we ignore the antiferromagnetic
configuration between the unit cells along the c axis and focus
on the magnetic structure on the ab plane. To accommodate
all seven magnetic structures, we use a 2 × 2 × 1 supercell.
The corresponding Monkhorst k mesh is set to 8 × 8 × 4.

The calculated energies for different magnetic configura-
tions are listed in Table II for various effective Coulomb
Ueff = U -J , where U and J are the Coulomb and Hund’s
exchange interactions, respectively. One can see that, for all
Ueff , the total energy of AFM6 is significantly lower than
that of AFM3. The magnetic ground state of LOFS is AFM6

TABLE II. Relative energy �E (meV/unit cell) of different
magnetic configurations and various parameter Ueff (in eV) with the
reference energy of FM where the crystal structure was constrained
at I4/mmm space-group symmetry.

Ueff FM AFM1 AFM2 AFM3 AFM4 AFM5 AFM6

0 0 159.65 15.67 −120.09 −40.61 −10.04 −128.78
1.5 0 −237.42 −52.06 −237.12 −236.51 −341.42 −394.25
3.0 0 −220.76 −49.52 −194.86 −194.88 −273.04 −303.11
4.5 0 −184.12 −42.42 −148.38 −148.49 −201.93 −219.38
6.0 0 −601.95 −141.93 −441.21 −441.51 −576.26 −615.93
7.5 0 −485.69 −116.85 −321.79 −321.98 −398.46 −419.15

for Ueff < 6.0 eV. These results are consistent with previous
DFT + U calculations for Sr2F2Fe2OS2 [11]. We therefore
conclude that the experimental magnetic structure model II
should be the ground-state magnetic structure in LOFS. We
note however that, in Ref. [1], the ground state of LOFS was
determined to be AFM6 for Ueff = 0, 1.5, and 3.0 eV but
changed to AFM1 at Ueff = 4.5 eV. We also observe such a
transition but at much larger Ueff = 7.5 eV.

For comparison, we also calculated the total energies of
different magnetic configurations for Pr2O3Fe2Se2, which
has the similar crystal structure as LOFS [34]. We found
that its magnetic ground state is also AFM6 within the
DFT + U approximation for Ueff less than 6.0 eV, the same
as that of LOFS [1]. These results suggest that the model II
magnetic structure should be the common character for the
oxychalcogenide materials R2O3Fe2Se2.

After determining the ground-state magnetic structure,
we calculate the magnetic moments of LOFS in the AFM6
configuration for different values of Ueff . The results are listed
in Table III. The calculated magnetic moments of the Fe ions
for different Ueff values are around 3.2 μB–3.7 μB , which are
in agreement with the experimental result 3.50 μB , obtained
by McCabe et al. [9].

To study the electronic structure of LOFS, we calculated
the band structure and density of states by using the DFT + U

method for the AFM6 spin configuration using different
Coulomb Ueff = 0–6.0 eV. The typical band structures of
LOFS with Ueff = 1.5 eV are shown in Fig. 4(a). Even for
a small Coulomb Ueff = 1.5 eV, the band gap is as large as
1.12 eV, which is significantly larger than the energy gap of
Eg ∼ 0.17–0.19 eV, extracted from the electrical resistivity
measurement [1,10]. The calculated band gaps as a function
of U are shown in Fig. 4(b). For Ueff = 0, the system is
metallic. For Ueff > 0, there is a nearly linear dependence
of the band gap upon the Ueff value as can be seen from
Fig. 4(b). For a reasonable Ueff = 4.5 eV, the calculated
band gap is approximately 2.0 eV, which is about one order
of magnitude larger than the experimental value. To check

TABLE III. Magnetic moment (magmom) of LOFS, calculated
by the DFT + U method under the AFM6 magnetic configuration
with different Ueff ’s.

Ueff (eV) 0 1.5 3.0 4.5 6.0 7.5
Magmom (μB ) 3.2 3.4 3.5 3.6 3.6 3.7
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FIG. 4. (a) Band structure of LOFS calculated by the DFT + U

method under the ground-state magnetic structure AFM6 and Ueff =
1.5 eV. The Fermi energy has been set to 0 eV. (b) Relation between
the band gap of LOFS and Ueff calculated by the DFT + U method
under the ground-state magnetic structure.

the spin-orbital coupling (SOC) effects on the band gaps of
LOFS, we calculate the band structures of LOFS under the
noncollinear magnetic configuration proposed by Ref. [9] for
different Ueff’s with SOC interaction. The results are nearly
the same with those without SOC. The results suggest that
the correlation effects are not accounted for adequately by the
DFT + U method and more advanced methods are needed to
describe the electronic structure of LOFS.

B. Results from DFT + G

To correctly describe the electronic structure of LOFS, we
perform DFT + G calculations under the magnetic structures
AFM1, AFM3, AFM5, and AFM6. The relative energies of
these magnetic structures are listed in Table IV for the typical
values of U = 6.0 eV, J = 0.25U . As shown in the table, the

TABLE IV. Relative energy �E (meV/unit cell) of four major
magnetic configurations with U = 6.0 eV, J = 0.25U , and the
energy of AFM1 as the reference energy where the crystal structure
was constrained at I4/mmm space-group symmetry.

Configuration AFM1 AFM3 AFM5 AFM6

�E 0.0 −237.5 −266.2 −400.0

TABLE V. The band gaps of LOFS, calculated by DFT +
G method, under the AFM6 magnetic configuration for different
Hubbard U and Hund’s J parameters.

U (eV) 3.0 4.0 5.0 6.0 7.0

J = 0.10U 0.0 0.0 0.0 0.0 0.0
0.15U 0.0 0.0 0.0 0.0 0.061
0.20U 0.0 0.0 0.0 0.063 0.137
0.25U 0.0 0.0 0.0 0.121 0.203
0.30U 0.0 0.0 0.0 0.008 0.075

magnetic configuration AFM6 [8,9] has much lower energy
than other configurations, especially AFM3 [2,4]. We therefore
focus on AFM6 in the following discussions and perform
calculations with a series of Hubbard U = 3.0–7.0 eV and
Hund’s exchange J = 0.1–0.3U .

The calculated band gaps for different Hubbard U and
Hund’s J parameters are listed in Table V. When U and J

are small, LOFS is a metal. However, when further increasing
U and J , LOFS becomes an insulator. The DFT + G calculated
band gap is approximately 0.121 eV for U = 6.0 eV and
J = 0.25U , which is in excellent agreement with the value
obtained by the electric resistivity measurement [1,10]. This is
in stark contrast with those obtained from DFT and DFT + U

calculations. For example, DFT + U gives a very large band
gap (approximately 2.28 eV) with Ueff = 4.5 eV, whereas
DFT gives a metal for LOFS. These results clearly demonstrate
that the multiplet effects, which are missing in the DFT + U

methods but captured in the DFT + G method, are crucial for
a correct description of the electronic structure of LOFS.

We also calculate the magnetic moments of Fe atoms
using the Gutzwiller wave functions for different U and J

parameters, and the results were listed in Table VI. The
magnetic moments of Fe atoms are varying from 1.51 μB

with U = 3.0 eV and J = 0.1U to 3.09 μB with U = 7.0 eV
and J = 0.25U . The magnetic moment is 3.08 μB with
U = 6.0 eV and J = 0.25U between the experimental results
of Refs. [2,8], which are somehow smaller than those obtained
from DFT + U calculations. The magnetic moments increase
as the U and J parameters increase [16,18] but almost saturates
for U > 5 and J > 1 eV.

The differences between the DFT + U and the DFT +
G methods are that the DFT + G methods correctly take
account of the multiplet effects resulting from the charge
and spin fluctuation, whereas in the DFT + U methods only
a single atomic configuration is considered. To understand

TABLE VI. The magnetic moments (unit μB ) of the Fe atoms
in LOFS, calculated by the DFT + G method under the AFM6
magnetic configuration with different on-site Hubbard U and Hund’s
J parameters.

U (eV) 3.0 4.0 5.0 6.0 7.0

J = 0.10U 1.51 1.68 2.40 2.88 2.98
0.15U 2.01 2.82 2.96 3.04 3.07
0.20U 2.75 2.92 3.03 3.07 3.09
0.25U 2.83 2.97 3.05 3.08 3.09
0.30U 2.91 3.00 3.05 3.08 3.09
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FIG. 5. Energy levels of Fe 3d states under crystal-field splitting.

the results, we further analyzed the Gutzwiller wave func-
tions. We calculated the probability of the atomic multiplets
|I 〉 of Fe atoms using the Gutzwiller wave functions as
PI = 〈G|I 〉〈I |G〉. To display the atomic configuration more
explicitly, the crystal-field splitting of a Fe atom is shown in
Fig. 5. As we see the five Fe 3d orbitals are very close in
energy near the Fermi level. It is expected that the charge
fluctuation is strong in this system. The ten major atomic
configurations with relatively large populations are shown in
Fig. 6(a), and corresponding populations are shown in Fig. 6(b)
for U = 6.0 eV and J = 0.25U .

First we look at the electron occupation numbers of these
atomic configurations. The atomic configuration cf1 has occu-

FIG. 6. (a) Illustration of the main atomic configurations with
relatively large probability; (b) probability of the atomic configura-
tions |I 〉 in the Gutzwiller wave function |G〉, calculated with U =
6.0 eV and J = 0.25U under the ground-state magnetic structure.
Here, the atomic configurations with occupation numbers 5–8 are
represented by histograms with the colors yellow, red, blue, and green,
respectively.

pation number n = 5 (yellow) and has the population P (n =
5) = 0.015. Configurations cf2 and cf3 have occupation
number 6 (red), and their total population P (n = 6) = 0.247.
Configurations cf4, cf5, cf6, cf7, and cf8 have occupation
number 7 (blue) and total population P (n = 7) = 0.4438, and
configurations cf9 and cf10 have occupation number 8 (green)
with total population P (n = 8) = 0.0826. These results sug-
gest that there are strong charge fluctuations on the Fe ions.
In the DFT + U scheme, when adding a new electron into the
system, it is forced to occupy one particular orbital and leads to
very high energy. However, if charge fluctuations are allowed,
the electron may partially occupy different configurations,
resulting in much lower energy. Therefore, although the local
interaction in this material is quite strong leading to Mott
insulator behavior, the charge and spin fluctuation are still
strong for such a multiorbital system, which reduces the single-
particle gap from the value obtained by Hartree-Fock-type
approximation (i.e., DFT + U ) to about 0.1–0.2 eV.

Besides the charge fluctuation, there are also strong spin
fluctuations on the Fe atoms. Configurations cf3, cf8, cf9,
and cf10 have total spin S = 2. The total population of
these configurations is P (S = 2) = 0.0827. Configurations
cf4, cf5, cf6, and cf7 have total spin S = 3, and the their
total population is P (S = 3) = 0.4438. Configuration cf2
has S = 4 and P (S = 4) = 0.247, and cf1 has S = 5 with
P (S = 5) = 0.015. The most populated spin states in the DFT
+ G calculations are S = 3, which is smaller than the formal
magnetic state S = 4 in the DFT + U calculations. As a result,
the DFT + G calculated magnetic moments of Fe ions are
smaller than those calculated by the DFT + U methods.

We note that Giovannetti et al. [35] and Freelon et al.
[36] have studied the Mott insulator transition in LOFS using
DFT + dynamical mean-field theory methods. However, both
works focus on the high-temperature paramagnetic phase of
LOFS, whereas in this paper, we study the low-temperature
antiferromagnetic phase of LOFS. In contrast to the p-d
model used in this paper, only d orbitals were considered
in the previous works [35,36], and therefore the Mott insulator
transition occurs at smaller U and J parameters.

IV. SUMMARY

We have studied the electronic structure and magnetic
properties of the strongly correlated material La2O3Fe2Se2

using both DFT + U and DFT + G methods. The ground-state
magnetic configurations obtained from DFT + U calculations
with the appropriate parameter Ueff are in agreement with most
recent experiments [8,9]. However, DFT + U calculations
greatly overestimate the band gap of the material. We then
investigate the electronic structure using the DFT + G method,
and the results show La2O3Fe2Se2 is a narrow gap semicon-
ductor, in excellent agreement with experiments. We show
there are strong charge and spin fluctuations on the Fe atoms
that greatly reduce the band gap from the DFT + U value.
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