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Magnetic hyperbolic metamaterial of high-index nanowires
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We show that the axial component of the magnetic permeability tensor is resonant for a wire medium consisting
of high-index epsilon-positive nanowires, and its real part changes the sign at a certain frequency. At this frequency
the medium experiences the topological phase transition between the elliptic and hyperbolic type of dispersion.
We show that the transition regime is characterized by an extremely strong dependence of the permeability on
the wave vector. This implies very high density of electromagnetic states that results in the filamentary pattern
and noticeable Purcell factor for a transversely oriented magnetic dipole.
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I. INTRODUCTION

Simple wire media, defined as optically dense arrays
of parallel metal wires in a host dielectric material, have
been getting considerable attention since electromagnetic
metamaterials were introduced. Many applications of such
media have been suggested from radio frequencies where the
period of wire media is on the millimeter scale to optical
frequencies where this period is submicron. Among them one
can mention biological sensing [1], subwavelength imaging
and endoscopy with image magnification [2–4], enhancement
of quantum emitters, thermal sources, and classical dipole
radiators [5–7], enhancement of radiative heat transfer [8–10],
etc. More details can be found in Ref. [11]. In all these works,
electromagnetic properties of wire media were described in a
condensed form via an effective permittivity tensor:

ε =
⎛
⎝ε⊥ 0 0

0 ε⊥ 0
0 0 ε‖

⎞
⎠. (1)

Here, ε⊥ and ε‖ are the perpendicular (transversal) and parallel
(axial) components with respect to the axis of the wires.
Therefore, standard wire media are uniaxially anisotropic
materials (though not usual ones because they possess spatial
dispersion—dependence of ε on the wave vector k [12,13]).

At infrared frequencies, the relative dielectric constant of
the metal nanowires is highly negative. If the fraction ratio of
the metal in the effective medium is low, the perpendicular
component ε⊥ of the permittivity is approximately equal to
the permittivity of the host medium, whereas the parallel
component ε‖ has a negative sign [11,12]. For the dispersion,
it implies that the transverse magnetic (TM) polarized wave
has an open dispersion surface similar to a hyperboloid
[11,13]. This dispersion surface results in the high density of
electromagnetic states and enhancement of a subwavelength
electric dipole located in the medium orthogonally to the
wires [5,13]. The radiation of a magnetic dipole can also
be enhanced, but this effect is lower because the dipole
produces mainly TE waves whose electric field is orthogonal
to nanowires. These transversely electric (TE) polarized
waves weakly interact with the wire medium, and their
dispersion surfaces are rather similar to spheres like dispersion

surfaces of free space. Notice that for metal nanowires
the effective permeability tensor (μ) is practically equal to
unity [11].

Recently, in Ref. [14] one studied an anisotropic medium
with artificial magnetism. This medium is dual to the di-
electric hyperbolic metamaterial described by the indefinite
tensor in Eq. (1). In this magnetic metamaterial the effective
permeability tensor is not unity, and the dispersion surfaces
of TE-polarized waves are hyperbolic and elliptic. However,
the medium in Ref. [14] is not a wire medium. It is a racemic
array of metal helices with both left-handedness and right-
handedness. Such media, in accordance to initial works [15,16]
where they were introduced, should be referred to as spiral
media. The spiral medium of Ref. [14] operates at microwave
frequencies, where metals are close to perfect conductors. In
the present paper, we study wire media at optical frequen-
cies. It is worth noting that at these frequencies, magnetic
hyperbolic media have been recently observed experimentally.
These media are called multilayer fishnet metamaterials
[17].

Below, we theoretically demonstrate that a simple wire
medium (see Fig. 1) may have in the infrared range similar
electromagnetic properties to those manifested by Ref. [14]
exhibited at microwaves, however, there are also significant
peculiarities which share our wire medium out from all
hyperbolic metamaterials. Nanowires of our wire medium
should be made of high-index epsilon-positive materials such
as lithium tantalate, silicon carbide, hexagonal boron nitride,
or some other polaritonic materials (polaritonic rods have
been used at THz and infrared frequencies to form effective
bulk uniaxial media [6,18,19]. However, to the best of our
knowledge, only the electric properties of these media have
been considered). The resonance of the axial component of
the effective permeability tensor arises because the dynamic
magnetic polarizability of the high-index dielectric wire is
resonant and originates from the Mie resonance of a single
nanowire. We show that this axial permeability changes its sign
at a certain frequency and in a narrow frequency range around
this transition is a very sharp function of the wave vector.
According to Ref. [20], this transition is called topological
phase transition since the dispersion surface of the medium
transits from the closed surface (elliptical regime) to open
surface (hyperbolic regime). The corresponding topological
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FIG. 1. A medium of long parallel wires which are set in a square
lattice. The wires are made of materials whose relative dielectric
constant is much larger than unity (εr � 1). Here, a and b are the
wires radius and lattice constant, respectively. For simplicity, the host
medium is free space.

transition is related to the resonant enhancement of radiation
of a subwavelength dipole located inside the medium. It is an
expected effect which is similar to that studied in Ref. [6].
However, in the present case it holds for a magnetic dipole
oriented transversely to nanowires. The sharp dependence of
the permeability on the wave vector results in the unusual
property of our wire medium—the radiation of the internal
magnetic dipole is concentrated at the line which passes
through the dipole center parallel to the optical axis. This
property is also detectable from the dispersion contours
(sections of the dispersion surfaces) of the TE waves. We
show these dispersion contours in the region of topological
transition and fully concentrate on two effects: the pattern of
the internal source and its Purcell factor.

The paper is organized as follows: In Sec. II, we obtain
analytical expressions for the magnetic polarizability of a
high-index dielectric cylinder and the effective permeability
of the corresponding wire medium. In Sec. III, we discuss
the implications of the resonant and nonlocal behavior of this
permeability and show the simulated results for the radiation
of an embedded magnetic dipole. In Sec. IV, we present a brief
summary of the work.

II. EFFECTIVE PERMEABILITY OF THE WIRE MEDIUM

Let a plane wave with electric field polarized along y axis
illuminate a dielectric cylinder, as is shown in Fig. 2. The
incident wave has perpendicular polarization, and its magnetic
field along z axis can be written as

Hzinc = H0e
−j (kxx+kzz), (2)

where H0 is the magnitude, and kz and kx are the wave vector
components in the free space. Due to the cylindrical geometry,
it is proper to expand the field into cylindrical harmonics.

x

z
k 0

H inc

θ inc

ε >> 1r

kz az

FIG. 2. An infinite dielectric cylinder illuminated by a TE-
polarized plane wave.

Therefore,

Hzinc = H0

∑
m

[(−j )mJm(h0R)ejmφ]e−jkzz, (3)

in which Jm(x) is the Bessel function (first kind, order m), h0 =√
k2

0 − k2
z (k0 is the free-space wave number) and (R,φ,z) are

the components of the cylindrical coordinate system.
Taking into account the scattering and penetration of the

wave into the dielectric cylinder, the total electromagnetic
fields outside and inside the cylinder can be described by

Ezout =
∑
m

[
CmH (2)

m (h0R)ejmφ
]
e−jkzz,

Hzout =
∑
m

[(
DmH (2)

m (h0R) + H0(−j )mJm(h0R)
)
ejmφ

]
e−jkzz,

(4)

and

Ezin =
∑
m

[AmJm(hR)ejmφ]e−jkzz,

Hzin =
∑
m

[BmJm(hR)ejmφ]e−jkzz, (5)

where h =
√

k2
0εr − k2

z (εr denotes the relative dielectric
constant of the cylinder) and H (2)

m (x) represents the Hankel
function (second kind, order m). The other components of the
electromagnetic fields (ER , HR , Eφ , and Hφ) can be readily
derived by solving the Maxwell’s equations. Therefore,

ER = 1

h2

(
−jkz

∂Ez

∂R
− jωμ0

R

∂Hz

∂φ

)
,

Eφ = 1

h2

(−jkz

R

∂Ez

∂φ
+ jωμ0

∂Hz

∂R

)
,

HR = 1

h2

(
jωε

R

∂Ez

∂φ
− jkz

∂Hz

∂R

)
,

Hφ = 1

h2

(
−jωε

∂Ez

∂R
− jkz

R

∂Hz

∂φ

)
. (6)

The above equation [Eq. (6)] indicates that the waves inside
and outside the cylinder are hybrid. In Eqs. (4) and (5), the
unknown coefficients (Am, Bm, Cm, and Dm) are related to
each other through boundary conditions, i.e., the tangential
components of the electric and magnetic fields should be
continuous at the radius of the cylinder (R = a). After
determining the fields inside the cylinder, we can obtain the
polarization current that is equal to Jp = jωε0(εr − 1)Ein. On
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the other hand, we know that the magnetic moment per unit
length of our cylinder is described by

m = 1

2
μ0

∫
S

r × JpdS, (7)

where r = R + zaz is the distance vector from the origin to the
current element. Therefore, the z component of the magnetic
moment can be obtained as

mz = 1

2
jωμ0ε0(εr − 1)

∫
S

R2EφindRdφ, (8)

in which the φ component of the electric field inside the
cylinder is as follows:

Eφin = jωμ0

h

∑
m

[(
Am

mkz

jωμ0hR
Jm(hR)

+ BmJ ′
m(hR)

)
ejmφ

]
e−jkzz. (9)

The function J ′
m(x) is the derivative of Jm(x). From the

Eqs. (8) and (9), we can see that the only cylindrical harmonic
which is responsible for nonzero magnetic moment per unit
length produced by the magnetic field of the incident wave is
m = 0. Then, based on Eq. (9), we should only calculate the
coefficient B0—A0 gives the zero contribution into Eq. (8).
From imposing the boundary conditions to determine the
unknown coefficients, we can achieve

B0 = j2h

πh0a
[
h0J

′
0(ha)H (2)

0 (h0a) − hJ0(ha)H ′(2)
0 (h0a)

]H0.

(10)

If we substitute Eq. (10) into Eq. (9) and use Eq. (8), finally,
we derive the magnetic polarizability as

αzz
mm = mz

μ0H0
= j2k2

0(εr − 1)

h0
(
k2

0εr − k2
z

)

× [haJ0(ha) − 2J1(ha)][
h0J1(ha)H (2)

0 (h0a) − hJ0(ha)H (2)
1 (h0a)

] . (11)

Notice that we do not use any approximation to derive the
magnetic polarizability. To keep only the term with m = 0 in
Eq. (9) is the same as to excite our cylinder by only a magnetic
field of the electromagnetic wave letting the external electric
field be zero at the cylinder axis. Adding a corresponding term
to Eq. (2), it is easy to see that the excitation of the cylinder
by two plane waves incident on it from two opposite sides and
forming the standing wave with the node of the electric field
at the z axis results in the same formula (11). It is worth noting
that retaining the term A1 in Eq. (9), we would attribute to
the magnetic moment per unit length the dependence on the
incident electric field, and the response of the cylinder would
be bianisotropic. Keeping only B0 we follow the approach of
Ref. [21] that allows one to avoid the seeming bianisotropy
in the response of a symmetric scatterer. This bianisotropy is
not physically sound and would result in inconsistencies of the
effective-medium model (see, e.g., in Ref. [22]).

The minus sign in the denominator of the second factor in
Eq. (11) allows the resonance of the magnetic polarizability
if εr is positive. This is the fundamental Mie resonance of
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FIG. 3. (a) Real part of the magnetic polarizability versus the
normalized frequency for three different incident angles. The relative
dielectric constant of the dielectric cylinder is assumed to be εr = 120.
(b) Real part of the magnetic polarizability versus the normalized
frequency for three different dielectric constants. Here, we assume
that θinc = π/11.

the cylinder. Since kz enters both h and h0, the polarizability
is nonlocal, i.e., depends on the angle of incidence θinc.
To show the impact of the incidence angle and that of the
dielectric constant εr on the Mie resonance, we plot the
magnetic polarizability as a function of normalized frequency
for several values of εr and θinc. In Fig. 3(a) it is assumed
that εr = 120. Then the Mie resonance occurs approximately
at k0a = 0.22 for all angles. For small angles, the reso-
nance is indeed stronger than that for large angles. Thereby,
we see that the resonant polarizability depends strongly on the
incident angle or—more specifically—on the axial component
kz = k0 cos(θinc) of the wave vector.

At frequencies below the Mie resonance band the magnetic
polarizability is negligibly small. The location of the resonance
on the frequency axis is a function of the dielectric constant
of the cylinder, as can be seen in Fig. 3(b). When εr is not
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very high, the resonance happens at higher k0a and vice versa.
For the accuracy of the effective-medium model it is better
if the resonance occurs at lower k0a. This model requires
that both the radius (a) and the array period (b) of the wires
are sufficiently small compared to the wavelength in the host
medium, in other words, k0a < k0b � 1. Materials such as
lithium tantalate, silicon carbide, or hexagonal boron nitride
which support phonon polaritons would provide such high
dielectric constants at the infrared. The only problem with
these materials may be optical losses which are obviously
noticeable when εr � 1.

Deriving the effective permeability of the lattice we follow
the approach [12,14] which allows us to take into account the
nonlocality also in the electromagnetic interaction of cylinders.
For the axial component of the effective permeability we have
the following formula:

μ‖ = 1 + 1

Acell

(
1

αzz
mm

− Cz
int

)−1

, (12)

which is dual to that obtained for the axial permittivity in
Ref. [12] with the substitution of the magnetic polarizability
by the electric one. Here Acell = b2 and Cz

int is the lattice inter-
action constant responsible for the dipole-dipole interaction. It
is the same for magnetic and electric dipole moment per unit
length of the cylinder and was derived in Ref. [12]:

Cz
int ≈ h2

0

(
j

4
+ 1

2π
ln

(
h0b

4π

)
+ ξ

)
,

ξ = C

2π
+ 1

12
+

∞∑
n=1

(e2π |n| − 1)−1

π |n| . (13)

Here, C is the Euler constant. The mutual interaction of the
wires is very strong and broadens the collective resonance,
therefore the resonance of the effective permeability is not as
narrow band as that of the effective magnetic polarizability. Let
us choose εr = 120 and the fraction volume fv = πa2/b2 =
0.1963 (this corresponds to the relation between the period
and the wire radius b = 4a). In Fig. 4 we depict the axial
component of the effective permeability as a function of kz

for these design parameters. For very low k0a � 0.22, μ‖(kz)
is approximately uniform and close to unity. The increase of
k0a results in increasing μ‖(kz) especially for the transverse
propagation, however it keeps finite and smooth versus kz.
At frequency k0a = 0.22, μ‖(kz) changes its behavior that
corresponds to the topological transition. For k0a = 0.2201
the axial permeability is negative in the interval |kz/k0| < 0.83
and becomes positive in |kz/k0| > 0.83. At |kz/k0| = 0.83,
there is a vertical asymptote. This resonance of μ‖(kz) implies
that the transverse component q of the wave vector experiences
a similar resonance at |kz/k0| = 0.83. It is clear from the
dispersion equation for TE waves in a magnetic hyperbolic
medium [14] (for the case when the host medium is free space
εh = 1):

q2

μ‖(kz)
+ k2

z

μ⊥
= k2

0ε⊥, (14)

in which μ⊥ ≈ 1 and ε⊥ can be found from Ref. [12]. In prac-
tical cases—when optical losses are taken into account—the
resonance of q means that q is a very large imaginary value. As
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FIG. 4. The parallel component of the effective permeability ver-
sus the normalized parallel component of the wave vector, when εr =
120 and fv = 0.1963. (a) Frequencies below the topological transition
k0a = 0.22. Solid blue curve—k0a = 0.2058, solid red one—k0a =
0.2096, solid black one—k0a = 0.2135, solid magenta one—k0a =
0.2173, and dashed blue one—k0a = 0.2182. (b) Frequencies above
the topological transition k0a = 0.22. Dashed red—k0a = 0.2201,
dashed black—k0a = 0.2211, dashed magenta—k0a = 0.2220.

we can see in Fig. 4 this effect keeps propagating eigenmodes
within a certain range of frequencies. For frequencies k0a �
0.23 the resonances of μ‖(kz) still hold but correspond to very
high spatial frequencies. For such high spatial frequencies the
effective-medium model is not applicable [23]. In our plot
in Fig. 4 the region of kz (of the order of k0 or smaller) is
compatible with the model.

Imaginary q for a propagating eigenmode with allowed
value of kz means that the medium eigenmode propagates
along the z axis, being evanescent in the transverse plane
(x − y). Very high imaginary q implies the ultimate subwave-
length concentration of the eigenmode in this plane. If we
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FIG. 5. Dispersion contours of the TE-polarized waves. Here,
εr = 120 and fv = 0.1963. Solid blue curve corresponds to k0a =
0.2058, solid black one—k0a = 0.2135, solid magenta one—k0a =
0.2173, solid green one—k0a = 0.2194, and dashed black one—
k0a = 0.2211.

embed a subwavelength source of TE waves (such as a point
magnetic dipole oriented orthogonally to the z axis) in our
wire medium this mode will be excited, dominating over all
other modes propagating along the z axis. This domination
results from the huge slope of the curve μ‖(kz) which implies
the huge density of electromagnetic states. It can also be seen
from the dispersion contours of the TE-polarized waves shown
in Figure 5. As Fig. 5 indicates, the dispersion surface is
transformed from a closed surface (ellipsoid) into an open
surface (approximately a flat line, hyperboloid) at transition
frequency (notice that each wave vector components travels
normal to the dispersion surface). This feature was noticed for
the permittivity tensor of some dielectric hyperbolic metamate-
rials in Ref. [24]. Our magnetic hyperbolic metamaterial is dual
to dielectric hyperbolic metamaterials, and the roles of ε and
TM waves are played by μ and TE waves. Since the dominant
mode strongly attenuates in both the x and y directions, it
means that the whole electromagnetic field generated by our
magnetic dipole should be concentrated around the line which
passes through the dipole center along the z axis.

III. NUMERICAL SIMULATIONS

A. Localization of magnetodipole radiation

This filamentary localization of magnetodipole radiation
was confirmed by using a 3D electromagnetic simulator
CST Microwave Studio. In our simulations we position a
strongly subwavelength current loop whose magnetic moment
is directed along the y axis in the center of the wire medium
sample as shown in Fig. 6. The medium sample is finite
size with length Lsample = (N − 1)b + 2a where N = 12 is
the number of the wires. It has realistic optical losses: We sup-
pose that the tangent of dielectric losses in the material of our
wires is equal to tan δ = 0.1, where the complex permittivity

FIG. 6. The subwavelength magnetic dipole oriented perpendic-
ularly to the wire axis and located in the center of the wire medium
sample.

of nanowires is εr = Re[εr][1 − j tan δ], Re[εr] = 120. This
value is the complex permittivity of lithium tantalate at f =
23 THz. The radius of the wires is a = 455 nm and b = 4a

as above. The spatial distribution of the transverse component
of the electric field (the x component in the y − z plane) is
shown in Fig. 7 for four frequencies. We see that only at the
frequency k0a = 0.2192 ≈ 0.22 the field significantly decays

FIG. 7. Distribution of the normal component of the electric field
in the wire-medium sample (consisting of 12×12 nanowires). The
magnetic dipole moment located in the center of the sample is along
the y axis. Here, εr = 120 − j12, fv = 0.1963. (a) f = 18 THz
(k0a = 0.1715); (b) f = 21 THz (k0a = 0.2001); (c) f = 23 THz
(k0a = 0.2192) and (d) f = 27 THz (k0a = 0.2573).
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in the transverse plane so that it is practically concentrated in
one unit cell of the wire medium. This is the maximal possible
concentration in a composite material—that restricted only by
the granularity of the medium. The excited wave propagates
along the z axis and experiences nearly total internal reflection
at the interfaces of the medium sample. Similar pictures cor-
respond to other components of the electromagnetic field. The
comparison of different components confirms that the wave is
TE polarized. At three other frequencies the waves are also
TE polarized, whereas their localization is not filamentary and
even the crosslike dipole pattern inherent to usual hyperbolic
metamaterials [13] can be guessed in Fig. 7(a).

The reason for the striking difference in the internal dipole
patterns for our wire medium and the majority of hyperbolic
materials is spatial dispersion. Metal wire media operating at
microwaves are also spatially dispersive, and the slope of ε‖(kz)
(see, e.g., in Ref. [11]) at their spatial resonance |kz| = k0 is as
huge as that of our μ‖(kz) at their resonant kz in the topological
transition frequency range. It is not surprising, therefore, that
in microwave wire media the similar filamentary dipole pattern
was also observed (see, e.g., in Ref. [25]). However, in what
concerns this pattern our infrared magnetic wire medium and
microwave wire media differ qualitatively. The first difference
is duality: Microwave wire media are dielectric hyperbolic
metamaterials and the filamentary pattern in them corresponds
to transverse electric dipoles. The second difference is the
bandwidth effect: Microwave wire media are broadband, and
the same dipole pattern is inherent for them at any frequency
for which the effective-medium model is applicable. Our wire
media possess the dipole pattern which strongly varies versus
frequency; this is illustrated by Fig. 7. The filamentary pattern
of the magnetic dipole corresponds only to the range of the
topological transition.

B. Purcell factor

Another implication of the topological transition (where the
isofrequency of the medium transits from the closed-surface
(elliptical) regime to open-surface (hyperbolic) regime) is the
strong Purcell effect in our magnetic metamaterial. Originally,
the effect was known as the enhancement of the decay rate of
a quantum emitter located in an open cavity [26,27]. However,
the role of the cavity is only to extract more power from
the emitter, whereas the enhancement of its decay rate is the
same as the enhancement of the radiated power. Therefore,
the notion of the Purcell effect was extended first to any
scatterer located in the vicinity of an emitter [28–31] and
finally to any active radiator whose radiation is enhanced by
any environment different from free space [6,32,33].

Based on this general concept, we can define the magnetic
Purcell factor of our wire medium as the increase of the
radiated power of a subwavelength magnetic dipole due to
the presence of the wire medium around it. According to the
“antenna terminology,” the radiated power of the emitter is
proportional to the radiation resistance of that emitter [34].
Therefore, to calculate the Purcell factor, it is the same as to
obtain the ratio of the radiation resistances in the presence of
the wire medium (Rr) and in the absence (Rr0 ):

PF = Rr

Rr0

. (15)
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FIG. 8. (a) Radiation resistance of subwavelength magnetic (MD)
and electric (ED) dipoles located in the center of the wire-medium
sample (including 12×12 wires) and the free space. (b) Correspond-
ing Purcell factor. Here, εr = 120 − j12 and fv = 0.1963.

For the same structure as above we have simulated the radiation
resistances. Besides the case of the transverse magnetic dipole
shown in Fig. 6, we have studied the case when the same
magnetic dipole is oriented in parallel to the z axis. Also,
we simulated the cases of the transverse and axial electric
dipoles of the same subwavelength size, all centered at the
same point as in Fig. 6. In Fig. 8(a) which depicts the
radiation resistance versus frequency, the blue curves refer
to the magnetic dipole in the presence of the sample. As
one can see, the radiation resistance of the magnetic dipole
oriented perpendicularly to the optical axis experiences the
strong resonance at k0a ≈ 0.22, exactly where the effective-
medium model predicts the topological transition. Notice that
similar to what we did in our previous works [6,35], in order
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to be sure that our effect is not distorted by dimensional
resonances, we simulated the metamaterial sample with three
different sizes, corresponding to 10×10, 12×12 and 14×14
wires, respectively (Lsample = 9b + 2a for N = 10, Lsample =
11b + 2a for N = 12 and Lsample = 13b + 2a for N = 14).
The radiation resistances of these three cases are almost the
same and they do not differ especially at the topological
transition. This clearly confirms that dimensional resonances
do not exist.

In Fig. 8(a), the dashed blue curve shows weaker effect
for the parallel magnetic dipole. Red solid and dashed curves
correspond to the perpendicular and parallel electric dipoles,
respectively. For comparison with the case when the host is
free space, the frequency dispersion of Rr0 is given in the
same plot for both electric and magnetic dipoles. Figure 8(b)
presents the frequency dispersion of the Purcell factor for all
four dipoles. It is clearly seen that the strongest resonance
and highest PF correspond to the transversal magnetic dipole.
An axial magnetic dipole also experiences the resonance at
the topological transition. However, the resonant values of
PF are smaller because this magnetic dipole mainly creates
the TE-polarized radiation which weakly interacts with the
nanowires. Therefore, it is not enhanced.

The values of PF for the axial electric dipole are low. It
is not surprising. Recall that in a wire medium of perfectly
conducting (PC) wires the radiation of the axial electric dipole
is fully suppressed [5]. The suppression results from the
destructive near-field coupling of the dipole with adjacent
wires. The axial current of the dipole induces opposite axial
currents in them which cancel the radiation. This effect is
similar to the suppression of radiation of a horizontal electric
dipole located on the PC substrate. Well, our wires are not
PC, they are highly refractive. However, the substrates with
high positive permittivity and finite negative permittivity also
suppress the radiation of the horizontal electric dipole. This
destructive interaction originates from the capacitive coupling
causes the inverse mirror image of the horizontal electric dipole
in the substrate with the strong skin effect. A similar situation
holds for the axial dipole source in wire media if the wires
possess strong skin effect. If the wires have high or negative
εr, the values of PF for the axial electric dipole should be low.
However, we can see in Fig. 8(b) that the radiation of this
dipole experiences the resonance (at slightly lower frequency
than that of the magnetic topological transition). This is also
not surprising, because not all radiation of an axial electric
dipole is TM polarized. It also produces some TE waves,
and this effect is competing with the capacitive destructive
interaction. Therefore, we have PF = 2 at k0a = 0.21, whereas
far from this frequency we see PF ≈ 0. As to the noticeable
enhancement of the transverse electric dipole, it, definitely,
occurs due to the constructive interaction of this dipole with
the adjacent nanowires (similar to a vertical dipole on the

high-permittivity substrate). This effect is complemented by
the resonant enhancement of TE-polarized waves. However, in
the near zone of the electric dipole the magnetic field is weak.
Therefore, an electric dipole cannot interact with the magnetic
medium as strongly as a magnetic dipole, and the resonant
Purcell factor of the transversal magnetic dipole is higher.

As mentioned before, we position the transversal magnetic
dipole source symmetrically with respect to the surrounding
wires. However, our simulated results show that the Purcell
factor is sensitive to the position of the source within the
unit cell shown in Fig. 6. They indicate that if the transversal
magnetic dipole is shifted along the diagonal of the unit cell,
the Purcell factor significantly increases. This is similar to the
case of the transversal electric dipole located in a wire medium
of perfectly conducting (PC) wires [5].

IV. CONCLUSIONS

In this paper we calculated the effective permeability of a
simple wire medium whose wires are made of a material with
high positive dielectric constant. Its parallel component μ‖ is
resonant due to the Mie resonance of a single wire and is an
indefinite function of both frequency and axial wave vector
kz (changes the sign depending on these arguments). This
change of the sign results in a transition in the topology of the
dispersion surface for TE polarized waves. In the frequency
range of the topological transition, the huge (filamentary)
localization of radiation occurs for an internal magnetic source
that clearly shares our medium out from other hyperbolic
metamaterials, including that introduced in Ref. [14]. Though
a similar pattern is inherent to the medium of perfectly
conducting wires operating at microwaves, in our case this
pattern corresponds to the magnetic dipole and occurs only at
the topological transition.

Our wire medium manifests a strong radiation enhancement
for an internal dipole source. Unlike dielectric hyperbolic
metamaterials, including microwave wire media, and polari-
tonic media operating at higher frequencies [6], the maximal
enhancement corresponds to magnetic dipoles. Unlike spiral
media [14] it holds at the topological transition and the
maximal radiation enhancement corresponds to the transversal
magnetic dipole.

From the comparison of the present paper with Ref. [6] it
is clear that the same polaritonic wire media which manifest
the resonant effects related to the regime epsilon-near-zero
at 35–45 THz [6] may manifest the similar (but different)
resonant effects related to the regime mu-near-zero in the range
15–30 THz. This is another argument in favor of this type
of hyperbolic metamaterials, which definitely deserve more
attention from theorists and an experimental implementation
to confirm the claimed effects.

[1] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.
A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and
A. V. Zayats, Plasmonic nanorod metamaterials for biosensing,
Nat. Mater. 8, 867 (2009).

[2] Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka,
C. R. Simovski, Y. Hao, and C. G. Parini, Magnification
of subwavelength field distributions using a tapered array
of metallic wires with planar interfaces and an embedded

075138-7

http://dx.doi.org/10.1038/nmat2546
http://dx.doi.org/10.1038/nmat2546
http://dx.doi.org/10.1038/nmat2546
http://dx.doi.org/10.1038/nmat2546


M. S. MIRMOOSA, S. YU. KOSULNIKOV, AND C. R. SIMOVSKI PHYSICAL REVIEW B 94, 075138 (2016)

dielectric phase compensator, New J. Phys. 12, 103045
(2010).

[3] B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and
S. Sridhar, Super-resolution imaging using a three-dimensional
metamaterials nanolens, Appl. Phys. Lett. 96, 023114
(2010).

[4] Z.-K. Zhou, M. Li, Z.-J. Yang, X.-N. Peng, X.-R. Su, Z.-S.
Zhang, J.-B. Li, N.-C. Kim, X.-F. Yu, L. Zhou, Z.-H. Hao,
and Q.-Q. Wang, Plasmon-mediated radiative energy transfer
across a silver nanowire array via resonant transmission and
subwavelength imaging, ACS Nano 4, 5003 (2010).

[5] A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, Purcell effect
in wire metamaterials, Phys. Rev. B 87, 035136 (2013).

[6] M. S. Mirmoosa, S. Yu. Kosulnikov, and C. R. Simovski, Un-
bounded spatial spectrum of propagating waves in a polaritonic
wire medium, Phys. Rev. B 92, 075139 (2015).

[7] C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov,
and S. Tretyakov, Hyperlens makes thermal emission strongly
super-Planckian, Photon. Nanostruct. Fundam. Appl. 13, 31
(2015).

[8] I. S. Nefedov, and C. R. Simovski, Giant radiation heat transfer
through micron gaps, Phys. Rev. B 84, 195459 (2011).
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