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We consider finite-time quantum quenches in the interacting Tomonaga-Luttinger model, for example time-
dependent changes of the nearest-neighbor interactions for spinless fermions. We use the exact solutions for
specific protocols including the linear and cosine ramps (or, more generally, periodic pumping). We study the
dynamics of the total and kinetic energy as well as the Green’s functions during as well as after the quench.
For the latter we find that the light-cone picture remains applicable; however, the propagating front is delayed
as compared to the sudden quench. We extract the universal behavior of the Green’s functions and in particular
provide analytic, nonperturbative results for the delay applicable to quenches of short to moderate duration but
arbitrary time dependency.
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I. INTRODUCTION

Over the last decade, due to advances [1–3] in the control
of ultracold-atomic systems the experimental realization of
sudden quantum quenches [4] has become possible. Hereby
a quantum system is prepared in an initial state, say the
ground state of a Hamiltonian H0, and then its time evolution
after switching to another Hamiltonian H , e.g., obtained by
suddenly switching one of the system parameters of H0,
is studied. Generically the initial state will have a highly
nontrivial representation in terms of the eigenstates of H ,
thus resulting in a complicated relaxation of observables
after the quench. These experimental advances have triggered
tremendous theoretical efforts [5–7] to understand the quench
dynamics of a vast class of systems covering all spatial
dimensions.

Of particular interest have been one-dimensional systems,
due to the availability of powerful numerical and analytical
tools as well as their relation to topics such as integrability.
Arguably the most generic one-dimensional system is the
Luttinger liquid [8–10] which is known to describe the
low-energy properties of gapless systems such as quantum
wires, spin chains, or bosonic atoms in one-dimensional optical
lattices. The importance of Luttinger liquids motivated the
detailed investigation [11–33] of its relaxation dynamics after
sudden quantum quenches.

While the vast majority of previous works focused on
sudden quantum quenches, we will here consider more general
quenches of finite length τ over which the system parameters
vary (see Fig. 1 for a sketch). Physically the finite quench
time τ (depending on the precise form of the quench protocol
one may even introduce several time scales τn) introduces
an additional energy scale �quench ∼ 1/τ , which is obviously
trivial in the sudden and adiabatic limit. This newly generated
energy scale is directly related to the quench protocol, i.e., the
switching process, and thus can be tuned. In particular, it can
be made comparable to the other energy scales in the system
such as the bandwidth, excitations gaps, or relaxation rates.
The interplay of these different energy scales originating in the
properties of the postquench Hamiltonian, the initial state, and
the quench protocol opens the possibility to study emergent
quantum states beyond the ones accessible via sudden quench

protocols. An example of such an emergent state is generated
by the periodic quench discussed below.

Several aspects of finite-time quenches and the interpolation
between the sudden and adiabatic limit have been studied [34–
42]. For the Luttinger liquid Dora et al. [43] first considered
linear quench protocols. They obtained perturbative results
for the total energy and fermionic chiral Green’s function,
which were later extended to spin-spin correlation functions
and compared with numerical simulations of the time evolution
during the quench in the XXZ Heisenberg chain [44]. Bernier
et al. [45] went beyond the perturbative treatment by deriving
exact results for the time evolution during linear quenches in
terms of Bessel functions (see Sec. IV A). This enabled them to
analyze the properties of the bosonic Green’s function in great
detail, including the derivation of power laws governing the
propagation of the light cone during the quench. The obtained
results were further confirmed by numerical simulations for the
Bose-Hubbard model. Further aspects that were investigated
include the excitation energy, the work statistics, finite-
temperature initial states, the Loschmidt echo, and the diagonal
ensemble reached at late times [46–52].

In this article we aim at obtaining a complete understanding
of finite-time quenches in Luttinger liquids. To this end we
consider the time evolution during and after the quench and
derive exact, analytical results to go beyond the perturbative
regime. This allows us to study the interplay between the
quench time τ and other energy scales in the system, resulting
for example in a nontrivial dependence of the total energy on
the quench time (see Fig. 3). Both the fermionic and bosonic
Green’s function exhibit a clear light-cone effect after the
quench, which is due to the propagation of entangled pairs of
quasiparticles [4]. However, as compared to the sudden quench
the light cone lags behind (see Fig. 5), which can be associated
with a combination of two effects: First, during the quench the
quasiparticles propagate at the instantaneous velocity, which is
generically smaller than the velocity after the quench. Second,
the creation of the quasiparticles is spread over the whole
quench duration, while in the sudden case all quasiparticles are
created at t = 0. For short to moderate lengths of the quench
we obtain an analytic result for the observed lag, linking it to
the integrated change in the coupling during the quench [see
Eq. (66)].
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FIG. 1. Sketch of different time-dependent protocols for a gen-
eral, finite-time quench. Here τ denotes the quench time over which
the parameter g varies. The solid and dashed black lines represent the
special cases of sudden (τ → 0) and adiabatic (τ → ∞) quenches,
respectively. The solid blue line corresponds to a linear ramp (40),
which constitutes the simplest finite-time quench. Further examples
considered here are the cosine quench (42) and the periodic quench
(45) illustrated by the solid and dashed red lines, respectively.

The outline of this paper is as follows. In Sec. II we define
the Tomonaga-Luttinger model (TLM) and discuss its relation
to microscopic fermionic and bosonic systems. In Sec. III we
present the general approach to the problem of time-dependent
interaction quenches in the TLM, and derive some universal
properties of the solutions. In Sec. IV we present exact
analytic results for several quench protocols including the
linear ramp, the smooth cosine quench, and periodic quenches
with arbitrary number of oscillations. In Sec. V we analyze
the behavior of the total and kinetic energies as well as the
fermionic and bosonic Green’s functions, both during and
after the quench. We conclude with a brief discussion of our
results in Sec. VI. Some technical aspects are presented in the
appendixes.

II. TOMONAGA-LUTTINGER MODEL

A. The model

In this article we consider the time-dependent Tomonaga-
Luttinger model (TLM) [8–10] defined by the Hamiltonian

H (t) =
∑
n>0

qn

[(
vF + g4(qn,t)

2π

)
(b†nbn + b

†
−nb−n)

+ g2(qn,t)

2π
(b†nb

†
−n + b−nbn)

]
, (1)

where qn = 2πn/L, n ∈ Z, and L denote the momenta and
system length, respectively, and vF is the Fermi velocity. The
operators b

†
n and bn create and annihilate bosonic modes at

momentum qn and satisfy the standard commutation relations
[bm,b

†
n] = δmn. Here and in the following we denote quantities

taken at momenta qn by the subindex n.
Before we proceed with the analysis of the dynamics in the

TLM, we briefly recall the properties of the time-independent
system given by (1) with coupling functions g2(qn) and g4(qn)
constant in time. Then the Hamiltonian can be diagonalized
to H = ∑

n�=0 ε(qn) α
†
nαn + Egs by introducing new modes

αn = c(qn)bn + s(qn)b†−n with

s(q)2 = 1

2

[
1 + ĝ4(q)

W (q)
− 1

]
= c(q)2 − 1, (2)

ε(q) = vF|q| W (q) = vF|q|
√

[1 + ĝ4(q)]2 − ĝ2(q)2, (3)

where ĝ2/4(q) = g2/4(q)/(2πvF) denote dimensionless
coupling functions and Egs = vF

∑
n>0 qn[W (qn) − ĝ4(qn) −

1] is the ground-state energy. In this article we assume
that g2(q) and g4(q) depend on the momentum in the
dimensionless combination q/qc and fall off to zero at
q/qc ∼ 1. Thus the scale qc provides an ultraviolet cutoff for
the theory. Furthermore, we require the limits limq→0 g2/4(q)
to be smooth, corresponding to systems with interactions of
finite range in real space. Apart from this the momentum
dependence is kept arbitrary. In fact, it can be shown [53,54]
that in equilibrium the momentum dependence of g2(q) and
g4(q) is irrelevant in a renormalization-group sense; i.e., the
behavior at low energies and long wavelengths is governed
solely by their values at q = 0 through the Luttinger-liquid
parameter and the renormalized velocity given by

K =
√

1 + ĝ4(0) − ĝ2(0)

1 + ĝ4(0) + ĝ2(0)
, v = dε

dq

∣∣∣∣
q=0

= vFW (0). (4)

For noninteracting systems, g2(q) = g4(q) = 0, this simplifies
to K = 1 and v = vF. In general, if the system possesses
Galilean invariance the product vK is independent of the
interaction parameters [10,55], implying in turn g2(0) = g4(0).

Throughout this article we focus on universal quantities in
the sense that they only depend on g2(0) and g4(0) and thus the
Luttinger parameter K and the renormalized velocity v given
in (4). Unless stated otherwise, the numerical results shown
in the plots, e.g., Fig. 4, were obtained for the specific choice
g2(q,τ ) = g4(q,τ ) = g0 exp[−(q/qc)2/2].

B. Relation to fermionic systems

As is well known, the TLM describes the low-energy
physics of one-dimensional fermionic systems in the absence
of an energy gap [8,10]. For example, one can start from the
lattice model of spinless fermions,

HF = − t
∑

i

(c†i ci+1 + c
†
i+1ci)

+ U
∑

i

(
c
†
i ci − 1

2

)(
c
†
i+1ci+1 − 1

2

)
, (5)

where c
†
i and ci are the fermionic creation and annihilation

operators at lattice site i. The low-energy description in the
gapless regime U � 2t is obtained by first linearizing the
dispersion relation around the Fermi points ±qF and taking
the continuum limit,

ci√
a0

→ �F(x) = eiqFx �+(x) + e−iqFx �−(x), (6)

where a0 denotes the lattice spacing. The right- and left-
moving fermionic fields �±(x) are slowly varying on the scale
1/qF. The low-energy properties of (5) are then captured by
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the Hamiltonian

HF = − ivF

∫
dx [�+∂x�+ − �−∂x�−]

+
∫

dx dx ′ [g4(x − x ′)ρ±(x)ρ±(x ′)

+ g2(x − x ′)ρ±(x)ρ∓(x ′)], (7)

where ρ±(x) = �
†
±(x)�±(x) are the right- and left-moving

densities, and g2(x − x ′) and g4(x − x ′), the Fourier trans-
forms of g2(q) and g4(q), respectively, have thus a straightfor-
ward interpretation as density-density couplings.

In the continuum limit one can introduce phase fields
corresponding to collective excitations in the electronic liquid
via [10]

�+(x) = O+ eiφ†(x) eiφ(x), iφ(x) =
∑
n>0

eiqnx

√
n

bn, (8)

where the Klein factor O+ lowers the fermion number by 1
and commutes with the bosonic modes. The relation between
the microscopic parameters t and U of the lattice model and
the effective parameters K and v in the TLM is exactly known
[8] from the Bethe-ansatz solution of (5),

K = π

2(π − arccos η)
, v = πt

√
1 − η2

arccos η
, η = U

2t
. (9)

We note that the relation between the microscopic and effective
parameters is nonlinear, implying, for example, that linear
time dependencies of the former will lead to nonlinear quench
protocols for the latter. The time evolution of the kinetic energy
and fermionic quasiparticle weight (see Secs. V B and V C
below) as well as local densities after a sudden interaction
quench in the lattice model (5) have been analyzed [20,26,28]
in the framework of the TLM.

Since one-dimensional spin models such as the XXZ
Heisenberg chain can be mapped to fermionic chains of the
form (5), the results presented in our paper can be applied to
the analysis of the time evolution during and after finite-time
quenches in spin chains. A similar analysis has been performed
for the dynamics of several observables in the XXZ chain after
sudden quenches [13,14,17,29,33] as well as during linear
ramps in the anisotropy [44].

C. Relation to bosonic systems

The TLM also appears in the description [8,9] of one-
dimensional bosonic systems. For example, one may start from
the continuum model

HB = 1

2mB

∫
dx|∂x�B|2 − μ

∫
dx ρB(x)

+ 1

2

∫
dx dx ′ V (x − x ′)ρB(x)ρB(x ′), (10)

were �B(x) is a complex scalar field describing bosons of mass
mB, ρB(x) = �

†
B(x)�B(x) denotes the boson density, V (x) is

a density-density interaction, and μ the chemical potential. In
the special case V (x) = V0δ(x) the model becomes the inte-
grable Lieb-Liniger model [56], whose Bethe-ansatz solution
can be used to study its time evolution after a sudden quench

[57–64]. In the presence of a lattice a natural starting point
would be the Bose-Hubbard model

HBHM = − t
∑

i

(a†
i ai+1 + a

†
i+1ai)

+ U
∑

i

ni(ni − 1) − μ
∑

i

ni, (11)

where a
†
i and ai are the bosonic creation and annihilation

operators at lattice site i and ni = a
†
i ai denotes the respective

density. We note in passing that models like (10) and (11) can
be realized in systems of trapped, ultracold atoms [65]. In the
superfluid phase the low-energy properties of bosonic systems
like (10) and (11) can be described by the TLM (1). For that
one writes the bosonic fields in terms of the density ρB and
phase field θ as [9]

�B(x) =
√

ρB(x) eiθ(x), (12)

where the phase field can in turn be represented by the creation
and annihilation operators of the bosonic modes as

θ (x) = i

2

∑
n�=0

exp(−iqnx)√
n

(b†n − b−n). (13)

The effective parameters K and v in the TLM can be
obtained for example from the Bethe-ansatz solution in the
Lieb-Liniger case or via the density-matrix renormalization
group method from the Bose-Hubbard model [66]. Again the
relation between the microscopic and effective parameters is
nonlinear. The time evolution of the bosonic systems (10) and
(11) during finite-time interaction quenches was investigated
in Refs. [39,41,45].

III. FINITE-TIME QUENCH PROTOCOLS

After discussing the basic properties of the TLM and its
relation to other one-dimensional systems, we now turn to the
time evolution due to a change in the coupling functions in (1).
Starting with the seminal work by Cazalilla [11] the dynamics
of the TLM after a sudden quench, i.e., a sudden change in the
coupling functions, has been exhaustively studied in the past
[12–33].

In contrast, here we will consider the dynamics during and
after continuous changes in the coupling functions; see Fig. 1
for an illustration. Most previous works investigating such a
setup have focused on linear quenches in which the interactions
are ramped up at a constant speed [43–45,51]. We consider
quench protocols starting from the noninteracting model and
ranging over a finite quench time τ ; i.e., the coupling functions
satisfy

g2/4(q,t < 0) = 0, g2/4(q,t > τ ) = g2/4(q), (14)

with g2/4(q) being independent of time. At zero temperature,
to which we restrict ourselves, the initial state |�0〉 at t = 0 is
thus the vacuum state of the bosons; i.e., bn|�0〉 = 0 for all n.
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A. Evolution during the quench, t < τ

The time evolution of the bosonic operators is governed by
the Heisenberg equations of motion [43]

i
d

dt
O(t) = [O(t),H (t)], O(t) = bn(t),b†n(t), (15)

where we denote operators in the Heisenberg picture by stating
the time argument explicitly. For the TLM we obtain

i
d

dt
bn(t) = ωn(t)bn(t) + λn(t)b†−n(t), (16)

i
d

dt
b†n(t) = −ωn(t)b†n(t) − λn(t)b−n(t), (17)

with the abbreviations

ω(q,t) = vF|q|[1 + ĝ4(q,t)] = vF|q|
(

1 + g4(q,t)

2πvF

)
, (18)

λ(q,t) = vF|q|ĝ2(q,t) = |q|
2π

g2(q,t), (19)

and ωn(t) = ω(qn,t) as well as λn(t) = λ(qn,t). Here and in
the following we denote quantities taken at momenta qn by the
subindex n. Now making the ansatz

bn(t) = un(t)bn + vn(t)∗ b
†
−n, (20)

b†n(t) = un(t)∗ b†n + vn(t)b−n, (21)

where the operators on the right-hand side are the time-
independent Schrödinger operators at t = 0, Eqs. (16) and
(17) turn into differential equations for the coefficients [43]
un(t) and vn(t),

i
d

dt

(
un(t)
vn(t)

)
=

(
ωn(t) λn(t)

−λn(t) −ωn(t)

)(
un(t)
vn(t)

)
. (22)

The initial conditions read

un(0) = 1, vn(0) = 0, (23)

and we recall un(t) = u(qn,t) and vn(t) = v(qn,t). The co-
efficients satisfy u(q,t) = u(−q,t), v(q,t) = v(−q,t), and
|u(q,t)|2 − |v(q,t)|2 = 1 as well as limτ→0 un(t = τ ) = 1 and
limτ→0 vn(t = τ ) = 0.

Furthermore, since the universal properties of the system
are governed by the behavior at small momenta, we determine
the expansion of the solutions u(q,t) and v(q,t) at q � qc.
More specifically we make the ansatz

u(q,t) =
∞∑

m=0

u(m)(t)

(
q

qc

)m

, (24)

and similarly for v(q,t), ω(q,t), and λ(q,t). [We recall that
the coupling functions g2/4(q,t) are assumed to be analytic
at q = 0, thereby excluding long-range interactions in real
space.] Then we obtain for the initial conditions (23) and up
to linear order in q the results

u(q,t) = 1 − ivFq

∫ t

0
dt ′ [1 + ĝ4(0,t ′)], (25)

v(q,t) = ivFq

∫ t

0
dt ′ ĝ2(0,t ′). (26)

These expansions are valid for sufficiently small momenta q �
qc,1/(vFτ )/[1 + ĝ4(0)] ∼ 1/(vFτ ), where the second condi-
tion originates from the requirement that the next-to-leading
order term in (25) stays smaller than the leading one (see
Appendix A for a more detailed discussion). Apart from
the restriction on q the expansions (25) and (26) are valid
for quench protocols with arbitrary time dependencies and
final interaction strengths g2/4(0,τ ). In particular, they are
applicable in the nonperturbative regime 1 � ĝ2/4(0,τ ). It
is straightforward to explicitly verify (25) and (26) for the
exactly solvable protocols discussed in Sec. IV [but also the
perturbative solution of (22) presented for completeness in
Appendix B].

B. Evolution after the quench, t > τ

For times t > τ the coupling functions are constant and
thus the differential equations (22) can be solved explicitly by

vn(t) = An cos(εnt) + Bn sin(εnt), (27)

where [we assume ωn(τ ) > λn(τ )]

εn = ε(qn) =
√

ωn(τ )2 − λn(τ )2 > 0 (28)

is the single-mode energy (3) after the quench, and

un(t) = − i

λn(τ )

d

dt
vn(t) − ωn(τ )

λn(τ )
vn(t). (29)

The constants An = A(qn) and Bn = B(qn) are obtained from
the initial conditions for the postquench dynamics at t = τ ,

An = −i
λn(τ )

εn

sin(εnτ )un(τ )

− i

εn

[iεn cos(εnτ ) + ωn(τ ) sin(εnτ )]vn(τ ), (30)

Bn = i
λn(τ )

εn

cos(εnτ )un(τ )

− i

εn

[iεn sin(εnτ ) − ωn(τ ) cos(εnτ )]vn(τ ). (31)

The expansion of the postquench coefficients for small
momenta is obtained using (25) and (26); to leading order
it reads

A(q) = −ivFqτ

[
ĝ2(0,τ ) − 1

τ

∫ τ

0
dt ĝ2(0,t)

]
, (32)

B(q) = i
1 − K2

2K
, (33)

with the Luttinger parameter K defined in (4). The expansion is
valid for arbitrary quench protocols provided q � qc,1/(vFτ ).
For linear or periodic quenches (see next section for the
precise definition) the expansion (32) simplifies to A(q) =
−ivFĝ2(q,τ )qτ/2.

C. Generalized Gibbs ensemble

Since the time evolution for t > τ is governed by the time-
independent Hamiltonian (1) conserving the mode occupations
after the quench, the system relaxes for t → ∞ to a generalized
Gibbs ensemble [67]. One obtains [48] (in complete analogy
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FIG. 2. Mode occupations 〈�(τ )|α†
nαn|�(τ )〉 after the quench

with the quench time given by ln(vFqcτ ) = 1.5 (except for the sudden
quench), Gaussian momentum dependence of the coupling functions,
and final interaction strength g0 = vF/2. For the periodic quench we
observe a preferred occupation of high-energy modes which strongly
affects the behavior of the total energy shown in Fig. 3. In the adiabatic
limit τ → ∞ one finds 〈�(τ )|α†

nαn|�(τ )〉 → 0 for all n �= 0 and all
quench protocols.

to the situation after a sudden quench [11,16])

ρGGE = e− ∑
n �=0 ηnα

†
nαn

tr
(
e− ∑

n �=0 ηnα
†
nαn

) , (34)

where α
†
nαn are the mode-occupation operators after the

quench and the Lagrange multipliers are obtained from the
initial conditions for the postquench dynamics. Explicitly we
find with the coefficients defined in (2),

〈�(τ )|α†
nαn|�(τ )〉 = |c(qn)vn(τ ) + s(qn)un(τ )|2

!= tr(ρGGEα†
nαn) = e−ηn

1 − e−ηn
. (35)

We stress that the Lagrange multipliers implicitly depend
on the quench time τ and the precise form of the time
dependence for 0 < t < τ via the coefficients un(τ ) and vn(τ ).
In the sudden limit we recover the well-known [11,16] result
〈�(τ )|α†

nαn|�(τ )〉 = s(qn)2.
The mode occupations (35) for specific quench protocols

are illustrated in Fig. 2. In particular, we observe that the
periodic quench leads to a preferred occupation of high-
energy modes around the band edge q ∼ qc for quench times
τ ∼ 5/(vFqc), i.e., when the energy scale 1/τ related to the
quench protocol is comparable to the bandwidth. In contrast,
for the sudden or monotonic quench protocols such a preferred
occupation of high-energy modes is not observed. We further
note that the generalized Gibbs ensemble (34) is diagonal in
the modes and thus does not capture correlations between the
q and −q modes [16]. This limitation can be overcome by
additionally including α

†
nαnα

†
−nα−n into the set of conserved

quantities used to define the generalized Gibbs ensemble.

IV. ANALYTICALLY SOLVABLE QUENCH PROTOCOLS

In the case of Galilean invariance, g2(q,t) = g4(q,t), exact
solutions are possible for specific time dependencies. (We
briefly comment on the general case in Sec. IV E.) In order

to derive them we introduce an auxiliary function an(t) via

un(t) = 1

2
an(t) + i

2vF|qn|
d

dt
an(t), (36)

vn(t) = 1

2
an(t) − i

2vF|qn|
d

dt
an(t). (37)

In terms of this auxiliary function the differential equation (22)
becomes

d2

dt2
an(t) + v2

Fq
2
n[1 + 2ĝ2(qn,t)]an(t) = 0, (38)

with the initial conditions

an(0) = 1,
d

dt
an(t)

∣∣∣∣
t=0

= −ivF|qn|. (39)

For specific choices of the time dependence of g2(qn,t) the
differential equation (38) admits a closed solution which we
discuss in the following subsections.

A. Linear quench

The simplest finite-time quench protocol is a linear ramp

g2(q,t) = g4(q,t) = g2(q)
t

τ
, (40)

which is sketched by the solid blue line in Fig. 1. In our setup,
contrary to most previous works [43,44,46–48,51], we do not
neglect the g4 term. We note that the coupling functions in
the linear quench are not differentiable at t = 0 and t = τ .
Inserting (40) into (38) leads to the Airy differential equation
[68] whose solution for the initial conditions (39) can be
rewritten in terms of Bessel functions as [45,69]

an(t) = πhn

√
t̃n√

3

{
[J2/3(hn) − iJ−1/3(hn)]J1/3

(
hnt̃

3/2
n

)
+ [J−2/3(hn) + iJ1/3(hn)]J−1/3

(
hnt̃

3/2
n

)}
, (41)

where we have introduced hn = vF|qn|τ/[3ĝ2(qn)] and t̃n =
1 + 2ĝ2(qn)t/τ . The solution (41) is valid during the quench
0 � t � τ . The time evolution after the quench is given by
the results stated in Sec. III B with the constants An and Bn

encoding the evolution for t < τ via the values of un(τ ) and
vn(τ ) obtained from (41).

B. Cosine quench

Next we consider a quench protocol where also the first
derivative at t = 0 and t = τ is continuous. This is for example
the case for the cosine quench

g2(q,t) = g4(q,t) = g2(q)

2

[
1 − cos

πt

τ

]
, (42)

sketched as solid red line in Fig. 1. The exact solution of
the differential equation (38) with the initial condition (39) is
given by

an(t) = c1 Ce

(
2h̃n[1 + ĝ2(qn)],h̃nĝ2(qn),

πt

2τ

)

+ c2 Se

(
2h̃n[1 + ĝ2(qn)],h̃nĝ2(qn),

πt

2τ

)
, (43)
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where Ce(a,q,z) and Se(a,q,z) denote the even and odd
Mathieu functions [68,70] satisfying the differential equation
y ′′ + [a − 2q cos(2z)]y = 0, h̃n = 2(vFqnτ )2/π2, and the in-
tegration constants are

1

c1
= Ce(2h̃n[1 + ĝ2(qn)],h̃nĝ2(qn),0),

(44)
1

c2
= iπ

2vF|qn|τ
∂

∂z
Se(2h̃n[1 + ĝ2(qn)],h̃nĝ2(qn),z)|z=0.

C. Periodic quench

We note that the solution (43) also allows one to consider
periodic driving [71–74] of the system. In fact, for periodic
quenches with any period, i.e., quenches of the form

g2(q,t) = g4(q,t) = g2(q)

2

[
1 − cos

νπt

τ

]
, ν ∈ N, (45)

the solution for an(t) during the quench is directly obtained
from (43) via the replacement τ → τ/ν. For odd ν these
quenches correspond to the switching on of interactions after
periodic driving (see the dashed red line in Fig. 1 for a sketch),
while for even ν the system is driven for ν/2 periods and
then returns to the noninteracting Hamiltonian. In the context
of periodically driven Luttinger liquids the solution (43) has
already been employed [73,74] to investigate features such as
parametric resonances and metastable states [71–74].

D. Exponential and quadratic quenches

It is also possible to treat exponential quenches of the form

g2(k,t) = g4(k,t) = g2(k)

ξ
(et ln(1+ξ )/τ − 1) (46)

with ξ > 0, which lead to exact solutions in terms of Bessel
functions [68]

an(t) = c1 J−νn
(t̂n) + c2 Jνn

(t̂n), (47)

where

νn = 2vF|qn|τ
√

2ĝ2(qn) − ξ√
ξ ln(1 + ξ )

, (48)

t̂n =
√

8vF|qn|τ
√

ĝ2(qn) (1 + ξ )t/τ√
ξ ln(1 + ξ )

. (49)

The integration constants c1 and c2 have to be determined from
the initial condition (39). Similarly, quadratic quenches

g2(k,t) = g4(k,t) = g2(k)
t2

τ 2
(50)

result in solutions in terms of parabolic cylinder functions [68]

an(t) = c1 D− 1
2 +μn

(
−e−i π

4 23/4ĝ2(qn)1/4

√
vFqn

τ
t

)

+ c2 D− 1
2 −μn

(
ei π

4 23/4ĝ2(qn)1/4

√
vFqn

τ
t

)
(51)

with μn = ivFqnτ/
√

8ĝ2(qn).

E. Beyond Galilean invariance

If we drop the requirement of Galilean invariance, i.e., if we
allow coupling functions with g2(q,t) �= g4(q,t), a differential
equation similar to (38) can still be derived. Defining an(t) =
un(t) + vn(t) [we stress that (36) and (37) are no longer valid]
and taking the second derivative we obtain

än(t) − ȧn(t)

1 + ĝ4(qn,t) − ĝ2(qn,t)

d

dt
[ĝ4(qn,t) − ĝ2(qn,t)]

+ v2
Fq

2
n[[1 + ĝ4(qn,t)]

2 − ĝ2(qn,t)
2]an(t) = 0, (52)

with the initial conditions for noninteracting initial states
still given by an(0) = 1 and ȧn(0) = −ivF|qn|. However, we
are not aware of quench protocols that allow for an exact,
analytical solution of (52). The differential equation (52) and
some properties of its solution will be further investigated in a
separate work [75].

V. RESULTS FOR SPECIFIC OBSERVABLES

In this section we consider the total and kinetic energies
and the fermionic and bosonic Green’s functions. We focus
on universal properties that depend only on the values of
g2/4(q) at q = 0, which translates into a dependence on the
Luttinger parameter K and renormalized velocity v of the
postquench system. Unless stated otherwise, g2(q) and g4(q)
are considered to be independent functions. The numerical
results shown in the plots of this section were obtained for the
specific choice g2(q,τ ) = g4(q,τ ) = g0 exp[−(q/qc)2/2].

A. Total energy

The simplest observable is the total energy E(t) = 〈H 〉(t)
during the quench, which has first been analyzed for linear
quenches in Ref. [43]. Following this work a comparison
to numerical data for linear quenches in the gapless phase
of the XXZ chain showed very good agreement [44], thus
indicating that the TLM can describe finite-time quenches in
lattice models.

The total energy in the TLM reads

E(t) =
∑
n�=0

Im

[
vn(t)∗

d

dt
vn(t)

]
; (53)

after the quench, t > τ , the total energy is given by E(τ ) =
tr(ρGGEH ) with the generalized Gibbs ensemble ρGGE defined
in Sec. III C. The energy (53) depends on the details of the
quench protocol and the quench time (as well as the precise
form of the coupling functions), for example

d

dt
E(t) = 1

2π

∑
n�=0

|qn| [ġ2(qn,t) Re(vn(t)∗ un(t))

+ ġ4(qn,t) |vn(t)|2], (54)

where the dot denotes the derivative with respect to time. In
particular, kinks in g2/4(q,t) result in kinks in the total energy
as exemplified in the inset of Fig. 3. As further shown in
Fig. 3 we observe that in both the sudden and the adiabatic
limit the result does not depend on the quench protocol, as is
of course well expected. In contrast, for quench times of the
order of the inverse bandwidth, τ ∼ 1/(vFqc), the results for
the linear and cosine quenches clearly differ. The most drastic
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FIG. 3. Energy density E(τ )/L after linear, cosine, and periodic
quenches with final interaction strength g0 = vF/2. The time depen-
dence during the quench clearly affects the total energy, in particular
for the case with periodic driving for one period. In the adiabatic limit
τ → ∞ the total energy density reaches the ground-state energy
density Egs/L indicated by the dotted line. Inset: Energy density
during linear and cosine quenches of length vFqcτ = 10, the former
showing a kink at t = τ .

effect of the finite quench time shows up for the periodic
quench, where at quench times τ ∼ 5/(vFqc) an increase
of the energy can be observed. The physical origin of this
behavior lies in the preferred occupation of high-energy modes
by these quench protocols, as can be seen from the mode
occupation after the quench shown in Fig. 2. For the linear and
cosine quenches we observe that the adiabatic limit is reached
as E(τ ) − Egs ∝ (vFqcτ )−2 ln(vFqcτ ) in accord with the so-
called analytic regime discussed in Ref. [34]. The behavior
E(τ ) − Egs ∼ τ−2 was also observed [41] after power-law
quenches in various many-body systems in harmonic traps,
including the one-dimensional Bose-Hubbard model. Our
results for the cosine quench suggest that this general behavior
originates from the existence of a finite quench time τ rather
than from the existence of an end-point kink at t = τ in the
interaction function.

B. Kinetic energy

As first observable which shows nontrivial behavior after
the quench we consider the kinetic energy, which is defined
as the expectation value of the noninteracting Hamiltonian
Hkin = H (t < 0) = vF

∑
n�=0 |qn|b†nbn. Straightforward calcu-

lation gives

Ekin(t) = 2vF

∑
n>0

qn |vn(t)|2. (55)

For times t > τ and in the thermodynamic limit we obtain

Ekin(t) = vFL

π

∫ ∞

0
dq q

[ |A(q)|2 + |B(q)|2
2

+ |A(q)|2 − |B(q)|2
2

cos[2ε(q)t]

+ Re[A(q)∗B(q)] sin[2ε(q)t]

]
. (56)

The behavior at late times can be obtained using asymptotic
analysis [76]; assuming dε(q)/dq �= 0 we find

Ekin(t) = E∞
kin + Lγkin

t2
+ O(t−3). (57)

Here

E∞
kin = vFL

2π

∫ ∞

0
dq q (|A(q)|2 + |B(q)|2)

= tr(ρGGEHkin) (58)

denotes the asymptotic limit identical to the expectation value
of Hkin in the generalized Gibbs ensemble (34). As such it
inherits all properties of the mode occupation after the quench
(35), for example the nonmonotonic dependence on the quench
time after a periodic quench. Furthermore, the decay parameter
γkin is given by

γkin = vF

32πv2

(
K − 1

K

)2

, (59)

where v and K are defined in (4) with the coupling functions
taken at the quench time t = τ . We stress that the decay
parameter is universal in the sense that it depends on the
values of the coupling functions g2(q,τ ) and g4(q,τ ) at q = 0
only. Moreover, γkin is identical to the result for the sudden
quench [20]; i.e., it does not depend on the quench time or
the precise form of the quench protocol but only on the final
values of the interaction. Finally, we note that the derivation
of (57) relies on the assumption that g2(q,τ ) and g4(q,τ ) are
smooth functions of q. For example, if we consider a sharp
momentum cutoff g2/4(q,τ ) ∝ �(qc − q) the leading late-time
behavior will change to Ekin(t) − E∞

kin ∼ sin[2ε(qc)t]/t with
a nonuniversal prefactor [22].

C. Fermionic Green’s function and quasiparticle weight

1. Definition

In the context of spinless fermions discussed in Sec. II B it
is natural to consider the time evolution of the chiral Green’s
function of the right movers

GF(x,t) = 〈�†
+(x,t) �+(0,t)〉, (60)

which has been studied in detail after sudden quenches in
Refs. [11,16,22]. Using the representation of the right movers
in terms of the bosonic modes (8) a straightforward calculation
yields

GF(x,t) = i

2π

1

x + i0
exp

(
−1

2
FF(x,t)

)
, (61)

where

FF(x,t) = 4
∫ ∞

0

dq

q
[1 − cos(qx)] |v(q,t)|2 (62)

encodes the deviation of the Green’s function from the
noninteracting result. We note that the fermionic Green’s
function (61) after a linear quench was already studied by
Dora et al. [43] in a perturbative treatment in g2 for g4 = 0
(see also Appendix B).
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2. Stationary limit

First let us consider the stationary limit F st
F (x) =

limt→∞ FF(x,t), which reads

F st
F (x) = 2

∫ ∞

0

dq

q
[1 − cos(qx)] (|A(q)|2 + |B(q)|2). (63)

We note in passing that the momentum dependence of the
coupling functions and thus the coefficients A(q) and B(q)
is essential for the convergence of the integral. The limiting
behavior at large distances 1/qc � x is given by F st

F (x) =
2γF ln |qcx| with the prefactor γF taking the values

γF =
{

γ ad
F = 1

2

(
K + 1

K
− 2

)
, x � 2vτ,

γ
sq
F = 1

4

(
K2 + 1

K2 − 2
)
, 2vτ � x.

(64)

To order O(ĝ2
2) we observe γ

sq
F = 2γ ad

F in agreement with the
perturbative result [43].

3. Light-cone effect

Calabrese and Cardy [4,77] first identified the light-cone
or horizon effect after sudden quenches in conformal field
theories. They also put forward a rather natural picture
which is as follows: The quench creates quasiparticles in the
system, which, if they originate from closely separated points,
are quantum entangled. They then propagate semiclassically
through the system with unique speed v. If the two quasi-
particles in such an entangled pair arrive at the points x1,2 at
time t they induce correlations, which in turn imply a sharp
light cone in space-time at |x1 − x2| = 2vt . Such light cones
in correlation functions have been subsequently observed in
numerical simulation on the Bose-Hubbard model [78–80]
as well as short- and long-ranged spin systems [81–84], and
experimentally in ultracold-atomic gases [85,86] and ions
[87,88].

In order to analyze the light-cone effect in the fermionic
Green’s function we first consider the time dependence at
fixed separation x as is often done to analyze numerical
data as well [81]; exemplary results are shown in Fig. 4.
As can be seen there is a clear maximum (indicated by
arrows) propagating through the system, which, for sufficiently

0 10 20 30 40
vFqct

0

1

2

3

4

F F
(x
,t)

x=40/qc
x=60/qc
x=80/qc
x=100/qc

τ

FIG. 4. Cuts through the function (62) for fixed separations x as
a function of time t . We consider a linear quench with quench time
τ = 10/(vFqc) and final interaction strength g0 = 2πvF. We observe
a propagating maximum (indicated by arrows) which for sufficiently
late times follows the linear relation x = 2ṽt with ṽ < v.

FIG. 5. Contour plot of the function (62) after a linear quench of
length τ = 10/(vFqc) and final interaction strength g0 = 2πvF. The
white line indicates the light cone as identified by the propagating
maximum shown in Fig. 4, while the black line is the corresponding
maximum after a sudden quench. We observe that after the quench the
light cones propagate with identical velocities but that the maximum
for the linear quench lags behind by a distance �x. Here and in
all following contour plots we used a linear interpolation between
numerically evaluated data points.

late times, follows a linear relation of time vs position
from which we can extract the velocity ṽ of the horizon
via ṽ = x/(2t). The first observation is that this velocity
is smaller than the renormalized velocity v defined in (4),
i.e., ṽ < v. The origin of this finding is the simple fact that
for any nontrivial momentum dependence of the coupling
functions the quasiparticles created by the quench will possess
different group velocities v(q) = dε(q)/dq depending on
their individual momenta q. Since for monotonically falling
coupling functions one has v(q) < v, the maximum originating
from a propagating packet of quasiparticles will be delayed
compared to the front of the fastest particles moving with
v. This behavior is already present for sudden quenches as
we discuss in Appendix C. Since this delay of propagating
quasiparticles is a general feature of any nontrivial momentum
dependence of the coupling functions, it is also expected to
show up in simulations for lattice models in both sudden and
finite-time quenches (see also Fig. 12).

The space-time dependence of the function (62) after a
linear quench is shown in Fig. 5. The white line indicates
the propagating maximum discussed above, while the black
line is the corresponding maximum after a sudden quench
with the same final parameters (see also Appendix C). At
sufficiently late time after the quench both maxima propagate
with identical velocities ṽ. However, at any fixed time the
maximum after the linear quench lags behind by a distance �x.
As we derive in Appendix D, the universal behavior of (62) at
late times and large separations, τ � t and 1/qc,2vτ � x, is
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given by

FF(x,t) = F st
F (x) − γ

sq
F ln

∣∣∣∣1 − x2

(2vt − �x)2

∣∣∣∣, (65)

where F st
F (x) is the stationary contribution defined in (63), the

sudden-quench exponent γ
sq
F was obtained in (64), and the lag

is given by

�x = 4KvFτ

1 − K2

[
ĝ2(0,τ ) − 1

τ

∫ τ

0
dt ĝ2(0,t)

]
. (66)

These results are valid for short to moderate quench times,
vFqcτ � 1, but arbitrary quench protocols. For example,
for linear or cosine quenches (66) simplifies to �x =
2KvFĝ2(0,τ )τ/(1 − K2). Furthermore, the approximate result
(65) only depends on the values g2(0,τ ) and g4(0,τ ); thus to-
gether with the stationary contribution F st

F (x) = 2γ
sq
F ln |qcx|

it describes the universal behavior of the fermionic Green’s
function at late times and large distances. For τ → 0 we
recover the well-known result for sudden quenches [11]. We
note that since (65) is obtained using the small-momentum
expansion of ε(q) it neglects the reduction of the propagation
velocity from v to ṽ (see Appendix D for a more detailed
discussion).

As an alternative, heuristic ansatz to analyze the light-cone
effect we use

�x = 2ṽτ − 2vF

∫ τ

sav

dt ′
√

[1 + ĝ4(0,t ′)]2 − ĝ2(0,t ′)2. (67)

Here the first term is due to the reduced postquench evolution
time during which the maximum propagates with velocity
ṽ. The second term describes the evolution during the
quench, where we assume the quasiparticles to propagate with
the instantaneous velocity [45] vF

√
[1 + ĝ4(0,t ′)]2 − ĝ2(0,t ′)2

(we have neglected the momentum dependence of the coupling
functions for simplicity). Furthermore, the quasiparticles are
created over the full quench time 0 � t � τ , with the phe-
nomenological parameter sav corresponding to the “average”
creation time of the relevant quasiparticles. Heuristically
we find that sav grows with τ [sav ∝ τ for vFqcτ � 1 in
agreement with (66)], decreases with increasing postquench
interaction strengths, and is larger for the cosine protocol
than for the linear ramp. In principle, sav should be related
to the mode occupations of the instantaneous eigenmodes αt

n

[where the parameter t indicates that these modes diagonalize
the Hamiltonian (1) at time t via αt

n = ct (qn)bn + st (qn)b†−n],
which is given by〈

�(t)
∣∣(αt

n

)†
αt

n

∣∣�(t)
〉 = |ct (qn)vn(t) + st (qn)un(t)|2 (68)

with the coefficients st (q) and ct (q) given by (2) with the
coupling functions g2/4(q) taken at time t . However, the precise
relation between (68) and the parameter sav remains unclear.

Finally, in Fig. 6 we show the space-time dependence of the
fermionic Green’s function after a periodic quench with long
quench time τ = 10/(vFqc) [for which (65) is not applicable].
We observe two propagating maxima caused by the nontrivial
time dependence of the creation of quasiparticles during the
quench. Also the propagating maxima are narrower than for
the linear quench with the same quench time (shown in Fig. 5)

FIG. 6. Contour plot of the function (62) after a periodic quench
with ν = 3, length τ = 10/(vFqc), and g0 = 2πvF. The white lines
indicate two light cones as identified by the propagating maxima,
while the black line is the corresponding maximum after a sudden
quench.

since the creation of quasiparticles happens during shorter time
intervals.

4. Oscillations inside the light cone

The space-time dependence of the function (62) after a
rather short cosine quench is shown in Fig. 7. In addition
to the horizon we observe oscillations inside the light cone,
which become more pronounced when the quench rate ĝ/τ

is increased. The origin of these oscillations is the nontrivial

FIG. 7. Contour plot of the function (62) after a cosine quench
of length τ = 1/(vFqc) and g0 = 4πvF. In addition to the horizon we
observe oscillations inside the light cone, which originate from the
nontrivial momentum dependence of the coupling functions.
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momentum dependence of the coupling functions and thus
the single-mode energy ε(q), and hence eventually a result of
the finite cutoff qc (see Appendix E for more details). Since
decreasing the quench time results in the creation of more
quasiparticles at higher momenta (e.g., compare the black
and blue lines in Fig. 2) where the momentum dependence
of ε(q) is stronger, the oscillations are more pronounced for
shorter quenches. We stress, however, that these oscillations
are nonuniversal and indeed do not appear in the universal
result (65). Nevertheless, the existence of a finite ultraviolet
cutoff, e.g., in lattice simulations, is generically expected to
result in oscillating features following the horizon. For a
discussion of similar, nonuniversal oscillations in the time
evolution after sudden quenches we refer to Ref. [22] (see
also Fig. 11).

5. Quasiparticle weight

Finally we consider the fermionic quasiparticle weight Z(t),
whose late-time behavior is characterized by universal power-
law decay [11,15,16,20,20,28]. In order to determine Z(t) we
consider the momentum distribution of right movers

n(q,t) =
∫

dx eiqx GF(x,t), (69)

which possesses a jump at the Fermi momentum kF with value
Z(t) = limq→kF− n(q,t) − limq→kF+ n(q,t). At late times after
the quench we find

Z(t) = c (vFqc t)−γ
sq
F ; (70)

in particular, the power-law decay is governed by the sudden-
quench exponent γ

sq
F . However, the prefactor c shows a

dependence on the quench time τ as well as the quench
protocol as shown in Fig. 8. For short and long quenches we
further obtain the limiting behaviors c ∼ 1 (vFqcτ�1) and c ∼
(vFqcτ )γ

ad
F (vFqcτ � 1), in agreement with the perturbative

results of Ref. [43] for linear quenches.
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FIG. 8. Quench-dependent prefactor c in the quasiparticle weight
(70) after linear, cosine, and periodic (only for g0 = vF/2) quenches.
For slow quenches, vFqcτ � 1, we observe power-law enhancement
c ∼ (vFqcτ )γ

ad
F indicated by the dotted lines. The occupation of

high-energy modes after the periodic quench manifests itself in the
nonmonotonic behavior around vFqcτ ∼ 5.

D. Bosonic Green’s function

1. Definition

Similarly to the fermionic Green’s function discussed above
we consider its bosonic counterpart (see Sec. II C)

GB(x,t) = 〈�B(x,t) �
†
B(0,t)〉 ∝ exp

(− 1
2FB(x,t)

)
(71)

where [44,45]

FB(x,t) =
∫ ∞

0

dq

q
[1 − cos(qx)] |u(q,t) − v(q,t)|2. (72)

In the limit of hard-core bosons the Green’s function (71)
corresponds to the spin-flip correlation function in the XXZ
chain, which was studied by Pollmann et al. [44] during
linear quenches. More recently, Bernier et al. [45] analyzed
the bosonic Green’s function during a linear ramp of the
interaction strength and identified the front at which corre-
lations form [similar to the second term in Eq. (67) above]
as well as several regimes showing different power-law and
stretched exponential decays. Here we will focus instead on
the postquench regime t > τ .

2. Stationary limit

First we consider the stationary limit F st
B (x) =

limt→∞ FB(x,t), which shows the asymptotic behavior

F st
B (x) = 2γB ln(qcx) (73)

with the adiabatic and sudden-quench exponents

γB =
{

γ ad
B = 1

2K
, x � 2vτ,

γ
sq
B = 1

4

(
1 + 1

K2

)
, 2vτ � x.

(74)

3. Light-cone effect and oscillations

The time evolution of FB(x,t) for linear quenches is shown
in Figs. 9 and 10. The propagating light cone is clearly visible
in the cuts; the extracted position is identical to the one
obtained from the fermionic Green’s function. In particular,

1 2 3 4 5 6 7 8
ln(qcx)

5

10

15

20

F B
(x
,t)

vFqct=10
vFqct=20
vFqct=50
vFqct=100

~ln(qcx)

~2γB
sq ln(qcx)

FIG. 9. Constant time cuts for FB(x,t) after a linear quench of
length τ = 10/(vFqc) and final interaction strength g0 = 2πvF. We
observe a propagating maximum (indicated by arrows) defining the
light cone. For large separations inside the light cone, 2vτ � x �
2vt , the slope is given by 2γ

sq
B , while outside the light cone we

find FB(x,t) ∼ ln(qcx) implying the power-law decay of the bosonic
Green’s function GB(x,t) ∝ 1/

√
x in the noninteracting initial state.
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FIG. 10. Contour plots of FB(x,t) after linear quenches with
(a) g0 = 2πvF, τ = 10/(vFqc) and (b) g0 = 4πvF, τ = 1/(vFqc). The
white lines indicate the light cones as identified by the propagating
maximum shown in Fig. 9, while the black lines are the corresponding
maxima after a sudden quench. The feature for the linear quench lags
behind by a distance �x, which is identical to the one extracted from
the fermionic Green’s function.

we observe the same propagation velocity ṽ and the same lag
�x. The universal behavior of FB(x,t) is obtained analogously
to Appendix D with the result

FB(x,t) = F st
B (x) − 1 − K2

4K2
ln

∣∣∣∣1 − x2

(2vt − �x)2

∣∣∣∣, (75)

with the lag given for short to moderate quench times but
arbitrary quench protocols by (66). Together with (73) we can
obtain the space dependence of the bosonic Green’s function
at fixed times (see also Fig. 9): GB(x,t) ∝ x−γ ad

B for x � 2vτ ,
GB(x,t) ∝ x−γ

sq
B for 2vτ � x � 2vt , and GB(x,t) ∝ x−1/2

for 2vt � x, i.e., outside the light cone. In addition, behind
the propagating front we observe oscillations, see Fig. 10(b),

which, as for the fermionic Green’s function, originate from
the nontrivial momentum dependence of the single-mode
energy ε(q).

4. Stretched exponential behavior

Scrutinizing a Galilean invariant system during linear
ramps Bernier et al. [45] identified an intermediate regime
over which the bosonic Green’s function shows an uncon-
ventional stretched exponential space dependence at fixed
times.

In Appendix F we perform a similar analysis for the sta-
tionary Green’s function after a linear quench with g2(q,t) =
g4(q,t) = g2(q) t/τ . We find that between the power-law
dependencies in the adiabatic and sudden-quench regimes
defined by (74), there exists an intermediate regime showing
the stretched exponential behavior

Gst
B(x) ∼ exp

[
−21/3π2√1 + 2ĝ2(0)

�(1/3)3

(
3ĝ2(0)x

vFτ

)1/3
]

(76)

provided

vFτ

3ĝ2(0)
� x � vFτ

3ĝ2(0)
[1 + 2ĝ2(0)]3/2. (77)

A few remarks are in order: (i) The existence of the regime (77)
requires very strong postquench interactions, which may not
be realizable in microscopic models [45]. (ii) The result (76) is
only valid for linear quenches. (iii) In the derivation of (76) we
have used the replacement g2(q) → g2(0). However, given that
the regime (77) corresponds to a regime of finite momenta and
thus finite energies, the stretched exponential behavior may be
masked by the effects of marginal or irrelevant perturbations
to the TLM such as the momentum dependence of g2(q). (iv)
Interestingly, the result (76) is identical to the one [45] at t = τ .
Thus the emerging picture is as follows: During the quench
the Green’s function develops the adiabatic and stretched
exponential regimes (provided the postquench interactions
are strong enough) inside the light cone, while outside the
light cone the behavior is governed by the noninteracting
initial state. After the quench the adiabatic and stretched expo-
nential regimes remain unchanged, while behind the horizon
the additional sudden-quench behavior develops, eventually
governing the whole regime vFτ [1 + 2ĝ2(0)]3/2/[3ĝ2(0)] � x

in the stationary limit.

E. Other correlation functions

Using the same methods one can analyze the behavior of
other correlation functions. For example, the staggered part of
the density-density correlation function is given by χ (x,t) ∝
exp[− 1

2Fχ (x,t)] with [44]

Fχ (x,t) =
∫ ∞

0

dq

q
[1 − cos(qx)] |u(q,t) + v(q,t)|2. (78)

This shows the same qualitative features as the Green’s
functions discussed in the previous two sections, i.e., a clear
light-cone effect with a delay due to the finite quench time as
well as oscillations inside the light cone originating from the
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finite cutoff qc. These general features are expected for other
correlation functions as well.

VI. CONCLUSION AND DISCUSSION

In this work we have investigated the time evolution in
the TLM during and after finite-time interaction quenches.
These were implemented by time-dependent protocols to
change the interaction parameters g2/4 over the time interval τ .
After discussing the general framework of the time-dependent
TLM, we derived exact analytical expressions for the small-
momentum behavior of the solution, as well as discussed the
full solutions for specific quench protocols such as the linear
quench [45], a cosine ramp, and periodic driving [73,74].

We then used these results to analyze the time evolution of
the total and kinetic energy as well as fermionic and bosonic
Green’s functions during and after the quench. We focused
on universal quantities in the sense that they only depend
on the coupling functions at zero momentum and thus the
Luttinger parameter and renormalized velocity given in Eq. (4).
For example, we showed that the kinetic energy decays as
γkin/t2 to its stationary value, where the decay parameter γkin

is identical to the one found for sudden quenches [20] and thus
independent of the quench protocol.

Analyzing the stationary limit of the fermionic Green’s
function we found a crossover from the adiabatic to the sudden
regime at x ∼ 2vτ , where the two regimes are governed by
different power-law decays, in agreement with earlier findings
in the perturbative regime [43]. Perhaps most interestingly,
the light-cone effect [4] well known from sudden quenches
is also clearly visible after finite-time quenches. However, as
compared to the sudden case there is a lag of the horizon, which
is related to two physical effects: First, during the quench
the quasiparticles propagate at the instantaneous velocity [45]
which is generically smaller than the postquench velocity.
Second, the creation of quasiparticle pairs happens during
the full time of the quench, while for sudden quenches they
are all created at the same time t = 0. Using the analytical
expressions for the small-momentum behavior of the solution,
we obtained the universal behavior (65) of the fermionic
Green’s function. This includes an analytic expression for the
lag (66), which is valid for short to moderate quench times, and
relates the lag to the change of the interaction strength during
the quench. In particular, the lag thus depends on the details
of the quench protocol. Furthermore, we identified a reduction
of the postquench velocity with respect to the renormalized
velocity as well as oscillations inside the light cone, and traced
both effects back to the momentum dependence of the coupling
functions g2/4(q).

Finally we analyzed the bosonic Green’s function. The
behavior is very similar to the one discussed for the fermionic
one. In particular, we extracted the universal behavior of the
postquench dynamics, see (73) and (75), and showed that
the lag of the horizon is still given by (66). In addition, for
linear quenches to very strong interactions we analyzed the
regime of intermediate separations. We found that the stretched
exponential behavior previously observed [45] during the
quench is unaffected by the postquench dynamics and thus
also present in the stationary Green’s function.

As discussed in Sec. II the TLM describes the universal
low-energy physics of various one-dimensional fermionic and
bosonic lattice models as well as spin chains in equilibrium;
more specifically it corresponds to the low-energy fixed point
in a renormalization-group treatment. One may wonder to
what extent results obtained for the quench dynamics in the
TLM can also be used to analyze the quench dynamics in
these lattice models, since the quench will inject a finite
energy density into the system and thus drive it away from
its low-energy fixed point. This may even be more severe in
the case of finite-time quenches since the quench time τ will
introduce an additional energy scale in the problem, which
may increase the importance of marginal and irrelevant per-
turbations to the TLM. Nevertheless, various numerical studies
[13,14,17,20,26,28,29,33] of observables in one-dimensional
lattice models after sudden quenches showed a surprisingly
good agreement with the results obtained in the TLM; a
finding also obtained for the time evolution during finite-time
interaction quenches [39,41,45] in the Bose-Hubbard model.
Still, from a practical point of view the study of the time
evolution after finite-time quenches is complicated by the
restriction of the achievable times in numerical simulations
due to the finite quench time and the unknown effects of
perturbations to the TLM as well as the energy (and thus time)
scales involved. Further research in this direction is clearly
desirable.

In light of this it would be very interesting to investigate
the effect of perturbations around the TLM, for example, the
finite band curvature included in the nonlinear Luttinger liquid
theory [89] or relevant perturbations leading to the opening of
an excitation gap [90–92]. Furthermore, our results for periodic
quenches could be used to connect the field of quantum
quenches to periodically driven systems since the latter can
be treated by increasing the number of periods ν in (45) as
already employed in Refs. [73,74].
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Haque, Markus Heyl, Salvatore Manmana, Volker Meden, and
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APPENDIX A: SOLUTION AT SMALL MOMENTA

In this appendix we obtain the solution of (22) at small
momenta. To this end we expand the solutions in pow-
ers of q/qc, u(q,t) = ∑∞

m=0 u(m)(t) (q/qc)m, and v(q,t) =∑∞
m=0 v(m)(t) (q/qc)m. Doing the same for the coefficients

ω(q,t) and λ(q,t) [recall that, e.g., ωn(t) = ω(qn,t)] we obtain
the equations u̇(0)(t) = v̇(0) = 0, iu̇(1)(t) = vFqc[1 + ĝ4(0,t)],
and iv̇(1)(t) = −vFqcĝ2(0,t) with the initial conditions
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u(0)(0) = 1, v(0)(0) = u(1)(0) = v(1)(0) = 0. This immediately
results in (25) and (26).

In order to compare the leading and next-to-leading term in
the expansion (25), we approximate the integral by taking
ĝ4(0,t ′) → ĝ4(0,τ ) = ĝ4(0), which results in u(q,τ ) = 1 −
ivFqτ [1 + ĝ4(0)]. Thus we see that the first and second terms
become of the same order for q ∼ 1/(vFτ )/[1 + ĝ4(0)] ≈
1/(vFτ ), thus establishing the requirement q � 1/(vFτ ). Of
course, considering very nonmonotonic time dependencies of
ĝ4(0,t) may lead to a shrinking of the range of momenta over
which (25) is applicable.

It is straightforward to determine the behavior in second
order. We get u(2)(t) = (|v(1)(t)|2 − |u(1)(t)|2)/2, while the
next-to-leading contribution to v(q,t) is given by

v(2)(t) = (vFqc)2
∫ t

0
dt ′

∫ t ′

0
dt ′′ [ĝ2(0,t ′)[1 + ĝ4(0,t ′′)]

− [1 + ĝ4(0,t ′)]ĝ2(0,t ′′)]

+ ivFq
2
c

∫ t

0
dt ′

∂

∂q
ĝ2(q,t ′)|q=0. (A1)

To obtain an estimate for (A1) we assume a linear quench with
g2(q,t) = g4(q,t) = g2(q) t/τ and ∂g2(q)/∂q|q=0 = 0. This
yields

v(q,τ ) = ivFĝ2(0)τq

2
+ v2

Fĝ2(0)τ 2q2

6
+ · · · . (A2)

[We stress that the second-order term is still linear in ĝ2(0); i.e.,
the expansion is nonperturbative.] Thus we see that the first-
and second-order terms become comparable for q ∼ 1/(vFτ ),
thus again leading to the requirement q � 1/(vFτ ). The same
estimate is found for other quench protocols. We note again
that considering very nonmonotonic time dependencies of the
quench protocol or very strong final interaction strengths may
lead to a shrinking of the range of momenta over which (25)
and (26) are applicable.

APPENDIX B: PERTURBATIVE SOLUTION

For completeness we state here the perturbative solution of
(22), which up to second order in ĝ2/4(qn,t) reads

un(t) = e−ivF|qn|t − ivF|qn|
∫ t

0
dt ′ ĝ4(qn,t

′) e−ivF|qn|t

− (vFq)2e−ivF|q|t
∫ t

0
dt ′

∫ t ′

0
dt ′′ [ĝ4(q,t ′) ĝ4(q,t ′′)

− ĝ2(q,t ′) ĝ2(q,t ′′)e2ivF|q|(t ′−t ′′)], (B1)

vn(t) = ivF|qn|
∫ t

0
dt ′ ĝ2(qn,t

′) eivF|qn|(t−2t ′)

+ (vFq)2eivF|q|t
∫ t

0
dt ′

∫ t ′

0
dt ′′ [ĝ2(q,t ′) ĝ4(q,t ′′)

× e−2ivF|q|t ′ − ĝ4(q,t ′) ĝ2(q,t ′′)e−2ivF|q|t ′′ ]. (B2)

For g4 = 0 and restricting to O(ĝ2) we recover the result given
in Ref. [43].

APPENDIX C: LIGHT-CONE VELOCITY AFTER
SUDDEN QUENCHES

In this appendix we briefly discuss the propagation of the
horizon in the fermionic Green’s function after a sudden
quench. In Fig. 11 we compare the time dependence at
fixed separation for different momentum dependencies of
the coupling functions, including the ad hoc regularization
[11,16] which allows an analytic treatment of the momentum
integrals. The latter is defined by choosing the coupling
functions such that 4s(q)2c(q)2 = ĝ2(0)2e−q/qc/W (0)2, and in
addition linearizing the dispersion relation ε(q) → v|q| (see
Ref. [22] for more details). Thus in the ad hoc regularization
all quasiparticles travel with the renormalized velocity v

independently of their individual momenta. The same is
true for the relevant momenta |q| < qc in the case of the
box potential. In contrast, if the coupling functions possess
a genuine momentum dependence the effective velocities
v(q) = dε(q)/dq of individual quasiparticles are reduced, as
is shown in the inset to Fig. 11. Hence we expect a delay
of propagating features for momentum-dependent coupling
functions as exemplified in the main panel of Fig. 11 for
the propagating maxima indicated by the arrows. This effect
is also expected to show up in lattice systems such as spin
chains, where the ultraviolet cutoff provided by the lattice
causes an effective momentum dependence of the effective
coupling functions.

0 2 4 6 8 10
vFqct

0

1

2

3

F F
(x
,t)

,
x=

20
/q

c

Gauss
exp
box
ad hoc

0 1 2 3 4q/qc

0.5

1

1.5

2

v(
q)

/v
F

FIG. 11. Time evolution of the function (62) at x = 20/qc

after a sudden quench from g0 = 0 to g0 = 2πvF. We assumed
g2(q,τ ) = g4(q,τ ) and considered Gaussian momentum dependence
g2(q,τ ) = g0 exp[−(q/qc)2/2], exponential dependence g2(q,τ ) =
g0 exp[−q/qc], a box potential g2(q,τ ) = g0 �(qc − q), or the ad
hoc regularization (see text). The arrows indicate the positions of
the propagating maxima. For the Gaussian and exponential coupling
functions we observe a delay of the maximum caused by the reduced
group velocities v(q) = dε(q)/dq of the quasiparticles (shown in the
inset). The result for the box potential shows clear oscillations inside
the light cone originating from the finite, sharp cutoff qc.
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APPENDIX D: DERIVATION OF EQUATION (65)

In this appendix we extract the universal behavior of the
function (62) at late times and large distances. Since t > τ we
first insert the solution (27) after the quench to obtain

FF(x,t) = F st
F (x) + F̃F(x,t), (D1)

F̃F(x,t) = 2
∫ ∞

0

dq

q
[1 − cos(qx)]

×{[|A(q)|2 − |B(q)|2] cos[2ε(q)t]

+ 2 Re[A(q)∗B(q)] sin[2ε(q)t]}, (D2)

where F st
F (x) = limt→∞ FF(x,t) denotes the stationary limit

given by (63). The integral in (D2) is dominated by small
momenta q � qc, for which we can use the expansions (32)
and (33). The additional requirement q � 1/(vFτ ) originating
from (25) and (26) will be automatically satisfied provided
vFqcτ � 1, implying that the results are valid for quenches
with short to moderate quench times. Writing A(q) = −iA1q

and B(q) = iB0 with A1,B0 ∈ R we obtain

F̃F(x,t) = 2
∫ ∞

0

dq

q
[cos(qx) − 1]

×{
B2

0 cos[2ε(q)t] + 2A1B0q sin[2ε(q)t]
}

(D3)

= 2B2
0

∫ ∞

0

dq

q
[cos(qx) − 1] cos

[
2ε(q)t − 2A1

B0
q

]
.

(D4)

Finally, expanding the single-mode energy to leading order,
ε(q) = vq + · · · , gives

F̃F(x,t) = 2B2
0

∫ ∞

0

dq

q
[cos(qx) − 1] cos[(2vt − �x)q]

(D5)
with �x = 2A1/B0. The remaining integral can be performed
analytically [68] with the result given in Eq. (65). We note that
the approximation ε(q) = vq neglects all effects originating
from the momentum dependence of the group velocity v(q) =
dε(q)/dq such as oscillations inside the light cone (see
Appendix E) or corrections to the sudden-quench exponent
γ

sq
F = B2

0 (similar to the corrections discussed by Meden [54]
for the one-particle Green’s function in equilibrium).

APPENDIX E: OSCILLATIONS INSIDE THE LIGHT CONE

In Fig. 12 we show constant-time cuts of the function
(62) after a linear quench. We compare the results for
two specific momentum dependencies of the coupling func-
tions, namely the Gaussian momentum dependence g2(q,τ ) =
g0 exp[−(q/qc)2/2] and one containing the error function [68]
(denoted by Erf), i.e., g2(q,τ ) = 2πvF g̃(q) [1 + g̃(q)/2] with
the auxiliary function

g̃(q) =
√

π

2

(√
1 + g0

πvF
− 1

)
qc

q
Erf

(
q√
2qc

)
. (E1)

The momentum dependence in (E1) is chosen such that the
group velocity is a monotonically decreasing function of q, i.e.,
v(q) = (v − vF) exp[−(q/qc)2/2] + vF. We also show result

0 50 100
qcx

0

1

2

3

4

F F
(x
,t)

-F
Fst

(x
),
v F
q c
t=

20

Gauss
Erf
box
Eq. (65)
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q/qc
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v(
q)

/v
F
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FIG. 12. Time evolution of the function (62) at t = 20/(vFqc)
after a linear quench of length τ = 1/(vFqc) to g0 = 4πvF. The
momentum dependencies of the coupling function g2(q,τ ) = g4(q,τ )
are described in the text. In addition, we show the universal result (65).
The dotted lines indicate the position of the horizon after a sudden
quench (x = 2vt) as well as in the universal result, where it is given
by (66). Inset: Effective quasiparticle velocities v(q) = dε(q)/dq.

for the box potential g2(q,τ ) = g0 �(qc − q) as well as the
universal result (65).

We observe that there are two main effects of the nontrivial
momentum dependence: First, the reduced quasiparticle ve-
locities v(q) (see inset) lead to a reduction of the effective
velocity of the horizon from v to ṽ, as can be clearly seen
for the Gaussian and Erf momentum dependencies. Second,
for these two cases we also observe pronounced oscillations
inside the light cone. In the case of the box potential the
finite cutoff also results in weak features inside the light cone,
which are, however, much less pronounced. In contrast, the
universal result (65) does not show these two effects. However,
oscillations show up if also the next-to-leading term in the
expansion of the single-mode energy ε(q) in (D4) is kept.
From this we deduce that the appearance of oscillations is
caused by the momentum dependence of the group velocity
v(q), for example by a finite curvature at q = 0. Of course, the
precise details of the oscillations, like the oscillation frequency
and their decay as a function of 2ṽt − x, depend on the full
momentum dependence of the velocity as well as the prefactors
A(q) and B(q) (and thus on the details of the quench).

APPENDIX F: STRETCHED EXPONENTIAL BEHAVIOR

In this appendix we consider the time evolution of the
bosonic Green’s function after linear quenches in the Galilean
invariant system; i.e., we have g2(q,t) = g4(q,t) = g2(q) t/τ

during the quench and g2(q,τ ) = g4(q,τ ) = g2(q) afterwards.
Since g2(q,t) = g4(q,t), we can rewrite the function (72) in
terms of the auxiliary function a(q,t) using (36) and (37)
as [45]

FB(x,t) = 1

v2
F

∫ ∞

0

dq

q3
[1 − cos(qx)]

∣∣∣∣ d

dt
a(q,t)

∣∣∣∣
2

. (F1)
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The solution of (38) after the quench is given by

a(q,t) = a(q,τ ) cos[ε(q)(t − τ )] + ȧ(q,τ )

ε(q)
sin[ε(q)(t − τ )],

(F2)
which yields
d

dt
a(q,t) = 1

2
[|ȧ(q,τ )|2 + ε(q)2 |a(q,τ )|2]

+ 1

2
[|ȧ(q,τ )|2 − ε(q)2 |a(q,τ )|2]

× cos[2ε(q)(t − τ )] − ε(q) Re[ȧ(q,τ )∗ a(q,τ )]

× sin[2ε(q)(t − τ )]. (F3)

Thus we can write the stationary part as

F st
B (x,t) = 1

2v2
F

∫ ∞

0

dq

q3
[1 − cos(qx)]

× [|ȧ(q,τ )|2 + ε(q)2 |a(q,τ )|2]. (F4)

The remaining analysis is now based on the exactly known
functions a(q,τ ) and ȧ(q,τ ) after a linear quench, and the
asymptotic expansions of the Bessel functions. It follows the
derivation by Bernier et al. [45] one-to-one; thus we refrain
from repeating it here.
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[40] M. Sandri, M. Schiró, and M. Fabrizio, Phys. Rev. B 86, 075122

(2012).
[41] M. Haque and F. E. Zimmer, Phys. Rev. A 87, 033613 (2013).
[42] S. R. Das, D. A. Galante, and R. C. Myers, J. High Energy Phys.

08 (2015) 073.
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[48] B. Dóra, A. Bácsi, and G. Zaránd, Phys. Rev. B 86, 161109

(2012).
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